메뉴 건너뛰기




Volumn 45, Issue 11, 2011, Pages 1979-1985

Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification

Author keywords

Artificial neural networks; Genetic algorithm; Meteorological conditions; Ozone forecast; Support vector machine

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; BACK-PROPAGATION NEURAL NETWORKS; CORRELATION COEFFICIENT; DATA SETS; FORECAST ACCURACY; FORECAST METHOD; FORECASTING CAPABILITY; METEOROLOGICAL CONDITION; OZONE CONCENTRATION; OZONE FORECAST; OZONE MEASUREMENTS; SAMPLING SITE; SUPPORT VECTOR; SVM CLASSIFICATION; UV RADIATION; WIND VELOCITIES;

EID: 79952246361     PISSN: 13522310     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2011.01.022     Document Type: Article
Times cited : (137)

References (26)
  • 1
    • 16244417840 scopus 로고    scopus 로고
    • Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations
    • Abdul-Wahab Sabah A., Bakheit Charles S., Al-Alawi Saleh M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modeling & Software 2005, 20:1263-1271.
    • (2005) Environmental Modeling & Software , vol.20 , pp. 1263-1271
    • Abdul-Wahab, S.A.1    Bakheit, C.S.2    Al-Alawi, S.M.3
  • 3
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summer time ozone in Athens
    • Chaloulakou Archontoula, Saisana Michaela, Spyrellis Nikolas Comparative assessment of neural networks and regression models for forecasting summer time ozone in Athens. Science of the Total Environment 2003, 313:1-13.
    • (2003) Science of the Total Environment , vol.313 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 4
    • 0030783170 scopus 로고    scopus 로고
    • Evaluation of natural computation techniques in the modeling and optimization of a sequential injection flow system for colorimetric iron (III) determination
    • de Gracia J., Saravia M.L.M.F.S., Araújo A.N., Lima J.L.F.C., del Valle M., Poch M. Evaluation of natural computation techniques in the modeling and optimization of a sequential injection flow system for colorimetric iron (III) determination. Analytica Chimica Acta 1997, 348:143-150.
    • (1997) Analytica Chimica Acta , vol.348 , pp. 143-150
    • de Gracia, J.1    Saravia, M.L.M.F.S.2    Araújo, A.N.3    Lima, J.L.F.C.4    del Valle, M.5    Poch, M.6
  • 6
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: an improved methodology to account for non-linear behaviour
    • Gardner M.W., Dorling S.R. Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment 2000, 34:21-34.
    • (2000) Atmospheric Environment , vol.34 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 7
    • 0000195251 scopus 로고    scopus 로고
    • Comparing back propagation with a genetic algorithm for neural network training
    • Gupta Jatinder N.D., Sexton Randall S. Comparing back propagation with a genetic algorithm for neural network training. Omega-international Journal of Management Science 1999, 27:679-684.
    • (1999) Omega-international Journal of Management Science , vol.27 , pp. 679-684
    • Gupta, J.N.D.1    Sexton, R.S.2
  • 8
    • 2442530447 scopus 로고    scopus 로고
    • A new method of ozone forecasting using fuzzy expert and neural network systems
    • Heo Jeong-Sook, Kim Dong-Sool A new method of ozone forecasting using fuzzy expert and neural network systems. Science of the Total Environment 2004, 325:221-237.
    • (2004) Science of the Total Environment , vol.325 , pp. 221-237
    • Heo, J.-S.1    Kim, D.-S.2
  • 9
    • 56349166764 scopus 로고    scopus 로고
    • Evaluating the process of a genetic algorithm to improve the back-propagation network: a Monte Carlo study
    • Huang Chien-Yu, Chen Long-Hui, Chen Yueh-Li, Chang Fengming M. Evaluating the process of a genetic algorithm to improve the back-propagation network: a Monte Carlo study. Expert Systems with Applications 2009, 36:1459-1465.
    • (2009) Expert Systems with Applications , vol.36 , pp. 1459-1465
    • Huang, C.-Y.1    Chen, L.-H.2    Chen, Y.-L.3    Chang, F.M.4
  • 11
    • 0037226313 scopus 로고    scopus 로고
    • Design of structural modular neural networks with genetic algorithm
    • Jiang Nan, Zhao Zhiye, Ren Liqun Design of structural modular neural networks with genetic algorithm. Advance in Engineering Software 2003, 34:17-24.
    • (2003) Advance in Engineering Software , vol.34 , pp. 17-24
    • Jiang, N.1    Zhao, Z.2    Ren, L.3
  • 13
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • Kolehmainen M., Martikainen H., Ruuskanen J. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 2001, 35:815-825.
    • (2001) Atmospheric Environment , vol.35 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 14
    • 0043282649 scopus 로고    scopus 로고
    • Extensive evaluation of neural networks models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki
    • Kukkonen Jaakko, Partanen Leena, Karppinen Ari, Ruuskanen Juhani, Junninen Heikki, Kolehmainen Mikko, Niska Harri, Dorling Stephen, Chatterton Tim, Foxall Rob, Cawley Gavin Extensive evaluation of neural networks models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment 2003, 37:4539-4550.
    • (2003) Atmospheric Environment , vol.37 , pp. 4539-4550
    • Kukkonen, J.1    Partanen, L.2    Karppinen, A.3    Ruuskanen, J.4    Junninen, H.5    Kolehmainen, M.6    Niska, H.7    Dorling, S.8    Chatterton, T.9    Foxall, R.10    Cawley, G.11
  • 15
    • 41549103711 scopus 로고    scopus 로고
    • Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme
    • Lu Wei-Zhen, Wang Dong Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Science of the Total Environment 2008, 395:109-116.
    • (2008) Science of the Total Environment , vol.395 , pp. 109-116
    • Lu, W.-Z.1    Wang, D.2
  • 16
    • 33745714336 scopus 로고    scopus 로고
    • Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network
    • Lu Hsin-Chung, Hsieh Jen-Chieh, Chang Tseng-Shuo Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. Atmospheric Research 2006, 81:124-139.
    • (2006) Atmospheric Research , vol.81 , pp. 124-139
    • Lu, H.-C.1    Hsieh, J.-C.2    Chang, T.-S.3
  • 19
    • 41649110437 scopus 로고    scopus 로고
    • Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in Mexicali, Baja California (Mexico) and Calexico, California (US)
    • Salazar-Ruiz E., Ordieres J.B., Vergara E.P., Capuz-Rizo S.F. Development and comparative analysis of tropospheric ozone prediction models using linear and artificial intelligence-based models in Mexicali, Baja California (Mexico) and Calexico, California (US). Environmental Modeling & Software 2008, 23:1056-1069.
    • (2008) Environmental Modeling & Software , vol.23 , pp. 1056-1069
    • Salazar-Ruiz, E.1    Ordieres, J.B.2    Vergara, E.P.3    Capuz-Rizo, S.F.4
  • 21
    • 0032586576 scopus 로고    scopus 로고
    • Ozone indices based on simple meteorological parameters: potentials and limitations of regression and neural network models
    • Soja G., Soja A.-M. Ozone indices based on simple meteorological parameters: potentials and limitations of regression and neural network models. Atmospheric Environment 1999, 33:4299-4307.
    • (1999) Atmospheric Environment , vol.33 , pp. 4299-4307
    • Soja, G.1    Soja, A.-M.2
  • 22
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa S.I.V., Martins F.G., Alvim-Ferraz M.C.M., Pereira M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modeling & Software 2007, 22:97-103.
    • (2007) Environmental Modeling & Software , vol.22 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 23
    • 60249092433 scopus 로고    scopus 로고
    • Forecasting of ozone episode days by cost-sensitive neural network methods
    • Tsai Che-hui, Chang Li-chiu, Chiang Hsu-cherng Forecasting of ozone episode days by cost-sensitive neural network methods. Science of Total Environment 2009, 407:2124-2135.
    • (2009) Science of Total Environment , vol.407 , pp. 2124-2135
    • Tsai, C.-H.1    Chang, L.-C.2    Chiang, H.-C.3
  • 24
    • 29844455331 scopus 로고    scopus 로고
    • Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm
    • Wang Dong, Lu Wei-Zhen Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm. Atmospheric Environment 2006, 40:913-924.
    • (2006) Atmospheric Environment , vol.40 , pp. 913-924
    • Wang, D.1    Lu, W.-Z.2
  • 25
    • 0038201778 scopus 로고    scopus 로고
    • Prediction of maximum daily ozone level using combined neural network and statistical characteristics
    • Wang Wenjian, Lu Weizhen, Wang Xiekang, Leung Andrew Y.T. Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environment International 2003, 29:555-562.
    • (2003) Environment International , vol.29 , pp. 555-562
    • Wang, W.1    Lu, W.2    Wang, X.3    Leung, A.Y.T.4
  • 26
    • 70449519181 scopus 로고    scopus 로고
    • A neuro-fuzzy GA-BP method of seismic reservoir fuzzy rules extraction
    • Yu Shiwei, Guo Xiufu, Zhu Kejun, Du Juan A neuro-fuzzy GA-BP method of seismic reservoir fuzzy rules extraction. Expert Systems with Applications 2010, 37:2037-2042.
    • (2010) Expert Systems with Applications , vol.37 , pp. 2037-2042
    • Yu, S.1    Guo, X.2    Zhu, K.3    Du, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.