메뉴 건너뛰기




Volumn 48, Issue 10, 2012, Pages

Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; DATA PATTERNS; DATA SETS; DETECTION SYSTEM; FORECASTING MODELS; INPUT PATTERNS; KENTUCKY; KERNEL DENSITY ESTIMATORS; LOCAL DENSITY; MULTI LAYER PERCEPTRON; NON-PARAMETRIC; OPERATIONAL MODEL; REAL-TIME FORECASTS; REAL-TIME OPERATION;

EID: 84868621819     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2012WR011984     Document Type: Article
Times cited : (56)

References (51)
  • 2
    • 80052072652 scopus 로고    scopus 로고
    • Kohonen selforganizing map estimator for the reference crop evapotranspiration
    • doi:10.1029/2011WR010690
    • Adeloye, A. J., R. Rustum, and I. D. Kariyama (2011), Kohonen selforganizing map estimator for the reference crop evapotranspiration, Water Resour. Res., 47(8), W08523, doi:10.1029/2011WR010690.
    • (2011) Water Resour. Res , vol.47 , Issue.8
    • Adeloye, A.J.1    Rustum, R.2    Kariyama, I.D.3
  • 3
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling and prediction
    • doi101007/s11269-1781-1796doi101007/s11006
    • Aqil, M., I. Kita, A. Yano, and S. Nishiyama (2007), Neural networks for real time catchment flow modeling and prediction, Water Resour. Manage., 21(10), 1781-1796, doi:10.1007/s11269-006-9127-y.
    • (2007) Water Resour. Manage , vol.21 , Issue.10 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee On Application Of Artificial Neural Networks In Hydrology.
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5(2), 115-123.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 21844510157 scopus 로고
    • Fast very robust methods for detection of multiple outliers
    • Atkinson, A. C. (1994), Fast very robust methods for detection of multiple outliers, J. Am. Stat. Assoc., 89, 1329-1339.
    • (1994) J. Am. Stat. Assoc , vol.89 , pp. 1329-1339
    • Atkinson, A.C.1
  • 6
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • doi:10.1029/2001WR000266
    • Bowden, G. J., H. R. Maier, and G. C. Dandy (2002), Optimal division of data for neural network models in water resources applications, Water Resour. Res., 38(2), 1010, doi:10.1029/2001WR000266.
    • (2002) Water Resour. Res , vol.38 , Issue.2 , pp. 1010
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 7
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural networkmodels in water resources applications. Part 1-Background and methodology
    • Bowden, G. J., G. C. Dandy, and H. R.Maier (2005a), Input determination for neural networkmodels in water resources applications. Part 1-Background and methodology, J. Hydrol., 301(1-4), 75-92.
    • (2005) J. Hydrol , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.H.2
  • 8
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river
    • Bowden, G. J., H. R. Maier, and G. C. Dandy (2005b), Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river, J. Hydrol., 301(1-4), 93-107.
    • (2005) J. Hydrol , vol.301 , Issue.1-4 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 9
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath, A., A. Montanari, and E. Toth (2002), Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models, Hydrol. Earth Syst. Sci., 6(4), 627-639.
    • (2002) Hydrol. Earth Syst. Sci , vol.6 , Issue.4 , pp. 627-639
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 10
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • Dallas, TX, Assoc. for Computing Machinery, New York
    • Breunig, M. M. (2000), LOF: Identifying density-based local outliers, in ACM SIGMOD 2000 Int. Conf. on Management of Data, Dallas, TX, Assoc. for Computing Machinery, New York.
    • (2000) ACM SIGMOD 2000 Int. Conf. on Management of Data
    • Breunig, M.M.1
  • 11
    • 23444462420 scopus 로고    scopus 로고
    • Functional networks in real-time flood forecasting-A novel application
    • doi101016/jadvwatres200503.001
    • Bruen, M., and J. Q. Yang (2005), Functional networks in real-time flood forecasting-A novel application, Adv. Water Resour., 28(9), 899-909, doi:10.1016/j.advwatres.2005.03.001.
    • (2005) Adv. Water Resour , vol.28 , Issue.9 , pp. 899-909
    • Bruen, M.1    Yang, J.Q.2
  • 12
    • 0343171028 scopus 로고
    • Estimation of a multivariate density
    • Cacoullous, T. (1966), Estimation of a multivariate density, Ann. Inst. Stat. Math. (Tokyo), 18(2), 179-189.
    • (1966) Ann. Inst. Stat. Math. (Tokyo , vol.18 , Issue.2 , pp. 179-189
    • Cacoullous, T.1
  • 13
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • doi:10.1002/hyp.1015
    • Chang, F. J., L. C. Chang, and H. L. Huang (2002), Real-time recurrent learning neural network for stream-flow forecasting, Hydrol. Processes, 16(13), 2577-2588, doi:10.1002/hyp.1015.
    • (2002) Hydrol. Processes , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 14
    • 34249895257 scopus 로고    scopus 로고
    • Real-time probabilistic forecasting of flood stages
    • doi101016/jjhydrol200704008
    • Chen, S. T., and P. S. Yu (2007), Real-time probabilistic forecasting of flood stages, J. Hydrol., 340(1-2), 63-77, doi:10.1016/j.jhydrol.2007. 04.008.
    • (2007) J. Hydrol , vol.340 , Issue.1-2 , pp. 63-77
    • Chen, S.T.1    Yu, P.S.2
  • 15
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003), Estimation, forecasting and extrapolation of river flows by artificial neural networks, Hydrol. Sci. J., 48(3), 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 16
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., F. Anctil, and B. Bobee (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230(3-4), 244-257.
    • (2000) J. Hydrol , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 17
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., F. Anctil, and B. Bobee (2001), Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6(5), 367-376.
    • (2001) J. Hydrol. Eng , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 18
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W., and R. L. Wilby (2001), Hydrological modelling using artificial neural networks, Progr. Phys. Geogr., 25(1), 80-108.
    • (2001) Progr. Phys. Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 19
    • 79952487683 scopus 로고    scopus 로고
    • Defining similar regions of snow in the Colorado River Basin using self-organizing maps
    • doi:10.1029/2009WR007835
    • Fassnacht, S. R., and J. E. Derry (2010), Defining similar regions of snow in the Colorado River Basin using self-organizing maps, Water Resour. Res., 46, W04507, doi:10.1029/2009WR007835.
    • (2010) Water Resour. Res , Issue.46
    • Fassnacht, S.R.1    Derry, J.E.2
  • 20
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I : Principles and understanding
    • Flood, I., and N. Kartam (1994), Neural networks in civil engineering. I : Principles and understanding, J. Comput. Civil Eng., 8(2), 131-148.
    • (1994) J. Comput. Civil Eng , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 21
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi, O., and D. Laucelli (2005), Improving generalization of artificial neural networks in rainfall-runoff modelling, Hydrol. Sci. J., 50(3), 439-457.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 22
    • 33846452513 scopus 로고    scopus 로고
    • Real-time flow forecasting in the absence of quantitative precipitation forecasts: A multi-model approach
    • doi101016/jjhydrol200610002
    • Goswami,M., and K. M. O'Connor (2007), Real-time flow forecasting in the absence of quantitative precipitation forecasts: A multi-model approach, J. Hydrol., 334(1-2), 125-140, doi:10.1016/j.jhydrol.2006.10.002.
    • (2007) J. Hydrol , vol.334 , Issue.1-2 , pp. 125-140
    • Goswami, M.1    O'Connor, K.M.2
  • 23
    • 27644470780 scopus 로고    scopus 로고
    • Assessing the performance of eight real-time updating models and procedures for the Brosna River
    • Goswami, M., K. M. O'Connor, K. P. Bhattarai, and A. Y. Shamseldin (2005), Assessing the performance of eight real-time updating models and procedures for the Brosna River, Hydrol. Earth Syst. Sci., 9(4), 394-411.
    • (2005) Hydrol. Earth Syst. Sci , vol.9 , Issue.4 , pp. 394-411
    • Goswami, M.1    O'Connor, K.M.2    Bhattarai, K.P.3    Shamseldin, A.Y.4
  • 24
    • 0004235843 scopus 로고
    • Chapman and Hall, Reading, London
    • Hawkins, D. (1980), Identification of Outliers, 188 pp., Chapman and Hall, Reading, London.
    • (1980) Identification of Outliers , pp. 188
    • Hawkins, D.1
  • 25
    • 0242582775 scopus 로고    scopus 로고
    • Outlier detection using replicator neural networks
    • Y. Kambayashi, W. Winiwarter, and M. Arikawa, Springer, Berlin
    • Hawkins, S., H. He, G. Williams, and R. Baxter (2002), Outlier detection using replicator neural networks, in Data Warehousing and Knowledge Discovery, edited by Y. Kambayashi, W. Winiwarter, and M. Arikawa, pp. 113-123, Springer, Berlin.
    • (2002) Data Warehousing and Knowledge Discovery , pp. 113-123
    • Hawkins, S.1    He, H.2    Williams, G.3    Baxter, R.4
  • 26
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., K. C. Lam, and S. T. Ng (2005), A modified neural network for improving river flow prediction, Hydrol. Sci. J., 50(2), 299-318.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 27
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie, C. E., S. Durucan, and A. Korre (2000), River flow prediction using artificial neural networks: Generalisation beyond the calibration range, J. Hydrol., 233(1-4), 138-153.
    • (2000) J. Hydrol , vol.233 , Issue.1-4 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 28
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain, A., and S. Srinivasulu (2006), Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques, J. Hydrol., 317(3-4), 291-306.
    • (2006) J. Hydrol , vol.317 , Issue.3-4 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 29
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain, A., K. P. Sudheer, and S. Srinivasulu (2004), Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Processes, 18(3), 571-581.
    • (2004) Hydrol. Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 30
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • doi:10.1029/2005WR004152
    • Kingston, G. B., M. F. Lambert, and H. R. Maier (2005), Bayesian training of artificial neural networks used for water resources modeling, Water Resour. Res., 41(12), W12409, doi:10.1029/2005WR004152.
    • (2005) Water Resour. Res , vol.41 , Issue.12
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 31
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • Morgan Kaufmann, New York
    • Knorr, E. M., and R. T. Ng (1998), Algorithms for mining distance-based outliers in large datasets, in 24th VLDB Conference, pp. 392-403,Morgan Kaufmann, New York.
    • (1998) 24th VLDB Conference , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 32
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T. (1982), Self-organized formation of topologically correct feature maps, Bio. Cyber., 43, 59-69.
    • (1982) Bio. Cyber , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 34
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of ''goodnessof-fit'' measures in hydrologic and hydroclimatic model validation
    • Legates, D. R., and G. J. McCabe (1999), Evaluating the use of ''goodnessof-fit'' measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35(1), 233-241.
    • (1999) Water Resour. Res , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 35
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R., and G. C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Model. Software, 15, 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 36
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H. R., A. Jain, G. C. Dandy, and K. P. Sudheer (2010), Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Model. Software, 25(8), 891-909.
    • (2010) Environ. Model. Software , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 37
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • May, R. J., H. R. Maier, and G. C. Dandy (2010), Data splitting for artificial neural networks using SOM-based stratified sampling, Neural Networks, 23(2), 283-294.
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 38
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfallrunoff models
    • Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfallrunoff models, Hydrol. Sci. J., 41(3), 399-417.
    • (1996) Hydrol. Sci. J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 39
    • 33746037215 scopus 로고    scopus 로고
    • Multiple outlier detection in multivariate data using self-organizing maps title
    • Nag, A., A. Mitra, and S. Mitra (2005), Multiple outlier detection in multivariate data using self-organizing maps title, Comput. Stat., 20(2), 245-264.
    • (2005) Comput. Stat , vol.20 , Issue.2 , pp. 245-264
    • Nag, A.1    Mitra, A.2    Mitra, S.3
  • 40
    • 77953022240 scopus 로고    scopus 로고
    • A conceptual and neural network model for real-time flood forecasting of the Tiber River in Rome
    • Napolitano, G., L. See, B. Calvo, F. Savi, and A. Heppenstall (2010), A conceptual and neural network model for real-time flood forecasting of the Tiber River in Rome, Phys. Chem. Earth, 35, 187-194.
    • (2010) Phys. Chem. Earth , Issue.35 , pp. 187-194
    • Napolitano, G.1    See, L.2    Calvo, B.3    Savi, F.4    Heppenstall, A.5
  • 41
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: A neural network modeling approach for hydrological processes
    • doi:10.1029/2005WR004317
    • Parasuraman, K., A. Elshorbagy, and S. K. Carey (2006), Spiking modular neural networks: A neural network modeling approach for hydrological processes, Water Resour. Res., 42(5),W05412, doi:10.1029/2005WR004317.
    • (2006) Water Resour. Res , vol.42 , Issue.5
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 42
    • 0001473437 scopus 로고
    • On estimation of probability density function and mode
    • Parzen, E. (1962), On estimation of probability density function and mode, Ann. Math. Stat., 33, 1065-1076.
    • (1962) Ann. Math. Stat , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 43
    • 79959429202 scopus 로고    scopus 로고
    • Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile data and a nonparametric decision-making process
    • doi:10.1029/2010WR009992
    • Pearce, A. R., D. M. Rizzo, and P. J. Mouser (2011), Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile data and a nonparametric decision-making process, Water Resour. Res., 47(6), W06511, doi:10.1029/2010WR009992.
    • (2011) Water Resour. Res , vol.47 , Issue.6
    • Pearce, A.R.1    Rizzo, D.M.2    Mouser, P.J.3
  • 44
    • 25844450147 scopus 로고    scopus 로고
    • Outlier detection algorithms in data mining systems
    • Petrovskiy, M. I. (2003), Outlier detection algorithms in data mining systems, Program. Comput. Software, 29(4), 228-237.
    • (2003) Program. Comput. Software , vol.29 , Issue.4 , pp. 228-237
    • Petrovskiy, M.I.1
  • 45
    • 46149092775 scopus 로고    scopus 로고
    • Microgenetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale
    • doi:10.1029/2007WR005875
    • Sahoo, G. B., and C. Ray (2008), Microgenetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale, Water Resour. Res., 44(5), W05414, doi:10.1029/2007WR005875.
    • (2008) Water Resour. Res , vol.44 , Issue.5
    • Sahoo, G.B.1    Ray, C.2
  • 47
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification
    • Sharma, A. (2000), Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification, J. Hydrol., 239(1-4), 232-239.
    • (2000) J. Hydrol , vol.239 , Issue.1-4 , pp. 232-239
    • Sharma, A.1
  • 48
    • 84947734535 scopus 로고    scopus 로고
    • Outlier detection using classifier instability
    • A. Amin, et al., Springer, Sydney
    • Tax, D. M. J., and P. W. Duin (1998), Outlier detection using classifier instability, in Advances in Pattern Recognition, edited by A. Amin, et al., pp. 593-601, Springer, Sydney.
    • (1998) Advances in Pattern Recognition , pp. 593-601
    • Tax, D.M.J.1    Duin, P.W.2
  • 49
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S., and P. A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232-239.
    • (1999) J. Hydrol. Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 50
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto, J. (1999), SOM-based data visualization methods, Intel. Data Anal., 3(2), 111-126.
    • (1999) Intel. Data Anal , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 51
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • Xiong, L. H., and K. M. O'Connor (2002), Comparison of four updating models for real-time river flow forecasting, Hydrol. Sci. J., 47(4), 621-639.
    • (2002) Hydrol. Sci. J , vol.47 , Issue.4 , pp. 621-639
    • Xiong, L.H.1    O'Connor, K.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.