-
1
-
-
72449139311
-
Neural Network Hydroinformatics: Maintaining Scientific Rigour
-
Springer, Berlin Heidelberg, R. Abrahart, L. See, D. Solomatine (Eds.)
-
Abrahart R.J., See L.M., Dawson C.W. Neural Network Hydroinformatics: Maintaining Scientific Rigour. Practical Hydroinformatics 2008, 33-47. Springer, Berlin Heidelberg. R. Abrahart, L. See, D. Solomatine (Eds.).
-
(2008)
Practical Hydroinformatics
, pp. 33-47
-
-
Abrahart, R.J.1
See, L.M.2
Dawson, C.W.3
-
2
-
-
79953176278
-
Discussion of "Evapotranspiration modelling using support vector machines"
-
Abrahart R.J., Dawson C.W., See L.M., Mount N.J., Shamseldin A.Y. Discussion of "Evapotranspiration modelling using support vector machines". Hydrol. Sci. J. 2010, 55(8):1442-1450.
-
(2010)
Hydrol. Sci. J.
, vol.55
, Issue.8
, pp. 1442-1450
-
-
Abrahart, R.J.1
Dawson, C.W.2
See, L.M.3
Mount, N.J.4
Shamseldin, A.Y.5
-
3
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
-
Abrahart R.J., Anctil F., Coulibaly P., Dawson C.W., Mount N.J., See L.M., Shamseldin A.Y., Solomatine D.P., Toth E., Wilby R.L. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys. Geogr. 2012, 36(4):480-513.
-
(2012)
Prog. Phys. Geogr.
, vol.36
, Issue.4
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
4
-
-
84856487939
-
Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande
-
Abudu S., King J.P., Sheng Z.P. Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande. J.Am. Water Resour. Assoc. 2012, 48(1):10-23.
-
(2012)
J.Am. Water Resour. Assoc.
, vol.48
, Issue.1
, pp. 10-23
-
-
Abudu, S.1
King, J.P.2
Sheng, Z.P.3
-
5
-
-
33745627278
-
Areview of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment
-
Ahmadi-Nedushan B., St-Hilaire A., Bérubé M., Robichaud É., Thiémonge N., Bobée B. Areview of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Res. Appl. 2006, 22(5):503-523.
-
(2006)
River Res. Appl.
, vol.22
, Issue.5
, pp. 503-523
-
-
Ahmadi-Nedushan, B.1
St-Hilaire, A.2
Bérubé, M.3
Robichaud, É.4
Thiémonge, N.5
Bobée, B.6
-
6
-
-
84755161811
-
Feasibility assessment of data-driven models in predicting pollution trends of Omerli Lake, Turkey
-
Akkoyunlu A., Akiner M.E. Feasibility assessment of data-driven models in predicting pollution trends of Omerli Lake, Turkey. Water Resour. Manag. 2010, 24(13):3419-3436.
-
(2010)
Water Resour. Manag.
, vol.24
, Issue.13
, pp. 3419-3436
-
-
Akkoyunlu, A.1
Akiner, M.E.2
-
7
-
-
81755176465
-
Depth-integrated estimation of dissolved oxygen in a lake
-
Akkoyunlu A., Altun H., Cigizoglu H.K. Depth-integrated estimation of dissolved oxygen in a lake. J.Environ. Eng. Asce 2011, 137(10):961-967.
-
(2011)
J.Environ. Eng. Asce
, vol.137
, Issue.10
, pp. 961-967
-
-
Akkoyunlu, A.1
Altun, H.2
Cigizoglu, H.K.3
-
8
-
-
84860378229
-
Application of Artificial Neural Network to predict TDS in Talkheh Rud River
-
Asadollahfardi G., Taklify A., Ghanbari A. Application of Artificial Neural Network to predict TDS in Talkheh Rud River. J.Irrig. Drain. Eng. Asce 2012, 138(4):363-370.
-
(2012)
J.Irrig. Drain. Eng. Asce
, vol.138
, Issue.4
, pp. 363-370
-
-
Asadollahfardi, G.1
Taklify, A.2
Ghanbari, A.3
-
9
-
-
0034174280
-
Artificial Neural Networks in hydrology. I: preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in hydrology. I: preliminary concepts. J.Hydrol. Eng. 2000, 5(2).
-
(2000)
J.Hydrol. Eng.
, vol.5
, Issue.2
-
-
-
10
-
-
0034174396
-
Artificial Neural Networks in hydrology. II: hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in hydrology. II: hydrologic applications. J.Hydrol. Eng. 2000, 5(2).
-
(2000)
J.Hydrol. Eng.
, vol.5
, Issue.2
-
-
-
11
-
-
84868601226
-
Modeling of dissolved oxygen concentration using different neural network techniques in foundation creek, El Paso County, Colorado
-
Ay M., Kisi O. Modeling of dissolved oxygen concentration using different neural network techniques in foundation creek, El Paso County, Colorado. J.Environ. Eng. 2012, 138(6):654-662.
-
(2012)
J.Environ. Eng.
, vol.138
, Issue.6
, pp. 654-662
-
-
Ay, M.1
Kisi, O.2
-
12
-
-
79551472362
-
Artificial neural network model as a potential alternative for groundwater salinity forecasting
-
Banerjee P., Singh V.S., Chatttopadhyay K., Chandra P.C., Singh B. Artificial neural network model as a potential alternative for groundwater salinity forecasting. J.Hydrol. 2011, 398(3-4):212-220.
-
(2011)
J.Hydrol.
, vol.398
, Issue.3-4
, pp. 212-220
-
-
Banerjee, P.1
Singh, V.S.2
Chatttopadhyay, K.3
Chandra, P.C.4
Singh, B.5
-
13
-
-
79151483792
-
Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN
-
Bashi-Azghadi S.N., Kerachian R., Bazargan-Lari M.R., Solouki K. Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN. Expert Syst. Appl. 2010, 37(10):7154-7161.
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.10
, pp. 7154-7161
-
-
Bashi-Azghadi, S.N.1
Kerachian, R.2
Bazargan-Lari, M.R.3
Solouki, K.4
-
14
-
-
84871801369
-
Characterising performance of environmental models
-
Bennett N.D., Croke B.F.W., Guariso G., Guillaume J.H.A., Hamilton S.H., Jakeman A.J., Marsili-Libelli S., Newham L.T.H., Norton J.P., Perrin C., Pierce S.A., Robson B., Seppelt R., Voinov A.A., Fath B.D., Andreassian V. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40(0):1-20.
-
(2013)
Environ. Model. Softw.
, vol.40
, Issue.0
, pp. 1-20
-
-
Bennett, N.D.1
Croke, B.F.W.2
Guariso, G.3
Guillaume, J.H.A.4
Hamilton, S.H.5
Jakeman, A.J.6
Marsili-Libelli, S.7
Newham, L.T.H.8
Norton, J.P.9
Perrin, C.10
Pierce, S.A.11
Robson, B.12
Seppelt, R.13
Voinov, A.A.14
Fath, B.D.15
Andreassian, V.16
-
15
-
-
0036221122
-
Optimal division of data for neural network models in water resources applications
-
Bowden G.J., Maier H.R., Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 2002, 38(2):1010.
-
(2002)
Water Resour. Res.
, vol.38
, Issue.2
, pp. 1010
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
16
-
-
10644295753
-
Input determination for neural network models in water resources applications. Part 1-background and methodology
-
Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. J.Hydrol. 2005, 301(1-4):75-92.
-
(2005)
J.Hydrol.
, vol.301
, Issue.1-4
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
17
-
-
10644225424
-
Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
-
Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J.Hydrol. 2005, 301(1-4):93-107.
-
(2005)
J.Hydrol.
, vol.301
, Issue.1-4
, pp. 93-107
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
18
-
-
33745337472
-
Forecasting chlorine residuals in a water distribution system using a general regression neural network
-
Bowden G.J., Nixon J.B., Dandy G.C., Maier H.R., Holmes M. Forecasting chlorine residuals in a water distribution system using a general regression neural network. Math. Comput. Model. 2006, 44(5-6):469-484.
-
(2006)
Math. Comput. Model.
, vol.44
, Issue.5-6
, pp. 469-484
-
-
Bowden, G.J.1
Nixon, J.B.2
Dandy, G.C.3
Maier, H.R.4
Holmes, M.5
-
19
-
-
84868621819
-
Real-time deployment of artificial neural network forecasting models: understanding the range of applicability
-
Bowden G.J., Maier H.R., Dandy G.C. Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour. Res. 2012, 48(10):W10549.
-
(2012)
Water Resour. Res.
, vol.48
, Issue.10
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
20
-
-
0035127502
-
Using neural networks to predict peak Cryptosporidium concentrations
-
Brion G.M., Neelakantan T.R., Lingireddy S. Using neural networks to predict peak Cryptosporidium concentrations. J.Am. Water Works Assoc. 2001, 93(1):99-105.
-
(2001)
J.Am. Water Works Assoc.
, vol.93
, Issue.1
, pp. 99-105
-
-
Brion, G.M.1
Neelakantan, T.R.2
Lingireddy, S.3
-
21
-
-
0035083179
-
Modeling transient pH depressions in coastal streams of British Columbia using neural networks
-
Cannon A.J., Whitfield P.H. Modeling transient pH depressions in coastal streams of British Columbia using neural networks. J.Am. Water Resour. Assoc. 2001, 37(1):73-89.
-
(2001)
J.Am. Water Resour. Assoc.
, vol.37
, Issue.1
, pp. 73-89
-
-
Cannon, A.J.1
Whitfield, P.H.2
-
22
-
-
84858850209
-
Data-driven dynamic emulation modelling for the optimal management of environmental systems
-
Castelletti A., Galelli S., Restelli M., Soncini-Sessa R. Data-driven dynamic emulation modelling for the optimal management of environmental systems. Environ. Model. Softw. 2012, 34(0):30-43.
-
(2012)
Environ. Model. Softw.
, vol.34
, Issue.0
, pp. 30-43
-
-
Castelletti, A.1
Galelli, S.2
Restelli, M.3
Soncini-Sessa, R.4
-
23
-
-
70350422293
-
Review of the Self-Organizing Map (SOM) approach in water resources: commentary
-
Céréghino R., Park Y.S. Review of the Self-Organizing Map (SOM) approach in water resources: commentary. Environ. Model. Softw. 2009, 24(8):945-947.
-
(2009)
Environ. Model. Softw.
, vol.24
, Issue.8
, pp. 945-947
-
-
Céréghino, R.1
Park, Y.S.2
-
24
-
-
84858621775
-
Integration of optimal dynamic control and neural network for groundwater quality management
-
Chang L.C., Chu H.J., Hsiao C.T. Integration of optimal dynamic control and neural network for groundwater quality management. Water Resour. Manag. 2012, 26(5):1253-1269.
-
(2012)
Water Resour. Manag.
, vol.26
, Issue.5
, pp. 1253-1269
-
-
Chang, L.C.1
Chu, H.J.2
Hsiao, C.T.3
-
25
-
-
33847261136
-
Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks
-
Chaves P., Kojiri T. Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Adv. Water Resour. 2007, 30(5):1329-1341.
-
(2007)
Adv. Water Resour.
, vol.30
, Issue.5
, pp. 1329-1341
-
-
Chaves, P.1
Kojiri, T.2
-
26
-
-
33847710603
-
Conceptual fuzzy neural network model for water quality simulation
-
Chaves P., Kojiri T. Conceptual fuzzy neural network model for water quality simulation. Hydrol. Process. 2007, 21(5):634-646.
-
(2007)
Hydrol. Process.
, vol.21
, Issue.5
, pp. 634-646
-
-
Chaves, P.1
Kojiri, T.2
-
27
-
-
84861962150
-
Predicting and managing reservoir total phosphorus by using modified grammatical evolution coupled with a macro-genetic algorithm
-
Chen L., Kao S.-J., Traore S. Predicting and managing reservoir total phosphorus by using modified grammatical evolution coupled with a macro-genetic algorithm. Environ. Model. Softw. 2012, 38(0):89-100.
-
(2012)
Environ. Model. Softw.
, vol.38
, Issue.0
, pp. 89-100
-
-
Chen, L.1
Kao, S.-J.2
Traore, S.3
-
28
-
-
0037389847
-
"Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake
-
Chen Q.W., Mynett A.E. "Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecol. Model. 2003, 162(1-2):55-67.
-
(2003)
Ecol. Model.
, vol.162
, Issue.1-2
, pp. 55-67
-
-
Chen, Q.W.1
Mynett, A.E.2
-
29
-
-
81955160727
-
Development and application of a hybrid model to analyze spatial distribution of macroinvertebrates under flow regulation in the Lijiang River
-
Chen Q.W., Yang Q.R., Lin Y.Q. Development and application of a hybrid model to analyze spatial distribution of macroinvertebrates under flow regulation in the Lijiang River. Ecol. Inform. 2011, 6(6):407-413.
-
(2011)
Ecol. Inform.
, vol.6
, Issue.6
, pp. 407-413
-
-
Chen, Q.W.1
Yang, Q.R.2
Lin, Y.Q.3
-
30
-
-
0037903280
-
Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin
-
Chibanga R., Berlamont J., Vandewalle J. Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol. Sci. J. 2003, 48(3):363-379.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 363-379
-
-
Chibanga, R.1
Berlamont, J.2
Vandewalle, J.3
-
31
-
-
80053125279
-
Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network
-
Cho K.H., Sthiannopkao S., Pachepsky Y.A., Kim K.W., Kim J.H. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 2011, 45(17):5535-5544.
-
(2011)
Water Res.
, vol.45
, Issue.17
, pp. 5535-5544
-
-
Cho, K.H.1
Sthiannopkao, S.2
Pachepsky, Y.A.3
Kim, K.W.4
Kim, J.H.5
-
32
-
-
73649127943
-
Reservoir computing approach to Great Lakes water level forecasting
-
Coulibaly P. Reservoir computing approach to Great Lakes water level forecasting. J.Hydrol. 2010, 381(1-2):76-88.
-
(2010)
J.Hydrol.
, vol.381
, Issue.1-2
, pp. 76-88
-
-
Coulibaly, P.1
-
33
-
-
77955956782
-
Comparison of ANN models for predicting water quality in distribution systems
-
92-+
-
D'Souza C.D., Kumar M.S.M. Comparison of ANN models for predicting water quality in distribution systems. J.Am. Water Works Assoc. 2010, 102(7). 92-+.
-
(2010)
J.Am. Water Works Assoc.
, vol.102
, Issue.7
-
-
D'Souza, C.D.1
Kumar, M.S.M.2
-
34
-
-
68149162407
-
Use of neural networks for monitoring surface water quality changes in a neotropical urban stream
-
da Costa A.O.S., Silva P.F., Sabara M.G., da Costa E.J.D. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream. Environ. Monit. Assess. 2009, 155(1-4):527-538.
-
(2009)
Environ. Monit. Assess.
, vol.155
, Issue.1-4
, pp. 527-538
-
-
da Costa, A.O.S.1
Silva, P.F.2
Sabara, M.G.3
da Costa, E.J.D.4
-
35
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25(1):80-108.
-
(2001)
Prog. Phys. Geogr.
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
36
-
-
33846798345
-
HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
-
Dawson C.W., Abrahart R.J., See L.M. HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22(7):1034-1052.
-
(2007)
Environ. Model. Softw.
, vol.22
, Issue.7
, pp. 1034-1052
-
-
Dawson, C.W.1
Abrahart, R.J.2
See, L.M.3
-
37
-
-
33947709411
-
Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers
-
Diamantopoulou M.J., Antonopoulos V.Z., Papamichail D.M. Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resour. Manag. 2007, 21(3):649-662.
-
(2007)
Water Resour. Manag.
, vol.21
, Issue.3
, pp. 649-662
-
-
Diamantopoulou, M.J.1
Antonopoulos, V.Z.2
Papamichail, D.M.3
-
38
-
-
69149106528
-
Acase study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N
-
Dixon B. Acase study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N. Hydrogeol. J. 2009, 17(6):1507-1520.
-
(2009)
Hydrogeol. J.
, vol.17
, Issue.6
, pp. 1507-1520
-
-
Dixon, B.1
-
39
-
-
56249121165
-
Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
-
Dogan E., Sengorur B., Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J.Environ. Manag. 2009, 90(2):1229-1235.
-
(2009)
J.Environ. Manag.
, vol.90
, Issue.2
, pp. 1229-1235
-
-
Dogan, E.1
Sengorur, B.2
Koklu, R.3
-
40
-
-
38049074403
-
Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks
-
Elhatip H., Komur M.A. Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environ. Geol. 2008, 53(6):1157-1164.
-
(2008)
Environ. Geol.
, vol.53
, Issue.6
, pp. 1157-1164
-
-
Elhatip, H.1
Komur, M.A.2
-
41
-
-
31544482181
-
Framework for assessment of relative pollutant loads in streams with limited data
-
Elshorbagy A., Teegavarapu R.S.V., Ormsbee L. Framework for assessment of relative pollutant loads in streams with limited data. Water Int. 2005, 30(4):477-486.
-
(2005)
Water Int.
, vol.30
, Issue.4
, pp. 477-486
-
-
Elshorbagy, A.1
Teegavarapu, R.S.V.2
Ormsbee, L.3
-
42
-
-
77958183722
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology
-
Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 1: concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14:1931-1941.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1931-1941
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
43
-
-
77958199170
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application
-
Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - part 2: application. Hydrol. Earth Syst. Sci. 2010, 14:1943-1961.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1943-1961
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
44
-
-
77950516820
-
Ahybrid neural network and ARIMA model for water quality time series prediction
-
Faruk D.O. Ahybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23(4):586-594.
-
(2010)
Eng. Appl. Artif. Intell.
, vol.23
, Issue.4
, pp. 586-594
-
-
Faruk, D.O.1
-
45
-
-
61749084755
-
Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
-
Fernando T.M.K.G., Maier H.R., Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. J.Hydrol. 2009, 367(3-4):165-176.
-
(2009)
J.Hydrol.
, vol.367
, Issue.3-4
, pp. 165-176
-
-
Fernando, T.M.K.G.1
Maier, H.R.2
Dandy, G.C.3
-
46
-
-
84880684699
-
Tree-based iterative input variable selection for hydrological modeling
-
Galelli S., Castelletti A. Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res. 2013, 49(7):4295-4310.
-
(2013)
Water Resour. Res.
, vol.49
, Issue.7
, pp. 4295-4310
-
-
Galelli, S.1
Castelletti, A.2
-
47
-
-
0032146239
-
Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
-
Gardner M.W., Dorling S.R. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32(14-15):2627-2636.
-
(1998)
Atmos. Environ.
, vol.32
, Issue.14-15
, pp. 2627-2636
-
-
Gardner, M.W.1
Dorling, S.R.2
-
48
-
-
84976655576
-
Documentation for a model - a hierarchical approach
-
Gass S.I., Hoffman K.L., Jackson R.H.F., Joel L.S., Saunders P.B. Documentation for a model - a hierarchical approach. Commun. Acm 1981, 24(11):728-733.
-
(1981)
Commun. Acm
, vol.24
, Issue.11
, pp. 728-733
-
-
Gass, S.I.1
Hoffman, K.L.2
Jackson, R.H.F.3
Joel, L.S.4
Saunders, P.B.5
-
49
-
-
0020790254
-
Decision-aiding models: validation, assessment, and related issues for policy analysis
-
Gass S.I. Decision-aiding models: validation, assessment, and related issues for policy analysis. Oper. Res. 1983, 31(4):603-631.
-
(1983)
Oper. Res.
, vol.31
, Issue.4
, pp. 603-631
-
-
Gass, S.I.1
-
50
-
-
61749091397
-
Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece)
-
Gemitzi A., Petalas C., Pisinaras V., Tsihrintzis V.A. Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece). Hydrol. Process. 2009, 23(3):372-383.
-
(2009)
Hydrol. Process.
, vol.23
, Issue.3
, pp. 372-383
-
-
Gemitzi, A.1
Petalas, C.2
Pisinaras, V.3
Tsihrintzis, V.A.4
-
51
-
-
84857896629
-
Determination of the principal factors of river water quality through cluster analysis method and its prediction
-
Guo L., Zhao Y., Wang P. Determination of the principal factors of river water quality through cluster analysis method and its prediction. Front. Environ. Sci. Eng. 2012, 6(2):238-245.
-
(2012)
Front. Environ. Sci. Eng.
, vol.6
, Issue.2
, pp. 238-245
-
-
Guo, L.1
Zhao, Y.2
Wang, P.3
-
52
-
-
3342891563
-
Neural networks provide superior description of Giardia lamblia inactivation by free chlorine
-
Haas C.N. Neural networks provide superior description of Giardia lamblia inactivation by free chlorine. Water Res. 2004, 38(14-15):3449-3457.
-
(2004)
Water Res.
, vol.38
, Issue.14-15
, pp. 3449-3457
-
-
Haas, C.N.1
-
53
-
-
35548969323
-
Comparison of stochastic global optimization methods to estimate neural network weights
-
Hamm L., Brorsen B.W., Hagan M. Comparison of stochastic global optimization methods to estimate neural network weights. Neural Process. Lett. 2007, 26(3):145-158.
-
(2007)
Neural Process. Lett.
, vol.26
, Issue.3
, pp. 145-158
-
-
Hamm, L.1
Brorsen, B.W.2
Hagan, M.3
-
54
-
-
77957769268
-
Estimating monthly total nitrogen concentration in streams by using artificial neural network
-
He B., Oki T., Sun F.B., Komori D., Kanae S., Wang Y., Kim H., Yamazaki D. Estimating monthly total nitrogen concentration in streams by using artificial neural network. J.Environ. Manag. 2011, 92(1):172-177.
-
(2011)
J.Environ. Manag.
, vol.92
, Issue.1
, pp. 172-177
-
-
He, B.1
Oki, T.2
Sun, F.B.3
Komori, D.4
Kanae, S.5
Wang, Y.6
Kim, H.7
Yamazaki, D.8
-
55
-
-
79953283520
-
Stormwater quantity and quality response to climate change using artificial neural networks
-
He J.X., Valeo C., Chu A., Neumann N.F. Stormwater quantity and quality response to climate change using artificial neural networks. Hydrol. Process. 2011, 25(8):1298-1312.
-
(2011)
Hydrol. Process.
, vol.25
, Issue.8
, pp. 1298-1312
-
-
He, J.X.1
Valeo, C.2
Chu, A.3
Neumann, N.F.4
-
56
-
-
79952488657
-
Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection
-
He J.X., Valeo C., Chu A., Neumann N.F. Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection. J.Hydrol. 2011, 400(1-2):10-23.
-
(2011)
J.Hydrol.
, vol.400
, Issue.1-2
, pp. 10-23
-
-
He, J.X.1
Valeo, C.2
Chu, A.3
Neumann, N.F.4
-
57
-
-
1542287371
-
Identification of physical processes inherent in artificial neural network rainfall runoff models
-
Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process. 2004, 18(3):571-581.
-
(2004)
Hydrol. Process.
, vol.18
, Issue.3
, pp. 571-581
-
-
Jain, A.1
Sudheer, K.P.2
Srinivasulu, S.3
-
58
-
-
69249158084
-
Dissection of trained neural network hydrologic models for knowledge extraction
-
Jain A., Kumar S. Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 2009, 45(7):W07420.
-
(2009)
Water Resour. Res.
, vol.45
, Issue.7
-
-
Jain, A.1
Kumar, S.2
-
59
-
-
80051804722
-
Rainfall runoff modelling using neural networks: state-of-the-art and future research needs
-
Jain A., Maier H.R., Dandy G.C., Sudheer K.P. Rainfall runoff modelling using neural networks: state-of-the-art and future research needs. ISH J. Hydr. Eng. 2009, 15(sup1):52-74.
-
(2009)
ISH J. Hydr. Eng.
, vol.15
, Issue.SUPPL.
, pp. 52-74
-
-
Jain, A.1
Maier, H.R.2
Dandy, G.C.3
Sudheer, K.P.4
-
60
-
-
33645947036
-
Ten iterative steps in development and evaluation of environmental models
-
Jakeman A.J., Letcher R.A., Norton J.P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 2006, 21(5):602-614.
-
(2006)
Environ. Model. Softw.
, vol.21
, Issue.5
, pp. 602-614
-
-
Jakeman, A.J.1
Letcher, R.A.2
Norton, J.P.3
-
61
-
-
53849124012
-
Multiscale Bayesian neural networks for soil water content estimation
-
Jana R.B., Mohanty B.P., Springer E.P. Multiscale Bayesian neural networks for soil water content estimation. Water Resour. Res. 2008, 44(8):W08408.
-
(2008)
Water Resour. Res.
, vol.44
, Issue.8
-
-
Jana, R.B.1
Mohanty, B.P.2
Springer, E.P.3
-
62
-
-
38349159579
-
Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics
-
Jeong K.S., Kim D.K., Jung J.M., Kim M.C., Joo G.J. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol. Model. 2008, 211(3-4):292-300.
-
(2008)
Ecol. Model.
, vol.211
, Issue.3-4
, pp. 292-300
-
-
Jeong, K.S.1
Kim, D.K.2
Jung, J.M.3
Kim, M.C.4
Joo, G.J.5
-
63
-
-
77249106604
-
Spatial assessment of Langat river water quality using chemometrics
-
Juahir H., Zain S.M., Aris A.Z., Yusoff M.K., Bin Mokhtar M. Spatial assessment of Langat river water quality using chemometrics. J.Environ. Monit. 2010, 12(1):287-295.
-
(2010)
J.Environ. Monit.
, vol.12
, Issue.1
, pp. 287-295
-
-
Juahir, H.1
Zain, S.M.2
Aris, A.Z.3
Yusoff, M.K.4
Bin Mokhtar, M.5
-
64
-
-
77955637658
-
Predicting water quality in unmonitored watersheds using Artificial Neural Networks
-
Kalin L., Isik S., Schoonover J.E., Lockaby B.G. Predicting water quality in unmonitored watersheds using Artificial Neural Networks. J.Environ. Qual. 2010, 39(4):1429-1440.
-
(2010)
J.Environ. Qual.
, vol.39
, Issue.4
, pp. 1429-1440
-
-
Kalin, L.1
Isik, S.2
Schoonover, J.E.3
Lockaby, B.G.4
-
65
-
-
0034963531
-
Artificial neural networks in renewable energy systems applications: a review
-
Kalogirou S.A. Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 2001, 5(4):373-401.
-
(2001)
Renew. Sustain. Energy Rev.
, vol.5
, Issue.4
, pp. 373-401
-
-
Kalogirou, S.A.1
-
66
-
-
40749144865
-
Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application
-
Kalteh A.M., Hjorth P., Berndtsson R. Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environ. Model. Softw. 2008, 23(7):835-845.
-
(2008)
Environ. Model. Softw.
, vol.23
, Issue.7
, pp. 835-845
-
-
Kalteh, A.M.1
Hjorth, P.2
Berndtsson, R.3
-
67
-
-
38549138689
-
Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study
-
Karamouz M., Razavi S., Araghinejad S. Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study. Hydrol. Process. 2008, 22(2):229-241.
-
(2008)
Hydrol. Process.
, vol.22
, Issue.2
, pp. 229-241
-
-
Karamouz, M.1
Razavi, S.2
Araghinejad, S.3
-
68
-
-
84881236620
-
Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations
-
Kasiviswanathan K.S., Cibin R., Sudheer K.P., Chaubey I. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J.Hydrol. 2013, 499(0):275-288.
-
(2013)
J.Hydrol.
, vol.499
, Issue.0
, pp. 275-288
-
-
Kasiviswanathan, K.S.1
Cibin, R.2
Sudheer, K.P.3
Chaubey, I.4
-
69
-
-
20844458468
-
Applicability of statistical learning algorithms in groundwater quality modeling
-
Khalil A., Almasri M.N., McKee M., Kaluarachchi J.J. Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour. Res. 2005, 41(5).
-
(2005)
Water Resour. Res.
, vol.41
, Issue.5
-
-
Khalil, A.1
Almasri, M.N.2
McKee, M.3
Kaluarachchi, J.J.4
-
70
-
-
79960418874
-
Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis
-
Khalil B., Ouarda T., St-Hilaire A. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J.Hydrol. 2011, 405(3-4):277-287.
-
(2011)
J.Hydrol.
, vol.405
, Issue.3-4
, pp. 277-287
-
-
Khalil, B.1
Ouarda, T.2
St-Hilaire, A.3
-
71
-
-
33748029144
-
Bayesian neural network for rainfall-runoff modeling
-
Khan M.S., Coulibaly P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42(7):W07409.
-
(2006)
Water Resour. Res.
, vol.42
, Issue.7
-
-
Khan, M.S.1
Coulibaly, P.2
-
72
-
-
33846653402
-
An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs
-
Kilic H., Soyupak S., Tuzun I., Ince O., Basaran G. An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs. Ecol. Model. 2007, 201(3-4):359-368.
-
(2007)
Ecol. Model.
, vol.201
, Issue.3-4
, pp. 359-368
-
-
Kilic, H.1
Soyupak, S.2
Tuzun, I.3
Ince, O.4
Basaran, G.5
-
73
-
-
84863074416
-
Forecasting performance of algae blooms based on artificial neural networks and automatic observation system
-
Kim M.E., Shon T.S., Min K.S., Shin H.S. Forecasting performance of algae blooms based on artificial neural networks and automatic observation system. Desalin. Water Treat. 2012, 38(1-3):293-301.
-
(2012)
Desalin. Water Treat.
, vol.38
, Issue.1-3
, pp. 293-301
-
-
Kim, M.E.1
Shon, T.S.2
Min, K.S.3
Shin, H.S.4
-
74
-
-
84862619383
-
Artificial neural network models of watershed nutrient loading
-
Kim R., Loucks D., Stedinger J. Artificial neural network models of watershed nutrient loading. Water Resour. Manag. 2012, 26(10):2781-2797.
-
(2012)
Water Resour. Manag.
, vol.26
, Issue.10
, pp. 2781-2797
-
-
Kim, R.1
Loucks, D.2
Stedinger, J.3
-
75
-
-
31444455186
-
Bayesian training of artificial neural networks used for water resources modeling
-
Kingston G.B., Lambert M.F., Maier H.R. Bayesian training of artificial neural networks used for water resources modeling. Water Resour. Res. 2005, 41(12):W12409.
-
(2005)
Water Resour. Res.
, vol.41
, Issue.12
-
-
Kingston, G.B.1
Lambert, M.F.2
Maier, H.R.3
-
76
-
-
28444444200
-
Calibration and validation of neural networks to ensure physically plausible hydrological modeling
-
Kingston G.B., Maier H.R., Lambert M.F. Calibration and validation of neural networks to ensure physically plausible hydrological modeling. J.Hydrol. 2005, 314(1-4):158-176.
-
(2005)
J.Hydrol.
, vol.314
, Issue.1-4
, pp. 158-176
-
-
Kingston, G.B.1
Maier, H.R.2
Lambert, M.F.3
-
77
-
-
33745367041
-
Aprobabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction
-
Kingston G.B., Maier H.R., Lambert M.F. Aprobabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction. Math. Comput. Model. 2006, 44(5-6):499-512.
-
(2006)
Math. Comput. Model.
, vol.44
, Issue.5-6
, pp. 499-512
-
-
Kingston, G.B.1
Maier, H.R.2
Lambert, M.F.3
-
78
-
-
44349171685
-
Bayesian model selection applied to artificial neural networks used for water resources modeling
-
Kingston G.B., Maier H.R., Lambert M.F. Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res. 2008, 44(4):W04419.
-
(2008)
Water Resour. Res.
, vol.44
, Issue.4
-
-
Kingston, G.B.1
Maier, H.R.2
Lambert, M.F.3
-
79
-
-
33748913014
-
Comparison of different efficiency criteria for hydrological model assessment
-
Krause P., Boyle D.P., Bäse F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5:89-97.
-
(2005)
Adv. Geosci.
, vol.5
, pp. 89-97
-
-
Krause, P.1
Boyle, D.P.2
Bäse, F.3
-
80
-
-
77954622505
-
Disinfection by-product formation following chlorination of drinking water: Artificial Neural Network models and changes in speciation with treatment
-
Kulkarni P., Chellam S. Disinfection by-product formation following chlorination of drinking water: Artificial Neural Network models and changes in speciation with treatment. Sci. Total Environ. 2010, 408(19):4202-4210.
-
(2010)
Sci. Total Environ.
, vol.408
, Issue.19
, pp. 4202-4210
-
-
Kulkarni, P.1
Chellam, S.2
-
81
-
-
33645130069
-
Ahybrid neural-genetic algorithm for reservoir water quality management
-
Kuo J.T., Wang Y.Y., Lung W.S. Ahybrid neural-genetic algorithm for reservoir water quality management. Water Res. 2006, 40(7):1367-1376.
-
(2006)
Water Res.
, vol.40
, Issue.7
, pp. 1367-1376
-
-
Kuo, J.T.1
Wang, Y.Y.2
Lung, W.S.3
-
82
-
-
0031701777
-
Abootstrap evaluation of the effect of data splitting on financial time series
-
LeBaron B., Weigend A.S. Abootstrap evaluation of the effect of data splitting on financial time series. Neural Netw. IEEE Trans. 1998, 9(1):213-220.
-
(1998)
Neural Netw. IEEE Trans.
, vol.9
, Issue.1
, pp. 213-220
-
-
LeBaron, B.1
Weigend, A.S.2
-
83
-
-
21144438694
-
Model selection with cross-validations and bootstraps: application to time series prediction with RBFN models
-
Springer-Verlag, Istanbul, Turkey
-
Lendasse A., Wertz V., Verleysen M. Model selection with cross-validations and bootstraps: application to time series prediction with RBFN models. Proceedings of the 2003 Joint International Conference on Artificial Neural Networks and Neural Information Processing 2003, Springer-Verlag, Istanbul, Turkey.
-
(2003)
Proceedings of the 2003 Joint International Conference on Artificial Neural Networks and Neural Information Processing
-
-
Lendasse, A.1
Wertz, V.2
Verleysen, M.3
-
84
-
-
34547334231
-
Predicting total trihalomethane formation in finished water using artificial neural networks
-
Lewin N., Zhang Q., Chu L.L., Shariff R. Predicting total trihalomethane formation in finished water using artificial neural networks. J.Environ. Eng. Sci. 2004, 3:S35-S43.
-
(2004)
J.Environ. Eng. Sci.
, vol.3
-
-
Lewin, N.1
Zhang, Q.2
Chu, L.L.3
Shariff, R.4
-
85
-
-
65649148777
-
Modelling nitrogen composition in streams on the Boreal Plain using genetic adaptive general regression neural networks
-
Li X.F., Nour M.H., Smith D.W., Prepas E.E. Modelling nitrogen composition in streams on the Boreal Plain using genetic adaptive general regression neural networks. J.Environ. Eng. Sci. 2008, 7:S109-S125.
-
(2008)
J.Environ. Eng. Sci.
, vol.7
-
-
Li, X.F.1
Nour, M.H.2
Smith, D.W.3
Prepas, E.E.4
-
86
-
-
84862118799
-
Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models
-
Liu W.-C., Chen W.-B. Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models. Comput. Geosci. 2012, 45(0):13-25.
-
(2012)
Comput. Geosci.
, vol.45
, Issue.0
, pp. 13-25
-
-
Liu, W.-C.1
Chen, W.-B.2
-
87
-
-
0032855262
-
Empirical comparison of various methods for training feed-Forward neural networks for salinity forecasting
-
Maier H.R., Dandy G.C. Empirical comparison of various methods for training feed-Forward neural networks for salinity forecasting. Water Resour. Res. 1999, 35(8):2591-2596.
-
(1999)
Water Resour. Res.
, vol.35
, Issue.8
, pp. 2591-2596
-
-
Maier, H.R.1
Dandy, G.C.2
-
88
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
-
Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 2000, 15(1):101-124.
-
(2000)
Environ. Model. Softw.
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
89
-
-
0034225438
-
Forecasting cyanobacterial concentrations using B-spline networks
-
Maier H.R., Sayed T., Lence B.J. Forecasting cyanobacterial concentrations using B-spline networks. J.Comput. Civ. Eng. 2000, 14(3):183-189.
-
(2000)
J.Comput. Civ. Eng.
, vol.14
, Issue.3
, pp. 183-189
-
-
Maier, H.R.1
Sayed, T.2
Lence, B.J.3
-
90
-
-
1642336479
-
Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
-
Maier H.R., Morgan N., Chow C.W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environ. Model. Softw. 2004, 19(5):485-494.
-
(2004)
Environ. Model. Softw.
, vol.19
, Issue.5
, pp. 485-494
-
-
Maier, H.R.1
Morgan, N.2
Chow, C.W.K.3
-
91
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 2010, 25(8):891-909.
-
(2010)
Environ. Model. Softw.
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
92
-
-
84875814492
-
What constitutes a good literature review and why does its quality matter?
-
Maier H.R. What constitutes a good literature review and why does its quality matter?. Environ. Model. Softw. 2013, 43:3-4.
-
(2013)
Environ. Model. Softw.
, vol.43
, pp. 3-4
-
-
Maier, H.R.1
-
93
-
-
0037339103
-
Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks
-
Markus M., Tsai C.W.S., Demissie M. Uncertainty of weekly nitrate-nitrogen forecasts using artificial neural networks. J.Environ. Eng. Asce 2003, 129(3):267-274.
-
(2003)
J.Environ. Eng. Asce
, vol.129
, Issue.3
, pp. 267-274
-
-
Markus, M.1
Tsai, C.W.S.2
Demissie, M.3
-
94
-
-
34547733003
-
Comparing artificial neural networks and regression models for predicting faecal coliform concentrations
-
Mas D.M.L., Ahlfeld D.P. Comparing artificial neural networks and regression models for predicting faecal coliform concentrations. Hydrol. Sci. J. - Journal Des Sciences Hydrologiques 2007, 52(4):713-731.
-
(2007)
Hydrol. Sci. J. - Journal Des Sciences Hydrologiques
, vol.52
, Issue.4
, pp. 713-731
-
-
Mas, D.M.L.1
Ahlfeld, D.P.2
-
95
-
-
53149113747
-
Prediction of urban stormwater quality using artificial neural networks
-
May D.B., Sivakumar M. Prediction of urban stormwater quality using artificial neural networks. Environ. Model. Softw. 2009, 24(2):296-302.
-
(2009)
Environ. Model. Softw.
, vol.24
, Issue.2
, pp. 296-302
-
-
May, D.B.1
Sivakumar, M.2
-
96
-
-
44749087176
-
Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
-
May R.J., Dandy G.C., Maier H.R., Nixon J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 2008, 23(10-11):1289-1299.
-
(2008)
Environ. Model. Softw.
, vol.23
, Issue.10-11
, pp. 1289-1299
-
-
May, R.J.1
Dandy, G.C.2
Maier, H.R.3
Nixon, J.B.4
-
97
-
-
74149090502
-
Data splitting for artificial neural networks using SOM-based stratified sampling
-
May R.J., Maier H.R., Dandy G.C. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 2010, 23(2):283-294.
-
(2010)
Neural Netw.
, vol.23
, Issue.2
, pp. 283-294
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
-
98
-
-
79951680934
-
Suspended sediment load prediction of river systems: an artificial neural network approach
-
Melesse A.M., Ahmad S., McClain M.E., Wang X., Lim Y.H. Suspended sediment load prediction of river systems: an artificial neural network approach. Agric. Water Manag. 2011, 98(5):855-866.
-
(2011)
Agric. Water Manag.
, vol.98
, Issue.5
, pp. 855-866
-
-
Melesse, A.M.1
Ahmad, S.2
McClain, M.E.3
Wang, X.4
Lim, Y.H.5
-
99
-
-
57649222644
-
Artificial intelligence techniques for sizing photovoltaic systems: a review
-
Mellit A., Kalogirou S.A., Hontoria L., Shaari S. Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 2009, 13(2):406-419.
-
(2009)
Renew. Sustain. Energy Rev.
, vol.13
, Issue.2
, pp. 406-419
-
-
Mellit, A.1
Kalogirou, S.A.2
Hontoria, L.3
Shaari, S.4
-
100
-
-
77953827908
-
Utilization of two artificial neural network methods in surface water quality modelling
-
Merdun H., Cinar O. Utilization of two artificial neural network methods in surface water quality modelling. Environ. Eng. Manag. J. 2010, 9(3):413-421.
-
(2010)
Environ. Eng. Manag. J.
, vol.9
, Issue.3
, pp. 413-421
-
-
Merdun, H.1
Cinar, O.2
-
101
-
-
84861662434
-
Modeling microalgal abundance with artificial neural networks: demonstration of a heuristic 'Grey-Box' to deconvolve and quantify environmental influences
-
Millie D.F., Weckman G.R., Young Ii W.A., Ivey J.E., Carrick H.J., Fahnenstiel G.L. Modeling microalgal abundance with artificial neural networks: demonstration of a heuristic 'Grey-Box' to deconvolve and quantify environmental influences. Environ. Model. Softw. 2012, 38(0):27-39.
-
(2012)
Environ. Model. Softw.
, vol.38
, Issue.0
, pp. 27-39
-
-
Millie, D.F.1
Weckman, G.R.2
Young Ii, W.A.3
Ivey, J.E.4
Carrick, H.J.5
Fahnenstiel, G.L.6
-
102
-
-
0036719180
-
Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
-
Milot J., Rodriguez M.J., Serodes J.B. Contribution of neural networks for modeling trihalomethanes occurrence in drinking water. J.Water Resour. Plan. Manag. Asce 2002, 128(5):370-376.
-
(2002)
J.Water Resour. Plan. Manag. Asce
, vol.128
, Issue.5
, pp. 370-376
-
-
Milot, J.1
Rodriguez, M.J.2
Serodes, J.B.3
-
103
-
-
84880675185
-
Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
-
Mount N.J., Dawson C.W., Abrahart R.J. Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework. Hydrol. Earth Syst. Sci. 2013, 17:2827-2843.
-
(2013)
Hydrol. Earth Syst. Sci.
, vol.17
, pp. 2827-2843
-
-
Mount, N.J.1
Dawson, C.W.2
Abrahart, R.J.3
-
104
-
-
84865634266
-
Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
-
Najah A., El-Shafie A., Karim O.A., Jaafar O. Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Comput. Appl. 2012, 21(5):833-841.
-
(2012)
Neural Comput. Appl.
, vol.21
, Issue.5
, pp. 833-841
-
-
Najah, A.1
El-Shafie, A.2
Karim, O.A.3
Jaafar, O.4
-
105
-
-
0036608090
-
Effectiveness of different artificial neural network training algorithms in predicting protozoa risks in surface waters
-
Neelakantan T.R., Lingireddy S., Brion G.M. Effectiveness of different artificial neural network training algorithms in predicting protozoa risks in surface waters. J.Environ. Eng. Asce 2002, 128(6):533-542.
-
(2002)
J.Environ. Eng. Asce
, vol.128
, Issue.6
, pp. 533-542
-
-
Neelakantan, T.R.1
Lingireddy, S.2
Brion, G.M.3
-
106
-
-
80054760989
-
Aprobabilistic water quality index for river water quality assessment: a case study
-
Nikoo M.R., Kerachian R., Malakpour-Estalaki S., Bashi-Azghadi S.N., Azimi-Ghadikolaee M.M. Aprobabilistic water quality index for river water quality assessment: a case study. Environ. Monit. Assess. 2011, 181(1-4):465-478.
-
(2011)
Environ. Monit. Assess.
, vol.181
, Issue.1-4
, pp. 465-478
-
-
Nikoo, M.R.1
Kerachian, R.2
Malakpour-Estalaki, S.3
Bashi-Azghadi, S.N.4
Azimi-Ghadikolaee, M.M.5
-
107
-
-
85027929739
-
Water quality assessment of the Mudurnu River, Turkey, using biotic indices
-
Ogleni N., Topal B. Water quality assessment of the Mudurnu River, Turkey, using biotic indices. Water Resour. Manag. 2011, 25(10):2487-2508.
-
(2011)
Water Resour. Manag.
, vol.25
, Issue.10
, pp. 2487-2508
-
-
Ogleni, N.1
Topal, B.2
-
108
-
-
0037102687
-
Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks
-
Olden J.D., Jackson D.A. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154(1-2):135-150.
-
(2002)
Ecol. Model.
, vol.154
, Issue.1-2
, pp. 135-150
-
-
Olden, J.D.1
Jackson, D.A.2
-
109
-
-
77957900231
-
Water quality prediction in a reservoir: Linguistic model approach for interval prediction
-
Park J.I., Jung N.C., Kwak K.C., Chun M.G. Water quality prediction in a reservoir: Linguistic model approach for interval prediction. Int. J. Control Automat. Syst. 2010, 8(4):868-874.
-
(2010)
Int. J. Control Automat. Syst.
, vol.8
, Issue.4
, pp. 868-874
-
-
Park, J.I.1
Jung, N.C.2
Kwak, K.C.3
Chun, M.G.4
-
110
-
-
84864723225
-
Event detection in water distribution systems from multivariate water quality time series
-
Perelman L., Arad J., Housh M., Ostfeld A. Event detection in water distribution systems from multivariate water quality time series. Environ. Sci. Technol. 2012, 46(15):8212-8219.
-
(2012)
Environ. Sci. Technol.
, vol.46
, Issue.15
, pp. 8212-8219
-
-
Perelman, L.1
Arad, J.2
Housh, M.3
Ostfeld, A.4
-
111
-
-
33749339540
-
Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions
-
Philibert A., Gell P., Newall P., Chessman B., Bate N. Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions. Hydrobiologia 2006, 572:103-114.
-
(2006)
Hydrobiologia
, vol.572
, pp. 103-114
-
-
Philibert, A.1
Gell, P.2
Newall, P.3
Chessman, B.4
Bate, N.5
-
112
-
-
0027844167
-
The predictive validation of ecological and environmental models
-
Power M. The predictive validation of ecological and environmental models. Ecol. Model. 1993, 68(1-2):33-50.
-
(1993)
Ecol. Model.
, vol.68
, Issue.1-2
, pp. 33-50
-
-
Power, M.1
-
113
-
-
77649190348
-
Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia
-
Rankovic V., Radulovic J., Radojevic I., Ostojic A., Comic L. Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia. Ecol. Model. 2010, 221(8):1239-1244.
-
(2010)
Ecol. Model.
, vol.221
, Issue.8
, pp. 1239-1244
-
-
Rankovic, V.1
Radulovic, J.2
Radojevic, I.3
Ostojic, A.4
Comic, L.5
-
114
-
-
84865022391
-
Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system
-
Rankovic V., Radulovic J., Radojevic I., Ostojic A., Comic L. Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J.Hydroinf. 2012, 14(1):167-179.
-
(2012)
J.Hydroinf.
, vol.14
, Issue.1
, pp. 167-179
-
-
Rankovic, V.1
Radulovic, J.2
Radojevic, I.3
Ostojic, A.4
Comic, L.5
-
115
-
-
80053625918
-
Anew formulation for feedforward neural networks
-
Razavi S., Tolson B.A. Anew formulation for feedforward neural networks. Neural Netw. IEEE Trans. 2011, 22(10):1588-1598.
-
(2011)
Neural Netw. IEEE Trans.
, vol.22
, Issue.10
, pp. 1588-1598
-
-
Razavi, S.1
Tolson, B.A.2
-
116
-
-
84859099633
-
Numerical assessment of metamodelling strategies in computationally intensive optimization
-
Razavi S., Tolson B.A., Burn D.H. Numerical assessment of metamodelling strategies in computationally intensive optimization. Environ. Model. Softw. 2012, 34(0):67-86.
-
(2012)
Environ. Model. Softw.
, vol.34
, Issue.0
, pp. 67-86
-
-
Razavi, S.1
Tolson, B.A.2
Burn, D.H.3
-
117
-
-
0348011425
-
Modelling guidelines--terminology and guiding principles
-
Refsgaard J.C., Henriksen H.J. Modelling guidelines--terminology and guiding principles. Adv. Water Resour. 2004, 27(1):71-82.
-
(2004)
Adv. Water Resour.
, vol.27
, Issue.1
, pp. 71-82
-
-
Refsgaard, J.C.1
Henriksen, H.J.2
-
118
-
-
16244368843
-
Quality assurance in model based water management - review of existing practice and outline of new approaches
-
Refsgaard J.C., Henriksen H.J., Harrar W.G., Scholten H., Kassahun A. Quality assurance in model based water management - review of existing practice and outline of new approaches. Environ. Model. Softw. 2005, 20(10):1201-1215.
-
(2005)
Environ. Model. Softw.
, vol.20
, Issue.10
, pp. 1201-1215
-
-
Refsgaard, J.C.1
Henriksen, H.J.2
Harrar, W.G.3
Scholten, H.4
Kassahun, A.5
-
119
-
-
0036378271
-
Estimation of bench-scale chlorine decay in drinking water using n(th)-order kinetic and back propagation neural network models
-
Rodriguez M.J., Milot J., Serodes J.B., Pacaud A. Estimation of bench-scale chlorine decay in drinking water using n(th)-order kinetic and back propagation neural network models. Water Qual. Res. J. Can. 2002, 37(3):613-635.
-
(2002)
Water Qual. Res. J. Can.
, vol.37
, Issue.3
, pp. 613-635
-
-
Rodriguez, M.J.1
Milot, J.2
Serodes, J.B.3
Pacaud, A.4
-
120
-
-
0038020064
-
Predicting trihalomethane formation in chlorinated waters using multivariate regression and neural networks
-
Rodriguez M.J., Milot J., Serodes J.B. Predicting trihalomethane formation in chlorinated waters using multivariate regression and neural networks. J.Water Supply Res. Technol. Aqua 2003, 52(3):199-215.
-
(2003)
J.Water Supply Res. Technol. Aqua
, vol.52
, Issue.3
, pp. 199-215
-
-
Rodriguez, M.J.1
Milot, J.2
Serodes, J.B.3
-
121
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
122
-
-
13744256757
-
Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks
-
Sahoo G.B., Ray C., Wade H.F. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecol. Model. 2005, 183(1):29-46.
-
(2005)
Ecol. Model.
, vol.183
, Issue.1
, pp. 29-46
-
-
Sahoo, G.B.1
Ray, C.2
Wade, H.F.3
-
123
-
-
33745982644
-
Application of artificial neural networks to assess pesticide contamination in shallow groundwater
-
Sahoo G.B., Ray C., Mehnert E., Keefer D.A. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total Environ. 2006, 367(1):234-251.
-
(2006)
Sci. Total Environ.
, vol.367
, Issue.1
, pp. 234-251
-
-
Sahoo, G.B.1
Ray, C.2
Mehnert, E.3
Keefer, D.A.4
-
124
-
-
70350495365
-
Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
-
Sahoo G.B., Schladow S.G., Reuter J.E. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J.Hydrol. 2009, 378(3-4):325-342.
-
(2009)
J.Hydrol.
, vol.378
, Issue.3-4
, pp. 325-342
-
-
Sahoo, G.B.1
Schladow, S.G.2
Reuter, J.E.3
-
125
-
-
0344994552
-
Quality assessment of the simulation modeling process
-
Scholten H., Udink ten Cate A.J. Quality assessment of the simulation modeling process. Comput. Electron. Agric. 1999, 22(2-3):199-208.
-
(1999)
Comput. Electron. Agric.
, vol.22
, Issue.2-3
, pp. 199-208
-
-
Scholten, H.1
Udink ten Cate, A.J.2
-
126
-
-
0034826843
-
Improving the quality of model-based decision support: good modelling practice in water management
-
A.H. Schumann, M.C. Acreman, R. Davis, M.A. Marino, D. Rosbjerg, X. Jun (Eds.)
-
Scholten H., Van Waveren R.H., Groot S., Van Geer F.C., Wosten J.H.M., Koeze R.D., Noort J.J. Improving the quality of model-based decision support: good modelling practice in water management. Regional Management of Water Resources 2001, 223-230. A.H. Schumann, M.C. Acreman, R. Davis, M.A. Marino, D. Rosbjerg, X. Jun (Eds.).
-
(2001)
Regional Management of Water Resources
, pp. 223-230
-
-
Scholten, H.1
Van Waveren, R.H.2
Groot, S.3
Van Geer, F.C.4
Wosten, J.H.M.5
Koeze, R.D.6
Noort, J.J.7
-
127
-
-
0034746017
-
Chlorcast (c): a methodology for developing decision-making tools for chlorine disinfection control
-
Serodes J.B., Rodriguez M.J., Ponton A. Chlorcast (c): a methodology for developing decision-making tools for chlorine disinfection control. Environ. Model. Softw. 2001, 16(1):53-62.
-
(2001)
Environ. Model. Softw.
, vol.16
, Issue.1
, pp. 53-62
-
-
Serodes, J.B.1
Rodriguez, M.J.2
Ponton, A.3
-
128
-
-
0034694877
-
Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1 - a strategy for system predictor identification
-
Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: part 1 - a strategy for system predictor identification. J.Hydrol. 2000, 239(1-4):232-239.
-
(2000)
J.Hydrol.
, vol.239
, Issue.1-4
, pp. 232-239
-
-
Sharma, A.1
-
129
-
-
24744467172
-
Vehicular pollution modeling using artificial neural network technique: a review
-
Sharma N., Chaudhry K.K., Chalapati-Rao C.V. Vehicular pollution modeling using artificial neural network technique: a review. J.Sci. Ind. Res. 2005, 64(9):637-647.
-
(2005)
J.Sci. Ind. Res.
, vol.64
, Issue.9
, pp. 637-647
-
-
Sharma, N.1
Chaudhry, K.K.2
Chalapati-Rao, C.V.3
-
130
-
-
0037441163
-
Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks
-
Shetty G.R., Malki H., Chellam S. Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks. J.Membr. Sci. 2003, 212(1-2):99-112.
-
(2003)
J.Membr. Sci.
, vol.212
, Issue.1-2
, pp. 99-112
-
-
Shetty, G.R.1
Malki, H.2
Chellam, S.3
-
132
-
-
84857356571
-
Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources
-
Song K., Li L., Wang Z., Liu D., Zhang B., Xu J., Du J., Li L., Li S., Wang Y. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environ. Monit. Assess. 2012, 184(3):1449-1470.
-
(2012)
Environ. Monit. Assess.
, vol.184
, Issue.3
, pp. 1449-1470
-
-
Song, K.1
Li, L.2
Wang, Z.3
Liu, D.4
Zhang, B.5
Xu, J.6
Du, J.7
Li, L.8
Li, S.9
Wang, Y.10
-
133
-
-
0346972461
-
Aneural network-based approach for calculating dissolved oxygen profiles in reservoirs
-
Soyupak S., Karaer F., Gurbuz H., Kivrak E., Senturk E., Yazici A. Aneural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Comput. Appl. 2003, 12(3-4):166-172.
-
(2003)
Neural Comput. Appl.
, vol.12
, Issue.3-4
, pp. 166-172
-
-
Soyupak, S.1
Karaer, F.2
Gurbuz, H.3
Kivrak, E.4
Senturk, E.5
Yazici, A.6
-
134
-
-
79251501356
-
On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water
-
Soyupak S., Kilic H., Karadirek I.E., Muhammetoglu H. On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water. J.Water Supply Res. Technol. Aqua 2011, 60(1):51-60.
-
(2011)
J.Water Supply Res. Technol. Aqua
, vol.60
, Issue.1
, pp. 51-60
-
-
Soyupak, S.1
Kilic, H.2
Karadirek, I.E.3
Muhammetoglu, H.4
-
135
-
-
36749007877
-
Asimplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
-
Srivastav R.K., Sudheer K.P., Chaubey I. Asimplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 2007, 43(10):W10407.
-
(2007)
Water Resour. Res.
, vol.43
, Issue.10
-
-
Srivastav, R.K.1
Sudheer, K.P.2
Chaubey, I.3
-
136
-
-
0344035546
-
Evaluation of neural networks for modeling nitrate concentrations in rivers
-
Suen J.P., Eheart J.W. Evaluation of neural networks for modeling nitrate concentrations in rivers. J.Water Resour. Plan. Manag. Asce 2003, 129(6):505-510.
-
(2003)
J.Water Resour. Plan. Manag. Asce
, vol.129
, Issue.6
, pp. 505-510
-
-
Suen, J.P.1
Eheart, J.W.2
-
137
-
-
33644924333
-
Artificial neural networks for estimating daily total suspended sediment in natural streams
-
Tayfur G., Guldal V. Artificial neural networks for estimating daily total suspended sediment in natural streams. Nord. Hydrol. 2006, 37(1):69-79.
-
(2006)
Nord. Hydrol.
, vol.37
, Issue.1
, pp. 69-79
-
-
Tayfur, G.1
Guldal, V.2
-
138
-
-
33745323400
-
Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks
-
Teles L.O., Vasconcelos V., Pereira E., Saker M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environ. Manag. 2006, 38(2):227-237.
-
(2006)
Environ. Manag.
, vol.38
, Issue.2
, pp. 227-237
-
-
Teles, L.O.1
Vasconcelos, V.2
Pereira, E.3
Saker, M.4
-
139
-
-
84860379557
-
Artificial Neural Network simulation of combined permeable pavement and earth energy systems treating storm water
-
Tota-Maharaj K., Scholz M. Artificial Neural Network simulation of combined permeable pavement and earth energy systems treating storm water. J.Environ. Engi. Asce 2012, 138(4):499-509.
-
(2012)
J.Environ. Engi. Asce
, vol.138
, Issue.4
, pp. 499-509
-
-
Tota-Maharaj, K.1
Scholz, M.2
-
140
-
-
49749090140
-
Artificial intelligence-based inductive models for prediction and classification of fecal coliform in surface waters
-
Tufail M., Ormsbee L., Teegavarapu R. Artificial intelligence-based inductive models for prediction and classification of fecal coliform in surface waters. J.Environ. Eng. Asce 2008, 134(9):789-799.
-
(2008)
J.Environ. Eng. Asce
, vol.134
, Issue.9
, pp. 789-799
-
-
Tufail, M.1
Ormsbee, L.2
Teegavarapu, R.3
-
141
-
-
69249148310
-
Predicting suspended sediment loads and missing data for Gediz River, Turkey
-
Ulke A., Tayfur G., Ozkul S. Predicting suspended sediment loads and missing data for Gediz River, Turkey. J.Hydrol. Eng. 2009, 14(9):954-965.
-
(2009)
J.Hydrol. Eng.
, vol.14
, Issue.9
, pp. 954-965
-
-
Ulke, A.1
Tayfur, G.2
Ozkul, S.3
-
142
-
-
84894206369
-
Amethod for comparing data splitting approaches for developing hydrological ANN models
-
Wu W., May R., Dandy G.C., Maier H.R. Amethod for comparing data splitting approaches for developing hydrological ANN models. The 6th International Congress on Environmental Modelling and Software (iEMSs), Leipzig, Germany 2012.
-
(2012)
The 6th International Congress on Environmental Modelling and Software (iEMSs), Leipzig, Germany
-
-
Wu, W.1
May, R.2
Dandy, G.C.3
Maier, H.R.4
-
143
-
-
84887871464
-
Abenchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks
-
Wu W., May R.J., Maier H.R., Dandy G.C. Abenchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks. Water Resour. Res. 2013, 49(11):7598-7614.
-
(2013)
Water Resour. Res.
, vol.49
, Issue.11
, pp. 7598-7614
-
-
Wu, W.1
May, R.J.2
Maier, H.R.3
Dandy, G.C.4
-
144
-
-
84861437871
-
Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study
-
Yacef R., Benghanem M., Mellit A. Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renew. Energy 2012, 48(0):146-154.
-
(2012)
Renew. Energy
, vol.48
, Issue.0
, pp. 146-154
-
-
Yacef, R.1
Benghanem, M.2
Mellit, A.3
-
145
-
-
79955580488
-
Formation and modeling of disinfection by-products in drinking water of six cities in China
-
Ye B.X., Wang W.Y., Yang L.S., Wei J.R., Xueli E. Formation and modeling of disinfection by-products in drinking water of six cities in China. J.Environ. Monit. 2011, 13(5):1271-1275.
-
(2011)
J.Environ. Monit.
, vol.13
, Issue.5
, pp. 1271-1275
-
-
Ye, B.X.1
Wang, W.Y.2
Yang, L.S.3
Wei, J.R.4
Xueli, E.5
-
146
-
-
45849090754
-
Application of artificial intelligence models in water quality forecasting
-
Yeon I.S., Kim J.H., Jun K.W. Application of artificial intelligence models in water quality forecasting. Environ. Technol. 2008, 29(6):625-631.
-
(2008)
Environ. Technol.
, vol.29
, Issue.6
, pp. 625-631
-
-
Yeon, I.S.1
Kim, J.H.2
Jun, K.W.3
-
147
-
-
62949213977
-
Estimating uncertainty of streamflow simulation using Bayesian neural networks
-
Zhang X., Liang F., Srinivasan R., Van Liew M. Estimating uncertainty of streamflow simulation using Bayesian neural networks. Water Resour. Res. 2009, 45(2):W02403.
-
(2009)
Water Resour. Res.
, vol.45
, Issue.2
-
-
Zhang, X.1
Liang, F.2
Srinivasan, R.3
Van Liew, M.4
-
148
-
-
80054678981
-
Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting
-
Zhang X., Liang F., Yu B., Zong Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting. J.Hydrol. 2011, 409(3-4):696-709.
-
(2011)
J.Hydrol.
, vol.409
, Issue.3-4
, pp. 696-709
-
-
Zhang, X.1
Liang, F.2
Yu, B.3
Zong, Z.4
-
149
-
-
84862789349
-
Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes
-
Zhang X., Zhao K. Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes. Water Resour. Manag. 2012, 26(8):2365-2382.
-
(2012)
Water Resour. Manag.
, vol.26
, Issue.8
, pp. 2365-2382
-
-
Zhang, X.1
Zhao, K.2
-
151
-
-
16444377510
-
Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty
-
Zou R., Lung W.S., Guo H.C. Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty. J.Comput. Civ. Eng. 2002, 16(2):135-142.
-
(2002)
J.Comput. Civ. Eng.
, vol.16
, Issue.2
, pp. 135-142
-
-
Zou, R.1
Lung, W.S.2
Guo, H.C.3
|