메뉴 건너뛰기




Volumn 54, Issue , 2014, Pages 108-127

Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling

Author keywords

ANN model development protocol; Artificial Neural Networks; Environmental and water resources modelling; Review; Water quality

Indexed keywords

ANN MODELING; INPUT SELECTION; ITS APPLICATIONS; JOURNAL PAPER; MODEL ARCHITECTURE; MODEL DEVELOPMENT; MODEL VALIDATION; WATER RESOURCES MODELLING;

EID: 84892886293     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2013.12.016     Document Type: Review
Times cited : (257)

References (151)
  • 1
    • 72449139311 scopus 로고    scopus 로고
    • Neural Network Hydroinformatics: Maintaining Scientific Rigour
    • Springer, Berlin Heidelberg, R. Abrahart, L. See, D. Solomatine (Eds.)
    • Abrahart R.J., See L.M., Dawson C.W. Neural Network Hydroinformatics: Maintaining Scientific Rigour. Practical Hydroinformatics 2008, 33-47. Springer, Berlin Heidelberg. R. Abrahart, L. See, D. Solomatine (Eds.).
    • (2008) Practical Hydroinformatics , pp. 33-47
    • Abrahart, R.J.1    See, L.M.2    Dawson, C.W.3
  • 2
    • 79953176278 scopus 로고    scopus 로고
    • Discussion of "Evapotranspiration modelling using support vector machines"
    • Abrahart R.J., Dawson C.W., See L.M., Mount N.J., Shamseldin A.Y. Discussion of "Evapotranspiration modelling using support vector machines". Hydrol. Sci. J. 2010, 55(8):1442-1450.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.8 , pp. 1442-1450
    • Abrahart, R.J.1    Dawson, C.W.2    See, L.M.3    Mount, N.J.4    Shamseldin, A.Y.5
  • 4
    • 84856487939 scopus 로고    scopus 로고
    • Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande
    • Abudu S., King J.P., Sheng Z.P. Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande. J.Am. Water Resour. Assoc. 2012, 48(1):10-23.
    • (2012) J.Am. Water Resour. Assoc. , vol.48 , Issue.1 , pp. 10-23
    • Abudu, S.1    King, J.P.2    Sheng, Z.P.3
  • 5
    • 33745627278 scopus 로고    scopus 로고
    • Areview of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment
    • Ahmadi-Nedushan B., St-Hilaire A., Bérubé M., Robichaud É., Thiémonge N., Bobée B. Areview of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Res. Appl. 2006, 22(5):503-523.
    • (2006) River Res. Appl. , vol.22 , Issue.5 , pp. 503-523
    • Ahmadi-Nedushan, B.1    St-Hilaire, A.2    Bérubé, M.3    Robichaud, É.4    Thiémonge, N.5    Bobée, B.6
  • 6
    • 84755161811 scopus 로고    scopus 로고
    • Feasibility assessment of data-driven models in predicting pollution trends of Omerli Lake, Turkey
    • Akkoyunlu A., Akiner M.E. Feasibility assessment of data-driven models in predicting pollution trends of Omerli Lake, Turkey. Water Resour. Manag. 2010, 24(13):3419-3436.
    • (2010) Water Resour. Manag. , vol.24 , Issue.13 , pp. 3419-3436
    • Akkoyunlu, A.1    Akiner, M.E.2
  • 7
    • 81755176465 scopus 로고    scopus 로고
    • Depth-integrated estimation of dissolved oxygen in a lake
    • Akkoyunlu A., Altun H., Cigizoglu H.K. Depth-integrated estimation of dissolved oxygen in a lake. J.Environ. Eng. Asce 2011, 137(10):961-967.
    • (2011) J.Environ. Eng. Asce , vol.137 , Issue.10 , pp. 961-967
    • Akkoyunlu, A.1    Altun, H.2    Cigizoglu, H.K.3
  • 8
    • 84860378229 scopus 로고    scopus 로고
    • Application of Artificial Neural Network to predict TDS in Talkheh Rud River
    • Asadollahfardi G., Taklify A., Ghanbari A. Application of Artificial Neural Network to predict TDS in Talkheh Rud River. J.Irrig. Drain. Eng. Asce 2012, 138(4):363-370.
    • (2012) J.Irrig. Drain. Eng. Asce , vol.138 , Issue.4 , pp. 363-370
    • Asadollahfardi, G.1    Taklify, A.2    Ghanbari, A.3
  • 9
    • 0034174280 scopus 로고    scopus 로고
    • Artificial Neural Networks in hydrology. I: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in hydrology. I: preliminary concepts. J.Hydrol. Eng. 2000, 5(2).
    • (2000) J.Hydrol. Eng. , vol.5 , Issue.2
  • 10
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in hydrology. II: hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in hydrology. II: hydrologic applications. J.Hydrol. Eng. 2000, 5(2).
    • (2000) J.Hydrol. Eng. , vol.5 , Issue.2
  • 11
    • 84868601226 scopus 로고    scopus 로고
    • Modeling of dissolved oxygen concentration using different neural network techniques in foundation creek, El Paso County, Colorado
    • Ay M., Kisi O. Modeling of dissolved oxygen concentration using different neural network techniques in foundation creek, El Paso County, Colorado. J.Environ. Eng. 2012, 138(6):654-662.
    • (2012) J.Environ. Eng. , vol.138 , Issue.6 , pp. 654-662
    • Ay, M.1    Kisi, O.2
  • 12
    • 79551472362 scopus 로고    scopus 로고
    • Artificial neural network model as a potential alternative for groundwater salinity forecasting
    • Banerjee P., Singh V.S., Chatttopadhyay K., Chandra P.C., Singh B. Artificial neural network model as a potential alternative for groundwater salinity forecasting. J.Hydrol. 2011, 398(3-4):212-220.
    • (2011) J.Hydrol. , vol.398 , Issue.3-4 , pp. 212-220
    • Banerjee, P.1    Singh, V.S.2    Chatttopadhyay, K.3    Chandra, P.C.4    Singh, B.5
  • 13
    • 79151483792 scopus 로고    scopus 로고
    • Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN
    • Bashi-Azghadi S.N., Kerachian R., Bazargan-Lari M.R., Solouki K. Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN. Expert Syst. Appl. 2010, 37(10):7154-7161.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.10 , pp. 7154-7161
    • Bashi-Azghadi, S.N.1    Kerachian, R.2    Bazargan-Lari, M.R.3    Solouki, K.4
  • 15
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden G.J., Maier H.R., Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 2002, 38(2):1010.
    • (2002) Water Resour. Res. , vol.38 , Issue.2 , pp. 1010
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 16
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. J.Hydrol. 2005, 301(1-4):75-92.
    • (2005) J.Hydrol. , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 17
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
    • Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J.Hydrol. 2005, 301(1-4):93-107.
    • (2005) J.Hydrol. , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 18
    • 33745337472 scopus 로고    scopus 로고
    • Forecasting chlorine residuals in a water distribution system using a general regression neural network
    • Bowden G.J., Nixon J.B., Dandy G.C., Maier H.R., Holmes M. Forecasting chlorine residuals in a water distribution system using a general regression neural network. Math. Comput. Model. 2006, 44(5-6):469-484.
    • (2006) Math. Comput. Model. , vol.44 , Issue.5-6 , pp. 469-484
    • Bowden, G.J.1    Nixon, J.B.2    Dandy, G.C.3    Maier, H.R.4    Holmes, M.5
  • 19
    • 84868621819 scopus 로고    scopus 로고
    • Real-time deployment of artificial neural network forecasting models: understanding the range of applicability
    • Bowden G.J., Maier H.R., Dandy G.C. Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour. Res. 2012, 48(10):W10549.
    • (2012) Water Resour. Res. , vol.48 , Issue.10
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 20
    • 0035127502 scopus 로고    scopus 로고
    • Using neural networks to predict peak Cryptosporidium concentrations
    • Brion G.M., Neelakantan T.R., Lingireddy S. Using neural networks to predict peak Cryptosporidium concentrations. J.Am. Water Works Assoc. 2001, 93(1):99-105.
    • (2001) J.Am. Water Works Assoc. , vol.93 , Issue.1 , pp. 99-105
    • Brion, G.M.1    Neelakantan, T.R.2    Lingireddy, S.3
  • 21
    • 0035083179 scopus 로고    scopus 로고
    • Modeling transient pH depressions in coastal streams of British Columbia using neural networks
    • Cannon A.J., Whitfield P.H. Modeling transient pH depressions in coastal streams of British Columbia using neural networks. J.Am. Water Resour. Assoc. 2001, 37(1):73-89.
    • (2001) J.Am. Water Resour. Assoc. , vol.37 , Issue.1 , pp. 73-89
    • Cannon, A.J.1    Whitfield, P.H.2
  • 22
    • 84858850209 scopus 로고    scopus 로고
    • Data-driven dynamic emulation modelling for the optimal management of environmental systems
    • Castelletti A., Galelli S., Restelli M., Soncini-Sessa R. Data-driven dynamic emulation modelling for the optimal management of environmental systems. Environ. Model. Softw. 2012, 34(0):30-43.
    • (2012) Environ. Model. Softw. , vol.34 , Issue.0 , pp. 30-43
    • Castelletti, A.1    Galelli, S.2    Restelli, M.3    Soncini-Sessa, R.4
  • 23
    • 70350422293 scopus 로고    scopus 로고
    • Review of the Self-Organizing Map (SOM) approach in water resources: commentary
    • Céréghino R., Park Y.S. Review of the Self-Organizing Map (SOM) approach in water resources: commentary. Environ. Model. Softw. 2009, 24(8):945-947.
    • (2009) Environ. Model. Softw. , vol.24 , Issue.8 , pp. 945-947
    • Céréghino, R.1    Park, Y.S.2
  • 24
    • 84858621775 scopus 로고    scopus 로고
    • Integration of optimal dynamic control and neural network for groundwater quality management
    • Chang L.C., Chu H.J., Hsiao C.T. Integration of optimal dynamic control and neural network for groundwater quality management. Water Resour. Manag. 2012, 26(5):1253-1269.
    • (2012) Water Resour. Manag. , vol.26 , Issue.5 , pp. 1253-1269
    • Chang, L.C.1    Chu, H.J.2    Hsiao, C.T.3
  • 25
    • 33847261136 scopus 로고    scopus 로고
    • Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks
    • Chaves P., Kojiri T. Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Adv. Water Resour. 2007, 30(5):1329-1341.
    • (2007) Adv. Water Resour. , vol.30 , Issue.5 , pp. 1329-1341
    • Chaves, P.1    Kojiri, T.2
  • 26
    • 33847710603 scopus 로고    scopus 로고
    • Conceptual fuzzy neural network model for water quality simulation
    • Chaves P., Kojiri T. Conceptual fuzzy neural network model for water quality simulation. Hydrol. Process. 2007, 21(5):634-646.
    • (2007) Hydrol. Process. , vol.21 , Issue.5 , pp. 634-646
    • Chaves, P.1    Kojiri, T.2
  • 27
    • 84861962150 scopus 로고    scopus 로고
    • Predicting and managing reservoir total phosphorus by using modified grammatical evolution coupled with a macro-genetic algorithm
    • Chen L., Kao S.-J., Traore S. Predicting and managing reservoir total phosphorus by using modified grammatical evolution coupled with a macro-genetic algorithm. Environ. Model. Softw. 2012, 38(0):89-100.
    • (2012) Environ. Model. Softw. , vol.38 , Issue.0 , pp. 89-100
    • Chen, L.1    Kao, S.-J.2    Traore, S.3
  • 28
    • 0037389847 scopus 로고    scopus 로고
    • "Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake
    • Chen Q.W., Mynett A.E. "Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecol. Model. 2003, 162(1-2):55-67.
    • (2003) Ecol. Model. , vol.162 , Issue.1-2 , pp. 55-67
    • Chen, Q.W.1    Mynett, A.E.2
  • 29
    • 81955160727 scopus 로고    scopus 로고
    • Development and application of a hybrid model to analyze spatial distribution of macroinvertebrates under flow regulation in the Lijiang River
    • Chen Q.W., Yang Q.R., Lin Y.Q. Development and application of a hybrid model to analyze spatial distribution of macroinvertebrates under flow regulation in the Lijiang River. Ecol. Inform. 2011, 6(6):407-413.
    • (2011) Ecol. Inform. , vol.6 , Issue.6 , pp. 407-413
    • Chen, Q.W.1    Yang, Q.R.2    Lin, Y.Q.3
  • 30
    • 0037903280 scopus 로고    scopus 로고
    • Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin
    • Chibanga R., Berlamont J., Vandewalle J. Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 2003, 48(3):363-379.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 363-379
    • Chibanga, R.1    Berlamont, J.2    Vandewalle, J.3
  • 31
    • 80053125279 scopus 로고    scopus 로고
    • Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network
    • Cho K.H., Sthiannopkao S., Pachepsky Y.A., Kim K.W., Kim J.H. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 2011, 45(17):5535-5544.
    • (2011) Water Res. , vol.45 , Issue.17 , pp. 5535-5544
    • Cho, K.H.1    Sthiannopkao, S.2    Pachepsky, Y.A.3    Kim, K.W.4    Kim, J.H.5
  • 32
    • 73649127943 scopus 로고    scopus 로고
    • Reservoir computing approach to Great Lakes water level forecasting
    • Coulibaly P. Reservoir computing approach to Great Lakes water level forecasting. J.Hydrol. 2010, 381(1-2):76-88.
    • (2010) J.Hydrol. , vol.381 , Issue.1-2 , pp. 76-88
    • Coulibaly, P.1
  • 33
    • 77955956782 scopus 로고    scopus 로고
    • Comparison of ANN models for predicting water quality in distribution systems
    • 92-+
    • D'Souza C.D., Kumar M.S.M. Comparison of ANN models for predicting water quality in distribution systems. J.Am. Water Works Assoc. 2010, 102(7). 92-+.
    • (2010) J.Am. Water Works Assoc. , vol.102 , Issue.7
    • D'Souza, C.D.1    Kumar, M.S.M.2
  • 34
    • 68149162407 scopus 로고    scopus 로고
    • Use of neural networks for monitoring surface water quality changes in a neotropical urban stream
    • da Costa A.O.S., Silva P.F., Sabara M.G., da Costa E.J.D. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream. Environ. Monit. Assess. 2009, 155(1-4):527-538.
    • (2009) Environ. Monit. Assess. , vol.155 , Issue.1-4 , pp. 527-538
    • da Costa, A.O.S.1    Silva, P.F.2    Sabara, M.G.3    da Costa, E.J.D.4
  • 35
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25(1):80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 36
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson C.W., Abrahart R.J., See L.M. HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22(7):1034-1052.
    • (2007) Environ. Model. Softw. , vol.22 , Issue.7 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 37
    • 33947709411 scopus 로고    scopus 로고
    • Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers
    • Diamantopoulou M.J., Antonopoulos V.Z., Papamichail D.M. Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resour. Manag. 2007, 21(3):649-662.
    • (2007) Water Resour. Manag. , vol.21 , Issue.3 , pp. 649-662
    • Diamantopoulou, M.J.1    Antonopoulos, V.Z.2    Papamichail, D.M.3
  • 38
    • 69149106528 scopus 로고    scopus 로고
    • Acase study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N
    • Dixon B. Acase study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N. Hydrogeol. J. 2009, 17(6):1507-1520.
    • (2009) Hydrogeol. J. , vol.17 , Issue.6 , pp. 1507-1520
    • Dixon, B.1
  • 39
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan E., Sengorur B., Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J.Environ. Manag. 2009, 90(2):1229-1235.
    • (2009) J.Environ. Manag. , vol.90 , Issue.2 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 40
    • 38049074403 scopus 로고    scopus 로고
    • Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks
    • Elhatip H., Komur M.A. Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environ. Geol. 2008, 53(6):1157-1164.
    • (2008) Environ. Geol. , vol.53 , Issue.6 , pp. 1157-1164
    • Elhatip, H.1    Komur, M.A.2
  • 41
    • 31544482181 scopus 로고    scopus 로고
    • Framework for assessment of relative pollutant loads in streams with limited data
    • Elshorbagy A., Teegavarapu R.S.V., Ormsbee L. Framework for assessment of relative pollutant loads in streams with limited data. Water Int. 2005, 30(4):477-486.
    • (2005) Water Int. , vol.30 , Issue.4 , pp. 477-486
    • Elshorbagy, A.1    Teegavarapu, R.S.V.2    Ormsbee, L.3
  • 42
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14:1931-1941.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 43
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application. Hydrol. Earth Syst. Sci. 2010, 14:1943-1961.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 44
    • 77950516820 scopus 로고    scopus 로고
    • Ahybrid neural network and ARIMA model for water quality time series prediction
    • Faruk D.O. Ahybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23(4):586-594.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.4 , pp. 586-594
    • Faruk, D.O.1
  • 45
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
    • Fernando T.M.K.G., Maier H.R., Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. J.Hydrol. 2009, 367(3-4):165-176.
    • (2009) J.Hydrol. , vol.367 , Issue.3-4 , pp. 165-176
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 46
    • 84880684699 scopus 로고    scopus 로고
    • Tree-based iterative input variable selection for hydrological modeling
    • Galelli S., Castelletti A. Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res. 2013, 49(7):4295-4310.
    • (2013) Water Resour. Res. , vol.49 , Issue.7 , pp. 4295-4310
    • Galelli, S.1    Castelletti, A.2
  • 47
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner M.W., Dorling S.R. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32(14-15):2627-2636.
    • (1998) Atmos. Environ. , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 49
    • 0020790254 scopus 로고
    • Decision-aiding models: validation, assessment, and related issues for policy analysis
    • Gass S.I. Decision-aiding models: validation, assessment, and related issues for policy analysis. Oper. Res. 1983, 31(4):603-631.
    • (1983) Oper. Res. , vol.31 , Issue.4 , pp. 603-631
    • Gass, S.I.1
  • 50
    • 61749091397 scopus 로고    scopus 로고
    • Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece)
    • Gemitzi A., Petalas C., Pisinaras V., Tsihrintzis V.A. Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece). Hydrol. Process. 2009, 23(3):372-383.
    • (2009) Hydrol. Process. , vol.23 , Issue.3 , pp. 372-383
    • Gemitzi, A.1    Petalas, C.2    Pisinaras, V.3    Tsihrintzis, V.A.4
  • 51
    • 84857896629 scopus 로고    scopus 로고
    • Determination of the principal factors of river water quality through cluster analysis method and its prediction
    • Guo L., Zhao Y., Wang P. Determination of the principal factors of river water quality through cluster analysis method and its prediction. Front. Environ. Sci. Eng. 2012, 6(2):238-245.
    • (2012) Front. Environ. Sci. Eng. , vol.6 , Issue.2 , pp. 238-245
    • Guo, L.1    Zhao, Y.2    Wang, P.3
  • 52
    • 3342891563 scopus 로고    scopus 로고
    • Neural networks provide superior description of Giardia lamblia inactivation by free chlorine
    • Haas C.N. Neural networks provide superior description of Giardia lamblia inactivation by free chlorine. Water Res. 2004, 38(14-15):3449-3457.
    • (2004) Water Res. , vol.38 , Issue.14-15 , pp. 3449-3457
    • Haas, C.N.1
  • 53
    • 35548969323 scopus 로고    scopus 로고
    • Comparison of stochastic global optimization methods to estimate neural network weights
    • Hamm L., Brorsen B.W., Hagan M. Comparison of stochastic global optimization methods to estimate neural network weights. Neural Process. Lett. 2007, 26(3):145-158.
    • (2007) Neural Process. Lett. , vol.26 , Issue.3 , pp. 145-158
    • Hamm, L.1    Brorsen, B.W.2    Hagan, M.3
  • 54
    • 77957769268 scopus 로고    scopus 로고
    • Estimating monthly total nitrogen concentration in streams by using artificial neural network
    • He B., Oki T., Sun F.B., Komori D., Kanae S., Wang Y., Kim H., Yamazaki D. Estimating monthly total nitrogen concentration in streams by using artificial neural network. J.Environ. Manag. 2011, 92(1):172-177.
    • (2011) J.Environ. Manag. , vol.92 , Issue.1 , pp. 172-177
    • He, B.1    Oki, T.2    Sun, F.B.3    Komori, D.4    Kanae, S.5    Wang, Y.6    Kim, H.7    Yamazaki, D.8
  • 55
    • 79953283520 scopus 로고    scopus 로고
    • Stormwater quantity and quality response to climate change using artificial neural networks
    • He J.X., Valeo C., Chu A., Neumann N.F. Stormwater quantity and quality response to climate change using artificial neural networks. Hydrol. Process. 2011, 25(8):1298-1312.
    • (2011) Hydrol. Process. , vol.25 , Issue.8 , pp. 1298-1312
    • He, J.X.1    Valeo, C.2    Chu, A.3    Neumann, N.F.4
  • 56
    • 79952488657 scopus 로고    scopus 로고
    • Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection
    • He J.X., Valeo C., Chu A., Neumann N.F. Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection. J.Hydrol. 2011, 400(1-2):10-23.
    • (2011) J.Hydrol. , vol.400 , Issue.1-2 , pp. 10-23
    • He, J.X.1    Valeo, C.2    Chu, A.3    Neumann, N.F.4
  • 57
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process. 2004, 18(3):571-581.
    • (2004) Hydrol. Process. , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 58
    • 69249158084 scopus 로고    scopus 로고
    • Dissection of trained neural network hydrologic models for knowledge extraction
    • Jain A., Kumar S. Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 2009, 45(7):W07420.
    • (2009) Water Resour. Res. , vol.45 , Issue.7
    • Jain, A.1    Kumar, S.2
  • 59
    • 80051804722 scopus 로고    scopus 로고
    • Rainfall runoff modelling using neural networks: state-of-the-art and future research needs
    • Jain A., Maier H.R., Dandy G.C., Sudheer K.P. Rainfall runoff modelling using neural networks: state-of-the-art and future research needs. ISH J. Hydr. Eng. 2009, 15(sup1):52-74.
    • (2009) ISH J. Hydr. Eng. , vol.15 , Issue.SUPPL. , pp. 52-74
    • Jain, A.1    Maier, H.R.2    Dandy, G.C.3    Sudheer, K.P.4
  • 60
    • 33645947036 scopus 로고    scopus 로고
    • Ten iterative steps in development and evaluation of environmental models
    • Jakeman A.J., Letcher R.A., Norton J.P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 2006, 21(5):602-614.
    • (2006) Environ. Model. Softw. , vol.21 , Issue.5 , pp. 602-614
    • Jakeman, A.J.1    Letcher, R.A.2    Norton, J.P.3
  • 61
    • 53849124012 scopus 로고    scopus 로고
    • Multiscale Bayesian neural networks for soil water content estimation
    • Jana R.B., Mohanty B.P., Springer E.P. Multiscale Bayesian neural networks for soil water content estimation. Water Resour. Res. 2008, 44(8):W08408.
    • (2008) Water Resour. Res. , vol.44 , Issue.8
    • Jana, R.B.1    Mohanty, B.P.2    Springer, E.P.3
  • 62
    • 38349159579 scopus 로고    scopus 로고
    • Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics
    • Jeong K.S., Kim D.K., Jung J.M., Kim M.C., Joo G.J. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol. Model. 2008, 211(3-4):292-300.
    • (2008) Ecol. Model. , vol.211 , Issue.3-4 , pp. 292-300
    • Jeong, K.S.1    Kim, D.K.2    Jung, J.M.3    Kim, M.C.4    Joo, G.J.5
  • 64
    • 77955637658 scopus 로고    scopus 로고
    • Predicting water quality in unmonitored watersheds using Artificial Neural Networks
    • Kalin L., Isik S., Schoonover J.E., Lockaby B.G. Predicting water quality in unmonitored watersheds using Artificial Neural Networks. J.Environ. Qual. 2010, 39(4):1429-1440.
    • (2010) J.Environ. Qual. , vol.39 , Issue.4 , pp. 1429-1440
    • Kalin, L.1    Isik, S.2    Schoonover, J.E.3    Lockaby, B.G.4
  • 65
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 2001, 5(4):373-401.
    • (2001) Renew. Sustain. Energy Rev. , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.A.1
  • 66
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application
    • Kalteh A.M., Hjorth P., Berndtsson R. Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environ. Model. Softw. 2008, 23(7):835-845.
    • (2008) Environ. Model. Softw. , vol.23 , Issue.7 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 67
    • 38549138689 scopus 로고    scopus 로고
    • Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study
    • Karamouz M., Razavi S., Araghinejad S. Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study. Hydrol. Process. 2008, 22(2):229-241.
    • (2008) Hydrol. Process. , vol.22 , Issue.2 , pp. 229-241
    • Karamouz, M.1    Razavi, S.2    Araghinejad, S.3
  • 68
    • 84881236620 scopus 로고    scopus 로고
    • Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations
    • Kasiviswanathan K.S., Cibin R., Sudheer K.P., Chaubey I. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J.Hydrol. 2013, 499(0):275-288.
    • (2013) J.Hydrol. , vol.499 , Issue.0 , pp. 275-288
    • Kasiviswanathan, K.S.1    Cibin, R.2    Sudheer, K.P.3    Chaubey, I.4
  • 69
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in groundwater quality modeling
    • Khalil A., Almasri M.N., McKee M., Kaluarachchi J.J. Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour. Res. 2005, 41(5).
    • (2005) Water Resour. Res. , vol.41 , Issue.5
    • Khalil, A.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 70
    • 79960418874 scopus 로고    scopus 로고
    • Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis
    • Khalil B., Ouarda T., St-Hilaire A. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J.Hydrol. 2011, 405(3-4):277-287.
    • (2011) J.Hydrol. , vol.405 , Issue.3-4 , pp. 277-287
    • Khalil, B.1    Ouarda, T.2    St-Hilaire, A.3
  • 71
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42(7):W07409.
    • (2006) Water Resour. Res. , vol.42 , Issue.7
    • Khan, M.S.1    Coulibaly, P.2
  • 72
    • 33846653402 scopus 로고    scopus 로고
    • An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs
    • Kilic H., Soyupak S., Tuzun I., Ince O., Basaran G. An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs. Ecol. Model. 2007, 201(3-4):359-368.
    • (2007) Ecol. Model. , vol.201 , Issue.3-4 , pp. 359-368
    • Kilic, H.1    Soyupak, S.2    Tuzun, I.3    Ince, O.4    Basaran, G.5
  • 73
    • 84863074416 scopus 로고    scopus 로고
    • Forecasting performance of algae blooms based on artificial neural networks and automatic observation system
    • Kim M.E., Shon T.S., Min K.S., Shin H.S. Forecasting performance of algae blooms based on artificial neural networks and automatic observation system. Desalin. Water Treat. 2012, 38(1-3):293-301.
    • (2012) Desalin. Water Treat. , vol.38 , Issue.1-3 , pp. 293-301
    • Kim, M.E.1    Shon, T.S.2    Min, K.S.3    Shin, H.S.4
  • 74
    • 84862619383 scopus 로고    scopus 로고
    • Artificial neural network models of watershed nutrient loading
    • Kim R., Loucks D., Stedinger J. Artificial neural network models of watershed nutrient loading. Water Resour. Manag. 2012, 26(10):2781-2797.
    • (2012) Water Resour. Manag. , vol.26 , Issue.10 , pp. 2781-2797
    • Kim, R.1    Loucks, D.2    Stedinger, J.3
  • 75
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural networks used for water resources modeling. Water Resour. Res. 2005, 41(12):W12409.
    • (2005) Water Resour. Res. , vol.41 , Issue.12
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 76
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • Kingston G.B., Maier H.R., Lambert M.F. Calibration and validation of neural networks to ensure physically plausible hydrological modeling. J.Hydrol. 2005, 314(1-4):158-176.
    • (2005) J.Hydrol. , vol.314 , Issue.1-4 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 77
    • 33745367041 scopus 로고    scopus 로고
    • Aprobabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction
    • Kingston G.B., Maier H.R., Lambert M.F. Aprobabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction. Math. Comput. Model. 2006, 44(5-6):499-512.
    • (2006) Math. Comput. Model. , vol.44 , Issue.5-6 , pp. 499-512
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 78
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modeling
    • Kingston G.B., Maier H.R., Lambert M.F. Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res. 2008, 44(4):W04419.
    • (2008) Water Resour. Res. , vol.44 , Issue.4
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 79
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause P., Boyle D.P., Bäse F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5:89-97.
    • (2005) Adv. Geosci. , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Bäse, F.3
  • 80
    • 77954622505 scopus 로고    scopus 로고
    • Disinfection by-product formation following chlorination of drinking water: Artificial Neural Network models and changes in speciation with treatment
    • Kulkarni P., Chellam S. Disinfection by-product formation following chlorination of drinking water: Artificial Neural Network models and changes in speciation with treatment. Sci. Total Environ. 2010, 408(19):4202-4210.
    • (2010) Sci. Total Environ. , vol.408 , Issue.19 , pp. 4202-4210
    • Kulkarni, P.1    Chellam, S.2
  • 81
    • 33645130069 scopus 로고    scopus 로고
    • Ahybrid neural-genetic algorithm for reservoir water quality management
    • Kuo J.T., Wang Y.Y., Lung W.S. Ahybrid neural-genetic algorithm for reservoir water quality management. Water Res. 2006, 40(7):1367-1376.
    • (2006) Water Res. , vol.40 , Issue.7 , pp. 1367-1376
    • Kuo, J.T.1    Wang, Y.Y.2    Lung, W.S.3
  • 82
    • 0031701777 scopus 로고    scopus 로고
    • Abootstrap evaluation of the effect of data splitting on financial time series
    • LeBaron B., Weigend A.S. Abootstrap evaluation of the effect of data splitting on financial time series. Neural Netw. IEEE Trans. 1998, 9(1):213-220.
    • (1998) Neural Netw. IEEE Trans. , vol.9 , Issue.1 , pp. 213-220
    • LeBaron, B.1    Weigend, A.S.2
  • 84
    • 34547334231 scopus 로고    scopus 로고
    • Predicting total trihalomethane formation in finished water using artificial neural networks
    • Lewin N., Zhang Q., Chu L.L., Shariff R. Predicting total trihalomethane formation in finished water using artificial neural networks. J.Environ. Eng. Sci. 2004, 3:S35-S43.
    • (2004) J.Environ. Eng. Sci. , vol.3
    • Lewin, N.1    Zhang, Q.2    Chu, L.L.3    Shariff, R.4
  • 85
    • 65649148777 scopus 로고    scopus 로고
    • Modelling nitrogen composition in streams on the Boreal Plain using genetic adaptive general regression neural networks
    • Li X.F., Nour M.H., Smith D.W., Prepas E.E. Modelling nitrogen composition in streams on the Boreal Plain using genetic adaptive general regression neural networks. J.Environ. Eng. Sci. 2008, 7:S109-S125.
    • (2008) J.Environ. Eng. Sci. , vol.7
    • Li, X.F.1    Nour, M.H.2    Smith, D.W.3    Prepas, E.E.4
  • 86
    • 84862118799 scopus 로고    scopus 로고
    • Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models
    • Liu W.-C., Chen W.-B. Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models. Comput. Geosci. 2012, 45(0):13-25.
    • (2012) Comput. Geosci. , vol.45 , Issue.0 , pp. 13-25
    • Liu, W.-C.1    Chen, W.-B.2
  • 87
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-Forward neural networks for salinity forecasting
    • Maier H.R., Dandy G.C. Empirical comparison of various methods for training feed-Forward neural networks for salinity forecasting. Water Resour. Res. 1999, 35(8):2591-2596.
    • (1999) Water Resour. Res. , vol.35 , Issue.8 , pp. 2591-2596
    • Maier, H.R.1    Dandy, G.C.2
  • 88
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 2000, 15(1):101-124.
    • (2000) Environ. Model. Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 89
    • 0034225438 scopus 로고    scopus 로고
    • Forecasting cyanobacterial concentrations using B-spline networks
    • Maier H.R., Sayed T., Lence B.J. Forecasting cyanobacterial concentrations using B-spline networks. J.Comput. Civ. Eng. 2000, 14(3):183-189.
    • (2000) J.Comput. Civ. Eng. , vol.14 , Issue.3 , pp. 183-189
    • Maier, H.R.1    Sayed, T.2    Lence, B.J.3
  • 90
    • 1642336479 scopus 로고    scopus 로고
    • Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
    • Maier H.R., Morgan N., Chow C.W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ. Model. Softw. 2004, 19(5):485-494.
    • (2004) Environ. Model. Softw. , vol.19 , Issue.5 , pp. 485-494
    • Maier, H.R.1    Morgan, N.2    Chow, C.W.K.3
  • 91
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25(8):891-909.
    • (2010) Environ. Model. Softw. , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 92
    • 84875814492 scopus 로고    scopus 로고
    • What constitutes a good literature review and why does its quality matter?
    • Maier H.R. What constitutes a good literature review and why does its quality matter?. Environ. Model. Softw. 2013, 43:3-4.
    • (2013) Environ. Model. Softw. , vol.43 , pp. 3-4
    • Maier, H.R.1
  • 93
    • 0037339103 scopus 로고    scopus 로고
    • Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks
    • Markus M., Tsai C.W.S., Demissie M. Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks. J.Environ. Eng. Asce 2003, 129(3):267-274.
    • (2003) J.Environ. Eng. Asce , vol.129 , Issue.3 , pp. 267-274
    • Markus, M.1    Tsai, C.W.S.2    Demissie, M.3
  • 94
    • 34547733003 scopus 로고    scopus 로고
    • Comparing artificial neural networks and regression models for predicting faecal coliform concentrations
    • Mas D.M.L., Ahlfeld D.P. Comparing artificial neural networks and regression models for predicting faecal coliform concentrations. Hydrol. Sci. J. - Journal Des Sciences Hydrologiques 2007, 52(4):713-731.
    • (2007) Hydrol. Sci. J. - Journal Des Sciences Hydrologiques , vol.52 , Issue.4 , pp. 713-731
    • Mas, D.M.L.1    Ahlfeld, D.P.2
  • 95
    • 53149113747 scopus 로고    scopus 로고
    • Prediction of urban stormwater quality using artificial neural networks
    • May D.B., Sivakumar M. Prediction of urban stormwater quality using artificial neural networks. Environ. Model. Softw. 2009, 24(2):296-302.
    • (2009) Environ. Model. Softw. , vol.24 , Issue.2 , pp. 296-302
    • May, D.B.1    Sivakumar, M.2
  • 96
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
    • May R.J., Dandy G.C., Maier H.R., Nixon J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 2008, 23(10-11):1289-1299.
    • (2008) Environ. Model. Softw. , vol.23 , Issue.10-11 , pp. 1289-1299
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 97
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • May R.J., Maier H.R., Dandy G.C. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 2010, 23(2):283-294.
    • (2010) Neural Netw. , vol.23 , Issue.2 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 98
    • 79951680934 scopus 로고    scopus 로고
    • Suspended sediment load prediction of river systems: an artificial neural network approach
    • Melesse A.M., Ahmad S., McClain M.E., Wang X., Lim Y.H. Suspended sediment load prediction of river systems: an artificial neural network approach. Agric. Water Manag. 2011, 98(5):855-866.
    • (2011) Agric. Water Manag. , vol.98 , Issue.5 , pp. 855-866
    • Melesse, A.M.1    Ahmad, S.2    McClain, M.E.3    Wang, X.4    Lim, Y.H.5
  • 99
    • 57649222644 scopus 로고    scopus 로고
    • Artificial intelligence techniques for sizing photovoltaic systems: a review
    • Mellit A., Kalogirou S.A., Hontoria L., Shaari S. Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 2009, 13(2):406-419.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.2 , pp. 406-419
    • Mellit, A.1    Kalogirou, S.A.2    Hontoria, L.3    Shaari, S.4
  • 100
    • 77953827908 scopus 로고    scopus 로고
    • Utilization of two artificial neural network methods in surface water quality modelling
    • Merdun H., Cinar O. Utilization of two artificial neural network methods in surface water quality modelling. Environ. Eng. Manag. J. 2010, 9(3):413-421.
    • (2010) Environ. Eng. Manag. J. , vol.9 , Issue.3 , pp. 413-421
    • Merdun, H.1    Cinar, O.2
  • 101
    • 84861662434 scopus 로고    scopus 로고
    • Modeling microalgal abundance with artificial neural networks: demonstration of a heuristic 'Grey-Box' to deconvolve and quantify environmental influences
    • Millie D.F., Weckman G.R., Young Ii W.A., Ivey J.E., Carrick H.J., Fahnenstiel G.L. Modeling microalgal abundance with artificial neural networks: demonstration of a heuristic 'Grey-Box' to deconvolve and quantify environmental influences. Environ. Model. Softw. 2012, 38(0):27-39.
    • (2012) Environ. Model. Softw. , vol.38 , Issue.0 , pp. 27-39
    • Millie, D.F.1    Weckman, G.R.2    Young Ii, W.A.3    Ivey, J.E.4    Carrick, H.J.5    Fahnenstiel, G.L.6
  • 102
    • 0036719180 scopus 로고    scopus 로고
    • Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
    • Milot J., Rodriguez M.J., Serodes J.B. Contribution of neural networks for modeling trihalomethanes occurrence in drinking water. J.Water Resour. Plan. Manag. Asce 2002, 128(5):370-376.
    • (2002) J.Water Resour. Plan. Manag. Asce , vol.128 , Issue.5 , pp. 370-376
    • Milot, J.1    Rodriguez, M.J.2    Serodes, J.B.3
  • 103
    • 84880675185 scopus 로고    scopus 로고
    • Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
    • Mount N.J., Dawson C.W., Abrahart R.J. Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework. Hydrol. Earth Syst. Sci. 2013, 17:2827-2843.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 2827-2843
    • Mount, N.J.1    Dawson, C.W.2    Abrahart, R.J.3
  • 104
    • 84865634266 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
    • Najah A., El-Shafie A., Karim O.A., Jaafar O. Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Comput. Appl. 2012, 21(5):833-841.
    • (2012) Neural Comput. Appl. , vol.21 , Issue.5 , pp. 833-841
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 105
    • 0036608090 scopus 로고    scopus 로고
    • Effectiveness of different artificial neural network training algorithms in predicting protozoa risks in surface waters
    • Neelakantan T.R., Lingireddy S., Brion G.M. Effectiveness of different artificial neural network training algorithms in predicting protozoa risks in surface waters. J.Environ. Eng. Asce 2002, 128(6):533-542.
    • (2002) J.Environ. Eng. Asce , vol.128 , Issue.6 , pp. 533-542
    • Neelakantan, T.R.1    Lingireddy, S.2    Brion, G.M.3
  • 107
    • 85027929739 scopus 로고    scopus 로고
    • Water quality assessment of the Mudurnu River, Turkey, using biotic indices
    • Ogleni N., Topal B. Water quality assessment of the Mudurnu River, Turkey, using biotic indices. Water Resour. Manag. 2011, 25(10):2487-2508.
    • (2011) Water Resour. Manag. , vol.25 , Issue.10 , pp. 2487-2508
    • Ogleni, N.1    Topal, B.2
  • 108
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks
    • Olden J.D., Jackson D.A. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154(1-2):135-150.
    • (2002) Ecol. Model. , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 109
    • 77957900231 scopus 로고    scopus 로고
    • Water quality prediction in a reservoir: Linguistic model approach for interval prediction
    • Park J.I., Jung N.C., Kwak K.C., Chun M.G. Water quality prediction in a reservoir: Linguistic model approach for interval prediction. Int. J. Control Automat. Syst. 2010, 8(4):868-874.
    • (2010) Int. J. Control Automat. Syst. , vol.8 , Issue.4 , pp. 868-874
    • Park, J.I.1    Jung, N.C.2    Kwak, K.C.3    Chun, M.G.4
  • 110
    • 84864723225 scopus 로고    scopus 로고
    • Event detection in water distribution systems from multivariate water quality time series
    • Perelman L., Arad J., Housh M., Ostfeld A. Event detection in water distribution systems from multivariate water quality time series. Environ. Sci. Technol. 2012, 46(15):8212-8219.
    • (2012) Environ. Sci. Technol. , vol.46 , Issue.15 , pp. 8212-8219
    • Perelman, L.1    Arad, J.2    Housh, M.3    Ostfeld, A.4
  • 111
    • 33749339540 scopus 로고    scopus 로고
    • Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions
    • Philibert A., Gell P., Newall P., Chessman B., Bate N. Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions. Hydrobiologia 2006, 572:103-114.
    • (2006) Hydrobiologia , vol.572 , pp. 103-114
    • Philibert, A.1    Gell, P.2    Newall, P.3    Chessman, B.4    Bate, N.5
  • 112
    • 0027844167 scopus 로고
    • The predictive validation of ecological and environmental models
    • Power M. The predictive validation of ecological and environmental models. Ecol. Model. 1993, 68(1-2):33-50.
    • (1993) Ecol. Model. , vol.68 , Issue.1-2 , pp. 33-50
    • Power, M.1
  • 113
    • 77649190348 scopus 로고    scopus 로고
    • Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia
    • Rankovic V., Radulovic J., Radojevic I., Ostojic A., Comic L. Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia. Ecol. Model. 2010, 221(8):1239-1244.
    • (2010) Ecol. Model. , vol.221 , Issue.8 , pp. 1239-1244
    • Rankovic, V.1    Radulovic, J.2    Radojevic, I.3    Ostojic, A.4    Comic, L.5
  • 114
    • 84865022391 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system
    • Rankovic V., Radulovic J., Radojevic I., Ostojic A., Comic L. Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J.Hydroinf. 2012, 14(1):167-179.
    • (2012) J.Hydroinf. , vol.14 , Issue.1 , pp. 167-179
    • Rankovic, V.1    Radulovic, J.2    Radojevic, I.3    Ostojic, A.4    Comic, L.5
  • 115
    • 80053625918 scopus 로고    scopus 로고
    • Anew formulation for feedforward neural networks
    • Razavi S., Tolson B.A. Anew formulation for feedforward neural networks. Neural Netw. IEEE Trans. 2011, 22(10):1588-1598.
    • (2011) Neural Netw. IEEE Trans. , vol.22 , Issue.10 , pp. 1588-1598
    • Razavi, S.1    Tolson, B.A.2
  • 116
    • 84859099633 scopus 로고    scopus 로고
    • Numerical assessment of metamodelling strategies in computationally intensive optimization
    • Razavi S., Tolson B.A., Burn D.H. Numerical assessment of metamodelling strategies in computationally intensive optimization. Environ. Model. Softw. 2012, 34(0):67-86.
    • (2012) Environ. Model. Softw. , vol.34 , Issue.0 , pp. 67-86
    • Razavi, S.1    Tolson, B.A.2    Burn, D.H.3
  • 117
    • 0348011425 scopus 로고    scopus 로고
    • Modelling guidelines--terminology and guiding principles
    • Refsgaard J.C., Henriksen H.J. Modelling guidelines--terminology and guiding principles. Adv. Water Resour. 2004, 27(1):71-82.
    • (2004) Adv. Water Resour. , vol.27 , Issue.1 , pp. 71-82
    • Refsgaard, J.C.1    Henriksen, H.J.2
  • 118
    • 16244368843 scopus 로고    scopus 로고
    • Quality assurance in model based water management - review of existing practice and outline of new approaches
    • Refsgaard J.C., Henriksen H.J., Harrar W.G., Scholten H., Kassahun A. Quality assurance in model based water management - review of existing practice and outline of new approaches. Environ. Model. Softw. 2005, 20(10):1201-1215.
    • (2005) Environ. Model. Softw. , vol.20 , Issue.10 , pp. 1201-1215
    • Refsgaard, J.C.1    Henriksen, H.J.2    Harrar, W.G.3    Scholten, H.4    Kassahun, A.5
  • 119
    • 0036378271 scopus 로고    scopus 로고
    • Estimation of bench-scale chlorine decay in drinking water using n(th)-order kinetic and back propagation neural network models
    • Rodriguez M.J., Milot J., Serodes J.B., Pacaud A. Estimation of bench-scale chlorine decay in drinking water using n(th)-order kinetic and back propagation neural network models. Water Qual. Res. J. Can. 2002, 37(3):613-635.
    • (2002) Water Qual. Res. J. Can. , vol.37 , Issue.3 , pp. 613-635
    • Rodriguez, M.J.1    Milot, J.2    Serodes, J.B.3    Pacaud, A.4
  • 120
    • 0038020064 scopus 로고    scopus 로고
    • Predicting trihalomethane formation in chlorinated waters using multivariate regression and neural networks
    • Rodriguez M.J., Milot J., Serodes J.B. Predicting trihalomethane formation in chlorinated waters using multivariate regression and neural networks. J.Water Supply Res. Technol. Aqua 2003, 52(3):199-215.
    • (2003) J.Water Supply Res. Technol. Aqua , vol.52 , Issue.3 , pp. 199-215
    • Rodriguez, M.J.1    Milot, J.2    Serodes, J.B.3
  • 121
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 122
    • 13744256757 scopus 로고    scopus 로고
    • Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks
    • Sahoo G.B., Ray C., Wade H.F. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecol. Model. 2005, 183(1):29-46.
    • (2005) Ecol. Model. , vol.183 , Issue.1 , pp. 29-46
    • Sahoo, G.B.1    Ray, C.2    Wade, H.F.3
  • 123
    • 33745982644 scopus 로고    scopus 로고
    • Application of artificial neural networks to assess pesticide contamination in shallow groundwater
    • Sahoo G.B., Ray C., Mehnert E., Keefer D.A. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total Environ. 2006, 367(1):234-251.
    • (2006) Sci. Total Environ. , vol.367 , Issue.1 , pp. 234-251
    • Sahoo, G.B.1    Ray, C.2    Mehnert, E.3    Keefer, D.A.4
  • 124
    • 70350495365 scopus 로고    scopus 로고
    • Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
    • Sahoo G.B., Schladow S.G., Reuter J.E. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J.Hydrol. 2009, 378(3-4):325-342.
    • (2009) J.Hydrol. , vol.378 , Issue.3-4 , pp. 325-342
    • Sahoo, G.B.1    Schladow, S.G.2    Reuter, J.E.3
  • 125
    • 0344994552 scopus 로고    scopus 로고
    • Quality assessment of the simulation modeling process
    • Scholten H., Udink ten Cate A.J. Quality assessment of the simulation modeling process. Comput. Electron. Agric. 1999, 22(2-3):199-208.
    • (1999) Comput. Electron. Agric. , vol.22 , Issue.2-3 , pp. 199-208
    • Scholten, H.1    Udink ten Cate, A.J.2
  • 126
    • 0034826843 scopus 로고    scopus 로고
    • Improving the quality of model-based decision support: good modelling practice in water management
    • A.H. Schumann, M.C. Acreman, R. Davis, M.A. Marino, D. Rosbjerg, X. Jun (Eds.)
    • Scholten H., Van Waveren R.H., Groot S., Van Geer F.C., Wosten J.H.M., Koeze R.D., Noort J.J. Improving the quality of model-based decision support: good modelling practice in water management. Regional Management of Water Resources 2001, 223-230. A.H. Schumann, M.C. Acreman, R. Davis, M.A. Marino, D. Rosbjerg, X. Jun (Eds.).
    • (2001) Regional Management of Water Resources , pp. 223-230
    • Scholten, H.1    Van Waveren, R.H.2    Groot, S.3    Van Geer, F.C.4    Wosten, J.H.M.5    Koeze, R.D.6    Noort, J.J.7
  • 127
    • 0034746017 scopus 로고    scopus 로고
    • Chlorcast (c): a methodology for developing decision-making tools for chlorine disinfection control
    • Serodes J.B., Rodriguez M.J., Ponton A. Chlorcast (c): a methodology for developing decision-making tools for chlorine disinfection control. Environ. Model. Softw. 2001, 16(1):53-62.
    • (2001) Environ. Model. Softw. , vol.16 , Issue.1 , pp. 53-62
    • Serodes, J.B.1    Rodriguez, M.J.2    Ponton, A.3
  • 128
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1 - a strategy for system predictor identification
    • Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1 - a strategy for system predictor identification. J.Hydrol. 2000, 239(1-4):232-239.
    • (2000) J.Hydrol. , vol.239 , Issue.1-4 , pp. 232-239
    • Sharma, A.1
  • 129
    • 24744467172 scopus 로고    scopus 로고
    • Vehicular pollution modeling using artificial neural network technique: a review
    • Sharma N., Chaudhry K.K., Chalapati-Rao C.V. Vehicular pollution modeling using artificial neural network technique: a review. J.Sci. Ind. Res. 2005, 64(9):637-647.
    • (2005) J.Sci. Ind. Res. , vol.64 , Issue.9 , pp. 637-647
    • Sharma, N.1    Chaudhry, K.K.2    Chalapati-Rao, C.V.3
  • 130
    • 0037441163 scopus 로고    scopus 로고
    • Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks
    • Shetty G.R., Malki H., Chellam S. Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks. J.Membr. Sci. 2003, 212(1-2):99-112.
    • (2003) J.Membr. Sci. , vol.212 , Issue.1-2 , pp. 99-112
    • Shetty, G.R.1    Malki, H.2    Chellam, S.3
  • 132
    • 84857356571 scopus 로고    scopus 로고
    • Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources
    • Song K., Li L., Wang Z., Liu D., Zhang B., Xu J., Du J., Li L., Li S., Wang Y. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environ. Monit. Assess. 2012, 184(3):1449-1470.
    • (2012) Environ. Monit. Assess. , vol.184 , Issue.3 , pp. 1449-1470
    • Song, K.1    Li, L.2    Wang, Z.3    Liu, D.4    Zhang, B.5    Xu, J.6    Du, J.7    Li, L.8    Li, S.9    Wang, Y.10
  • 133
    • 0346972461 scopus 로고    scopus 로고
    • Aneural network-based approach for calculating dissolved oxygen profiles in reservoirs
    • Soyupak S., Karaer F., Gurbuz H., Kivrak E., Senturk E., Yazici A. Aneural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Comput. Appl. 2003, 12(3-4):166-172.
    • (2003) Neural Comput. Appl. , vol.12 , Issue.3-4 , pp. 166-172
    • Soyupak, S.1    Karaer, F.2    Gurbuz, H.3    Kivrak, E.4    Senturk, E.5    Yazici, A.6
  • 134
    • 79251501356 scopus 로고    scopus 로고
    • On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water
    • Soyupak S., Kilic H., Karadirek I.E., Muhammetoglu H. On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water. J.Water Supply Res. Technol. Aqua 2011, 60(1):51-60.
    • (2011) J.Water Supply Res. Technol. Aqua , vol.60 , Issue.1 , pp. 51-60
    • Soyupak, S.1    Kilic, H.2    Karadirek, I.E.3    Muhammetoglu, H.4
  • 135
    • 36749007877 scopus 로고    scopus 로고
    • Asimplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • Srivastav R.K., Sudheer K.P., Chaubey I. Asimplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 2007, 43(10):W10407.
    • (2007) Water Resour. Res. , vol.43 , Issue.10
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 136
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modeling nitrate concentrations in rivers
    • Suen J.P., Eheart J.W. Evaluation of neural networks for modeling nitrate concentrations in rivers. J.Water Resour. Plan. Manag. Asce 2003, 129(6):505-510.
    • (2003) J.Water Resour. Plan. Manag. Asce , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.P.1    Eheart, J.W.2
  • 137
    • 33644924333 scopus 로고    scopus 로고
    • Artificial neural networks for estimating daily total suspended sediment in natural streams
    • Tayfur G., Guldal V. Artificial neural networks for estimating daily total suspended sediment in natural streams. Nord. Hydrol. 2006, 37(1):69-79.
    • (2006) Nord. Hydrol. , vol.37 , Issue.1 , pp. 69-79
    • Tayfur, G.1    Guldal, V.2
  • 138
    • 33745323400 scopus 로고    scopus 로고
    • Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks
    • Teles L.O., Vasconcelos V., Pereira E., Saker M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environ. Manag. 2006, 38(2):227-237.
    • (2006) Environ. Manag. , vol.38 , Issue.2 , pp. 227-237
    • Teles, L.O.1    Vasconcelos, V.2    Pereira, E.3    Saker, M.4
  • 139
    • 84860379557 scopus 로고    scopus 로고
    • Artificial Neural Network simulation of combined permeable pavement and earth energy systems treating storm water
    • Tota-Maharaj K., Scholz M. Artificial Neural Network simulation of combined permeable pavement and earth energy systems treating storm water. J.Environ. Engi. Asce 2012, 138(4):499-509.
    • (2012) J.Environ. Engi. Asce , vol.138 , Issue.4 , pp. 499-509
    • Tota-Maharaj, K.1    Scholz, M.2
  • 140
    • 49749090140 scopus 로고    scopus 로고
    • Artificial intelligence-based inductive models for prediction and classification of fecal coliform in surface waters
    • Tufail M., Ormsbee L., Teegavarapu R. Artificial intelligence-based inductive models for prediction and classification of fecal coliform in surface waters. J.Environ. Eng. Asce 2008, 134(9):789-799.
    • (2008) J.Environ. Eng. Asce , vol.134 , Issue.9 , pp. 789-799
    • Tufail, M.1    Ormsbee, L.2    Teegavarapu, R.3
  • 141
    • 69249148310 scopus 로고    scopus 로고
    • Predicting suspended sediment loads and missing data for Gediz River, Turkey
    • Ulke A., Tayfur G., Ozkul S. Predicting suspended sediment loads and missing data for Gediz River, Turkey. J.Hydrol. Eng. 2009, 14(9):954-965.
    • (2009) J.Hydrol. Eng. , vol.14 , Issue.9 , pp. 954-965
    • Ulke, A.1    Tayfur, G.2    Ozkul, S.3
  • 143
    • 84887871464 scopus 로고    scopus 로고
    • Abenchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks
    • Wu W., May R.J., Maier H.R., Dandy G.C. Abenchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks. Water Resour. Res. 2013, 49(11):7598-7614.
    • (2013) Water Resour. Res. , vol.49 , Issue.11 , pp. 7598-7614
    • Wu, W.1    May, R.J.2    Maier, H.R.3    Dandy, G.C.4
  • 144
    • 84861437871 scopus 로고    scopus 로고
    • Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study
    • Yacef R., Benghanem M., Mellit A. Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renew. Energy 2012, 48(0):146-154.
    • (2012) Renew. Energy , vol.48 , Issue.0 , pp. 146-154
    • Yacef, R.1    Benghanem, M.2    Mellit, A.3
  • 145
    • 79955580488 scopus 로고    scopus 로고
    • Formation and modeling of disinfection by-products in drinking water of six cities in China
    • Ye B.X., Wang W.Y., Yang L.S., Wei J.R., Xueli E. Formation and modeling of disinfection by-products in drinking water of six cities in China. J.Environ. Monit. 2011, 13(5):1271-1275.
    • (2011) J.Environ. Monit. , vol.13 , Issue.5 , pp. 1271-1275
    • Ye, B.X.1    Wang, W.Y.2    Yang, L.S.3    Wei, J.R.4    Xueli, E.5
  • 146
    • 45849090754 scopus 로고    scopus 로고
    • Application of artificial intelligence models in water quality forecasting
    • Yeon I.S., Kim J.H., Jun K.W. Application of artificial intelligence models in water quality forecasting. Environ. Technol. 2008, 29(6):625-631.
    • (2008) Environ. Technol. , vol.29 , Issue.6 , pp. 625-631
    • Yeon, I.S.1    Kim, J.H.2    Jun, K.W.3
  • 147
    • 62949213977 scopus 로고    scopus 로고
    • Estimating uncertainty of streamflow simulation using Bayesian neural networks
    • Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45(2):W02403.
    • (2009) Water Resour. Res. , vol.45 , Issue.2
    • Zhang, X.1    Liang, F.2    Srinivasan, R.3    Van Liew, M.4
  • 148
    • 80054678981 scopus 로고    scopus 로고
    • Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting
    • Zhang X., Liang F., Yu B., Zong Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting. J.Hydrol. 2011, 409(3-4):696-709.
    • (2011) J.Hydrol. , vol.409 , Issue.3-4 , pp. 696-709
    • Zhang, X.1    Liang, F.2    Yu, B.3    Zong, Z.4
  • 149
    • 84862789349 scopus 로고    scopus 로고
    • Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes
    • Zhang X., Zhao K. Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes. Water Resour. Manag. 2012, 26(8):2365-2382.
    • (2012) Water Resour. Manag. , vol.26 , Issue.8 , pp. 2365-2382
    • Zhang, X.1    Zhao, K.2
  • 151
    • 16444377510 scopus 로고    scopus 로고
    • Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty
    • Zou R., Lung W.S., Guo H.C. Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty. J.Comput. Civ. Eng. 2002, 16(2):135-142.
    • (2002) J.Comput. Civ. Eng. , vol.16 , Issue.2 , pp. 135-142
    • Zou, R.1    Lung, W.S.2    Guo, H.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.