메뉴 건너뛰기




Volumn 11, Issue 8, 2018, Pages 883-895

A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction

Author keywords

CNN; CNN LSTM; Deep learning; LSTM; Ozone prediction

Indexed keywords

AIR QUALITY; ARTIFICIAL NEURAL NETWORK; CLIMATE CHANGE; CONCENTRATION (COMPOSITION); MEMORY; OZONE; PERFORMANCE ASSESSMENT; PRECISION; PREDICTION; TIME SERIES ANALYSIS;

EID: 85052074367     PISSN: 18739318     EISSN: 18739326     Source Type: Journal    
DOI: 10.1007/s11869-018-0585-1     Document Type: Article
Times cited : (112)

References (35)
  • 1
    • 39349105579 scopus 로고    scopus 로고
    • Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description
    • Baklanov A, Mestayer PG, Clappier A, Zilitinkevich S, Joffre S, Mahura A, Nielsen NW (2008) Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description. Atmos Chem Phys 8(3):523–543. 10.5194/acp-8-523-2008
    • (2008) Atmos Chem Phys , vol.8 , Issue.3 , pp. 523-543
    • Baklanov, A.1    Mestayer, P.G.2    Clappier, A.3    Zilitinkevich, S.4    Joffre, S.5    Mahura, A.6    Nielsen, N.W.7
  • 2
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127
    • (2009) Found Trends Mach Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 5
    • 0037136933 scopus 로고    scopus 로고
    • Air pollution and health
    • COI: 1:CAS:528:DC%2BD38XotVWgsbk%3D
    • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360(9341):1233–1242
    • (2002) Lancet , vol.360 , Issue.9341 , pp. 1233-1242
    • Brunekreef, B.1    Holgate, S.T.2
  • 6
    • 34547562969 scopus 로고    scopus 로고
    • Evolution of surface ozone in central Italy based on observations and statistical model
    • Carlo PD, Pitari G, Mancini E, Gentile S, Pichelli E, Visconti G (2007) Evolution of surface ozone in central Italy based on observations and statistical model. J Geophys Res 112:D10316. 10.1029/2006JD007900
    • (2007) J Geophys Res , vol.112 , pp. D10316
    • Carlo, P.D.1    Pitari, G.2    Mancini, E.3    Gentile, S.4    Pichelli, E.5    Visconti, G.6
  • 7
    • 60249087005 scopus 로고    scopus 로고
    • Identification of NOx and ozone episodes and estimation of ozone by statistical analysis
    • COI: 1:CAS:528:DC%2BD1MXhs1Ogur4%3D
    • Castellano M, Franco A, Cartelle D, Febrero M, Roca E (2009) Identification of NOx and ozone episodes and estimation of ozone by statistical analysis. Water Air Soil Pollut 198:95–110
    • (2009) Water Air Soil Pollut , vol.198 , pp. 95-110
    • Castellano, M.1    Franco, A.2    Cartelle, D.3    Febrero, M.4    Roca, E.5
  • 8
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
    • COI: 1:CAS:528:DC%2BD3sXmtFyku70%3D
    • Chaloulakou A, Saisana M, Spyrellis N (2003) Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Sci Total Environ 313:1–13
    • (2003) Sci Total Environ , vol.313 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 9
    • 84959533227 scopus 로고    scopus 로고
    • PCANet: a simple deep learning baseline for image classification?
    • Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032. 10.1109/TIP.2015.2475625
    • (2015) IEEE Trans Image Process , vol.24 , Issue.12 , pp. 5017-5032
    • Chan, T.H.1    Jia, K.2    Gao, S.3    Lu, J.4    Zeng, Z.5    Ma, Y.6
  • 10
    • 34748882377 scopus 로고    scopus 로고
    • Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland
    • Chattopadhyay S, Bandyopadhyay G (2007) Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland. Int J Remote Sens 28(20):4471–4482. 10.1080/01431160701250440
    • (2007) Int J Remote Sens , vol.28 , Issue.20 , pp. 4471-4482
    • Chattopadhyay, S.1    Bandyopadhyay, G.2
  • 11
    • 84866916636 scopus 로고    scopus 로고
    • Modeling and prediction of monthly total ozone concentrations by use of an artificial neural network based on principal component analysis
    • Chattopadhyay S, Chattopadhyay G (2012) Modeling and prediction of monthly total ozone concentrations by use of an artificial neural network based on principal component analysis. Pure Appl Geophys 169(10):1891–1908
    • (2012) Pure Appl Geophys , vol.169 , Issue.10 , pp. 1891-1908
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 12
    • 84877352016 scopus 로고    scopus 로고
    • Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis
    • Chen Y, Shi R, Shu S, Gao W (2013) Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos Environ 74:346–359. 10.1016/j.atmosenv.2013.04.002
    • (2013) Atmos Environ , vol.74 , pp. 346-359
    • Chen, Y.1    Shi, R.2    Shu, S.3    Gao, W.4
  • 13
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • ACM, New York
    • Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning. ACM, New York, pp 160–167
    • (2008) Proceedings of the 25Th International Conference on Machine Learning , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 14
    • 34147176086 scopus 로고    scopus 로고
    • A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
    • Dutot AL, Rynkiewicz J, Steiner FE, Rude J (2007) A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ Model Softw 22(9):1261–1269
    • (2007) Environ Model Softw , vol.22 , Issue.9 , pp. 1261-1269
    • Dutot, A.L.1    Rynkiewicz, J.2    Steiner, F.E.3    Rude, J.4
  • 15
    • 0028989376 scopus 로고
    • Approximate explicit solution to the general line source problem
    • COI: 1:CAS:528:DyaK2MXmslKlurY%3D
    • Esplin GJ (1995) Approximate explicit solution to the general line source problem. Atmos Environ 29(12):1459–1463
    • (1995) Atmos Environ , vol.29 , Issue.12 , pp. 1459-1463
    • Esplin, G.J.1
  • 16
    • 84899736674 scopus 로고    scopus 로고
    • Artificial neural networks for surface ozone prediction: models and analysis
    • COI: 1:CAS:528:DC%2BC2cXht1GksrrN
    • Faris H, Alkasassbeh M, Rodan A (2014) Artificial neural networks for surface ozone prediction: models and analysis. Pol J Environ Stud 23(2):341–348
    • (2014) Pol J Environ Stud , vol.23 , Issue.2 , pp. 341-348
    • Faris, H.1    Alkasassbeh, M.2    Rodan, A.3
  • 17
    • 84980019041 scopus 로고    scopus 로고
    • A comparative study of the feed forward back propagation (FFBP) and layer recurrent (LR) neural network model for forecasting ground level ozone concentration
    • Gorai AK, Mitra G (2017) A comparative study of the feed forward back propagation (FFBP) and layer recurrent (LR) neural network model for forecasting ground level ozone concentration. Air Qual Atmos Health 10(2):213–223. 10.1007/s11869-016-0417-0
    • (2017) Air Qual Atmos Health , vol.10 , Issue.2 , pp. 213-223
    • Gorai, A.K.1    Mitra, G.2
  • 18
    • 84939897031 scopus 로고    scopus 로고
    • Influence of local meteorology and NO 2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA
    • Gorai AK, Tuluri F, Tchounwou PB, Ambinakudige S (2015) Influence of local meteorology and NO 2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA. Air Qual Atmos Health 8(1):81–96. 10.1007/s11869-014-0276-5
    • (2015) Air Qual Atmos Health , vol.8 , Issue.1 , pp. 81-96
    • Gorai, A.K.1    Tuluri, F.2    Tchounwou, P.B.3    Ambinakudige, S.4
  • 19
    • 32944468566 scopus 로고    scopus 로고
    • Statistical models for the prediction of respirable suspended particulate matter in urban cities
    • Goyal P, Chan AT, Jaiswal N (2006) Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmos Environ 40(11):2068–2077. 10.1016/j.atmosenv.2005.11.041
    • (2006) Atmos Environ , vol.40 , Issue.11 , pp. 2068-2077
    • Goyal, P.1    Chan, A.T.2    Jaiswal, N.3
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554. 10.1162/neco.2006.18.7.1527
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 21
    • 0032146282 scopus 로고    scopus 로고
    • Development of a regression model to forecast ground-level ozone concentration in Louisville, KY
    • COI: 1:CAS:528:DyaK1cXks1CrsLs%3D
    • Hubbard MC, Cobourn WG (1998) Development of a regression model to forecast ground-level ozone concentration in Louisville, KY. Atmos Environ 32:2637–2647
    • (1998) Atmos Environ , vol.32 , pp. 2637-2647
    • Hubbard, M.C.1    Cobourn, W.G.2
  • 22
    • 73749086373 scopus 로고    scopus 로고
    • Improving ozone modeling in complex terrain at a fine grid resolution: part I—examination of analysis nudging and all PBL schemes associated with LSMs in meteorological model
    • COI: 1:CAS:528:DC%2BC3cXjtVajtg%3D%3D
    • Kim Y, Fu JS (2010) Improving ozone modeling in complex terrain at a fine grid resolution: part I—examination of analysis nudging and all PBL schemes associated with LSMs in meteorological model. Atmos Environ 44(4):523–532
    • (2010) Atmos Environ , vol.44 , Issue.4 , pp. 523-532
    • Kim, Y.1    Fu, J.S.2
  • 23
    • 85041431671 scopus 로고    scopus 로고
    • A brief review of facial emotion recognition based on visual information
    • Ko B (2018) A brief review of facial emotion recognition based on visual information. Sensors 18(2):401
    • (2018) Sensors , vol.18 , Issue.2 , pp. 401
    • Ko, B.1
  • 24
    • 84991071427 scopus 로고    scopus 로고
    • Deep learning architecture for air quality predictions
    • Li X, Peng L, Hu Y, Shao J, Chi T (2016) Deep learning architecture for air quality predictions. Environ Sci Pollut Res 23:22408–22417. 10.1007/s11356-016-7812-9
    • (2016) Environ Sci Pollut Res , vol.23 , pp. 22408-22417
    • Li, X.1    Peng, L.2    Hu, Y.3    Shao, J.4    Chi, T.5
  • 26
    • 84921802982 scopus 로고    scopus 로고
    • Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data
    • Ong BT, Sugiura K, Zettsu K (2014) Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data. IEEE Int Conf Big Data 16(2):760–765. 10.1109/BigData.2014.7004302
    • (2014) IEEE Int Conf Big Data , vol.16 , Issue.2 , pp. 760-765
    • Ong, B.T.1    Sugiura, K.2    Zettsu, K.3
  • 27
    • 84155163176 scopus 로고    scopus 로고
    • Surface ozone-temperature relationships in the eastern US: a monthly climatology for evaluating chemistry-climate models
    • COI: 1:CAS:528:DC%2BC3MXhs1KrtbzJ
    • Rasmussen DJ, Fiore AM, Naik V, Horowitz LW, McGinnis SJ, Schultz MG (2012) Surface ozone-temperature relationships in the eastern US: a monthly climatology for evaluating chemistry-climate models. Atmos Environ 47:142–153
    • (2012) Atmos Environ , vol.47 , pp. 142-153
    • Rasmussen, D.J.1    Fiore, A.M.2    Naik, V.3    Horowitz, L.W.4    McGinnis, S.J.5    Schultz, M.G.6
  • 29
    • 79952706868 scopus 로고    scopus 로고
    • Ground-level ozone forecasting using data-driven methods
    • Solaiman TA, Coulibaly P, Kanaroglou P (2008) Ground-level ozone forecasting using data-driven methods. Air Qual Atmos Health 1(4):179–193. 10.1007/s11869-008-0023-x
    • (2008) Air Qual Atmos Health , vol.1 , Issue.4 , pp. 179-193
    • Solaiman, T.A.1    Coulibaly, P.2    Kanaroglou, P.3
  • 30
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa SIV, Martins FG, Alvim-Ferraz MCM, Pereira MC (2007) Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Model Softw 22(1):97–103
    • (2007) Environ Model Softw , vol.22 , Issue.1 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 31
    • 79954568271 scopus 로고    scopus 로고
    • Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula)
    • COI: 1:CAS:528:DC%2BD3sXpt1yltrg%3D
    • Tarasova OA, Karpetchko AY (2003) Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula). Atmos Chem Phys 3(4):941–949
    • (2003) Atmos Chem Phys , vol.3 , Issue.4 , pp. 941-949
    • Tarasova, O.A.1    Karpetchko, A.Y.2
  • 32
    • 0035238946 scopus 로고    scopus 로고
    • A review of statistical methods for the meteorological adjustment of tropospheric ozone
    • Thompson ML, Reynolds J, Cox LH, Guttorp P, Sampson PD (2001) A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmos Environ 35(3):617–630
    • (2001) Atmos Environ , vol.35 , Issue.3 , pp. 617-630
    • Thompson, M.L.1    Reynolds, J.2    Cox, L.H.3    Guttorp, P.4    Sampson, P.D.5
  • 34
    • 84863393588 scopus 로고    scopus 로고
    • Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005
    • COI: 1:CAS:528:DC%2BC38XksFCnsrk%3D
    • Wilson RC, Fleming ZL, Monks PS, Clain G, Henne S, Konovalov IB, Szopa S, Menut L (2012) Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005. Atmos Chem Phys 12(1):437–454
    • (2012) Atmos Chem Phys , vol.12 , Issue.1 , pp. 437-454
    • Wilson, R.C.1    Fleming, Z.L.2    Monks, P.S.3    Clain, G.4    Henne, S.5    Konovalov, I.B.6    Szopa, S.7    Menut, L.8
  • 35
    • 84960497984 scopus 로고    scopus 로고
    • Predictive deep Boltzmann machine for multiperiod wind speed forecasting
    • Zhang CY, Chen CLP, Gan M, Chen L (2015) Predictive deep Boltzmann machine for multiperiod wind speed forecasting. IEEE Trans Sustain Energy 6(4):1416–1425. 10.1109/TSTE.2015.2434387
    • (2015) IEEE Trans Sustain Energy , vol.6 , Issue.4 , pp. 1416-1425
    • Zhang, C.Y.1    Chen, C.L.P.2    Gan, M.3    Chen, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.