-
1
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
-
doi :10.1177/0309133312444943
-
Abrahart, R. J., F. Anctil, P. Coulibaly, C. W. Dawson, N. J. Mount, L. M. See, A. Y. Shamseldin, D. P. Solomatine, E. Toth, and R. L. Wilby (2012), Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Progr. Phys. Geogr., 36(4), 480-513, doi :10.1177/0309133312444943.
-
(2012)
Progr. Phys. Geogr
, vol.36
, Issue.4
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
2
-
-
80052072652
-
Kohonen selforganizing map estimator for the reference crop evapotranspiration
-
doi:10.1029/2011WR010690
-
Adeloye, A. J., R. Rustum, and I. D. Kariyama (2011), Kohonen selforganizing map estimator for the reference crop evapotranspiration, Water Resour. Res., 47(8), W08523, doi:10.1029/2011WR010690.
-
(2011)
Water Resour. Res
, vol.47
, Issue.8
-
-
Adeloye, A.J.1
Rustum, R.2
Kariyama, I.D.3
-
3
-
-
34548498867
-
Neural networks for real time catchment flow modeling and prediction
-
doi101007/s11269-1781-1796doi101007/s11006
-
Aqil, M., I. Kita, A. Yano, and S. Nishiyama (2007), Neural networks for real time catchment flow modeling and prediction, Water Resour. Manage., 21(10), 1781-1796, doi:10.1007/s11269-006-9127-y.
-
(2007)
Water Resour. Manage
, vol.21
, Issue.10
, pp. 1781-1796
-
-
Aqil, M.1
Kita, I.2
Yano, A.3
Nishiyama, S.4
-
4
-
-
0034174280
-
Artificial neural networks in hydrology. I: Preliminary concepts
-
ASCE Task Committee On Application Of Artificial Neural Networks In Hydrology.
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5(2), 115-123.
-
(2000)
J. Hydrol. Eng
, vol.5
, Issue.2
, pp. 115-123
-
-
-
5
-
-
21844510157
-
Fast very robust methods for detection of multiple outliers
-
Atkinson, A. C. (1994), Fast very robust methods for detection of multiple outliers, J. Am. Stat. Assoc., 89, 1329-1339.
-
(1994)
J. Am. Stat. Assoc
, vol.89
, pp. 1329-1339
-
-
Atkinson, A.C.1
-
6
-
-
0036221122
-
Optimal division of data for neural network models in water resources applications
-
doi:10.1029/2001WR000266
-
Bowden, G. J., H. R. Maier, and G. C. Dandy (2002), Optimal division of data for neural network models in water resources applications, Water Resour. Res., 38(2), 1010, doi:10.1029/2001WR000266.
-
(2002)
Water Resour. Res
, vol.38
, Issue.2
, pp. 1010
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
7
-
-
10644295753
-
Input determination for neural networkmodels in water resources applications. Part 1-Background and methodology
-
Bowden, G. J., G. C. Dandy, and H. R.Maier (2005a), Input determination for neural networkmodels in water resources applications. Part 1-Background and methodology, J. Hydrol., 301(1-4), 75-92.
-
(2005)
J. Hydrol
, vol.301
, Issue.1-4
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.H.2
-
8
-
-
10644225424
-
Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river
-
Bowden, G. J., H. R. Maier, and G. C. Dandy (2005b), Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river, J. Hydrol., 301(1-4), 93-107.
-
(2005)
J. Hydrol
, vol.301
, Issue.1-4
, pp. 93-107
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
9
-
-
0036697650
-
Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models
-
Brath, A., A. Montanari, and E. Toth (2002), Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models, Hydrol. Earth Syst. Sci., 6(4), 627-639.
-
(2002)
Hydrol. Earth Syst. Sci
, vol.6
, Issue.4
, pp. 627-639
-
-
Brath, A.1
Montanari, A.2
Toth, E.3
-
10
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
Dallas, TX, Assoc. for Computing Machinery, New York
-
Breunig, M. M. (2000), LOF: Identifying density-based local outliers, in ACM SIGMOD 2000 Int. Conf. on Management of Data, Dallas, TX, Assoc. for Computing Machinery, New York.
-
(2000)
ACM SIGMOD 2000 Int. Conf. on Management of Data
-
-
Breunig, M.M.1
-
11
-
-
23444462420
-
Functional networks in real-time flood forecasting-A novel application
-
doi101016/jadvwatres200503.001
-
Bruen, M., and J. Q. Yang (2005), Functional networks in real-time flood forecasting-A novel application, Adv. Water Resour., 28(9), 899-909, doi:10.1016/j.advwatres.2005.03.001.
-
(2005)
Adv. Water Resour
, vol.28
, Issue.9
, pp. 899-909
-
-
Bruen, M.1
Yang, J.Q.2
-
12
-
-
0343171028
-
Estimation of a multivariate density
-
Cacoullous, T. (1966), Estimation of a multivariate density, Ann. Inst. Stat. Math. (Tokyo), 18(2), 179-189.
-
(1966)
Ann. Inst. Stat. Math. (Tokyo
, vol.18
, Issue.2
, pp. 179-189
-
-
Cacoullous, T.1
-
13
-
-
0036719845
-
Real-time recurrent learning neural network for stream-flow forecasting
-
doi:10.1002/hyp.1015
-
Chang, F. J., L. C. Chang, and H. L. Huang (2002), Real-time recurrent learning neural network for stream-flow forecasting, Hydrol. Processes, 16(13), 2577-2588, doi:10.1002/hyp.1015.
-
(2002)
Hydrol. Processes
, vol.16
, Issue.13
, pp. 2577-2588
-
-
Chang, F.J.1
Chang, L.C.2
Huang, H.L.3
-
14
-
-
34249895257
-
Real-time probabilistic forecasting of flood stages
-
doi101016/jjhydrol200704008
-
Chen, S. T., and P. S. Yu (2007), Real-time probabilistic forecasting of flood stages, J. Hydrol., 340(1-2), 63-77, doi:10.1016/j.jhydrol.2007. 04.008.
-
(2007)
J. Hydrol
, vol.340
, Issue.1-2
, pp. 63-77
-
-
Chen, S.T.1
Yu, P.S.2
-
15
-
-
0038240755
-
Estimation, forecasting and extrapolation of river flows by artificial neural networks
-
Cigizoglu, H. K. (2003), Estimation, forecasting and extrapolation of river flows by artificial neural networks, Hydrol. Sci. J., 48(3), 349-361.
-
(2003)
Hydrol. Sci. J
, vol.48
, Issue.3
, pp. 349-361
-
-
Cigizoglu, H.K.1
-
16
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
Coulibaly, P., F. Anctil, and B. Bobee (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230(3-4), 244-257.
-
(2000)
J. Hydrol
, vol.230
, Issue.3-4
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
17
-
-
0035450182
-
Multivariate reservoir inflow forecasting using temporal neural networks
-
Coulibaly, P., F. Anctil, and B. Bobee (2001), Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6(5), 367-376.
-
(2001)
J. Hydrol. Eng
, vol.6
, Issue.5
, pp. 367-376
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
18
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson, C. W., and R. L. Wilby (2001), Hydrological modelling using artificial neural networks, Progr. Phys. Geogr., 25(1), 80-108.
-
(2001)
Progr. Phys. Geogr
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
19
-
-
79952487683
-
Defining similar regions of snow in the Colorado River Basin using self-organizing maps
-
doi:10.1029/2009WR007835
-
Fassnacht, S. R., and J. E. Derry (2010), Defining similar regions of snow in the Colorado River Basin using self-organizing maps, Water Resour. Res., 46, W04507, doi:10.1029/2009WR007835.
-
(2010)
Water Resour. Res
, Issue.46
-
-
Fassnacht, S.R.1
Derry, J.E.2
-
20
-
-
0028416331
-
Neural networks in civil engineering. I : Principles and understanding
-
Flood, I., and N. Kartam (1994), Neural networks in civil engineering. I : Principles and understanding, J. Comput. Civil Eng., 8(2), 131-148.
-
(1994)
J. Comput. Civil Eng
, vol.8
, Issue.2
, pp. 131-148
-
-
Flood, I.1
Kartam, N.2
-
21
-
-
20844456071
-
Improving generalization of artificial neural networks in rainfall-runoff modelling
-
Giustolisi, O., and D. Laucelli (2005), Improving generalization of artificial neural networks in rainfall-runoff modelling, Hydrol. Sci. J., 50(3), 439-457.
-
(2005)
Hydrol. Sci. J
, vol.50
, Issue.3
, pp. 439-457
-
-
Giustolisi, O.1
Laucelli, D.2
-
22
-
-
33846452513
-
Real-time flow forecasting in the absence of quantitative precipitation forecasts: A multi-model approach
-
doi101016/jjhydrol200610002
-
Goswami,M., and K. M. O'Connor (2007), Real-time flow forecasting in the absence of quantitative precipitation forecasts: A multi-model approach, J. Hydrol., 334(1-2), 125-140, doi:10.1016/j.jhydrol.2006.10.002.
-
(2007)
J. Hydrol
, vol.334
, Issue.1-2
, pp. 125-140
-
-
Goswami, M.1
O'Connor, K.M.2
-
23
-
-
27644470780
-
Assessing the performance of eight real-time updating models and procedures for the Brosna River
-
Goswami, M., K. M. O'Connor, K. P. Bhattarai, and A. Y. Shamseldin (2005), Assessing the performance of eight real-time updating models and procedures for the Brosna River, Hydrol. Earth Syst. Sci., 9(4), 394-411.
-
(2005)
Hydrol. Earth Syst. Sci
, vol.9
, Issue.4
, pp. 394-411
-
-
Goswami, M.1
O'Connor, K.M.2
Bhattarai, K.P.3
Shamseldin, A.Y.4
-
24
-
-
0004235843
-
-
Chapman and Hall, Reading, London
-
Hawkins, D. (1980), Identification of Outliers, 188 pp., Chapman and Hall, Reading, London.
-
(1980)
Identification of Outliers
, pp. 188
-
-
Hawkins, D.1
-
25
-
-
0242582775
-
Outlier detection using replicator neural networks
-
Y. Kambayashi, W. Winiwarter, and M. Arikawa, Springer, Berlin
-
Hawkins, S., H. He, G. Williams, and R. Baxter (2002), Outlier detection using replicator neural networks, in Data Warehousing and Knowledge Discovery, edited by Y. Kambayashi, W. Winiwarter, and M. Arikawa, pp. 113-123, Springer, Berlin.
-
(2002)
Data Warehousing and Knowledge Discovery
, pp. 113-123
-
-
Hawkins, S.1
He, H.2
Williams, G.3
Baxter, R.4
-
26
-
-
17444385970
-
A modified neural network for improving river flow prediction
-
Hu, T. S., K. C. Lam, and S. T. Ng (2005), A modified neural network for improving river flow prediction, Hydrol. Sci. J., 50(2), 299-318.
-
(2005)
Hydrol. Sci. J
, vol.50
, Issue.2
, pp. 299-318
-
-
Hu, T.S.1
Lam, K.C.2
Ng, S.T.3
-
27
-
-
0034641121
-
River flow prediction using artificial neural networks: Generalisation beyond the calibration range
-
Imrie, C. E., S. Durucan, and A. Korre (2000), River flow prediction using artificial neural networks: Generalisation beyond the calibration range, J. Hydrol., 233(1-4), 138-153.
-
(2000)
J. Hydrol
, vol.233
, Issue.1-4
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
28
-
-
28844473522
-
Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
-
Jain, A., and S. Srinivasulu (2006), Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques, J. Hydrol., 317(3-4), 291-306.
-
(2006)
J. Hydrol
, vol.317
, Issue.3-4
, pp. 291-306
-
-
Jain, A.1
Srinivasulu, S.2
-
29
-
-
1542287371
-
Identification of physical processes inherent in artificial neural network rainfall runoff models
-
Jain, A., K. P. Sudheer, and S. Srinivasulu (2004), Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Processes, 18(3), 571-581.
-
(2004)
Hydrol. Processes
, vol.18
, Issue.3
, pp. 571-581
-
-
Jain, A.1
Sudheer, K.P.2
Srinivasulu, S.3
-
30
-
-
31444455186
-
Bayesian training of artificial neural networks used for water resources modeling
-
doi:10.1029/2005WR004152
-
Kingston, G. B., M. F. Lambert, and H. R. Maier (2005), Bayesian training of artificial neural networks used for water resources modeling, Water Resour. Res., 41(12), W12409, doi:10.1029/2005WR004152.
-
(2005)
Water Resour. Res
, vol.41
, Issue.12
-
-
Kingston, G.B.1
Lambert, M.F.2
Maier, H.R.3
-
31
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
Morgan Kaufmann, New York
-
Knorr, E. M., and R. T. Ng (1998), Algorithms for mining distance-based outliers in large datasets, in 24th VLDB Conference, pp. 392-403,Morgan Kaufmann, New York.
-
(1998)
24th VLDB Conference
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
32
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen, T. (1982), Self-organized formation of topologically correct feature maps, Bio. Cyber., 43, 59-69.
-
(1982)
Bio. Cyber
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
33
-
-
37249036471
-
Outlier detection with kernel density functions
-
P. Perner, Springer, Berlin
-
Latecki, L., A. Lazarevic, and D. Pokrajac (2007), Outlier detection with kernel density functions, in Machine Learning and Data Mining in Pattern Recognition, edited by P. Perner, pp. 61-75, Springer, Berlin.
-
(2007)
Machine Learning and Data Mining in Pattern Recognition
, pp. 61-75
-
-
Latecki, L.1
Lazarevic, A.2
Pokrajac, D.3
-
34
-
-
0032920124
-
Evaluating the use of ''goodnessof-fit'' measures in hydrologic and hydroclimatic model validation
-
Legates, D. R., and G. J. McCabe (1999), Evaluating the use of ''goodnessof-fit'' measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35(1), 233-241.
-
(1999)
Water Resour. Res
, vol.35
, Issue.1
, pp. 233-241
-
-
Legates, D.R.1
McCabe, G.J.2
-
35
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
Maier, H. R., and G. C. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Model. Software, 15, 101-124.
-
(2000)
Environ. Model. Software
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
36
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
-
Maier, H. R., A. Jain, G. C. Dandy, and K. P. Sudheer (2010), Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Model. Software, 25(8), 891-909.
-
(2010)
Environ. Model. Software
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
37
-
-
74149090502
-
Data splitting for artificial neural networks using SOM-based stratified sampling
-
May, R. J., H. R. Maier, and G. C. Dandy (2010), Data splitting for artificial neural networks using SOM-based stratified sampling, Neural Networks, 23(2), 283-294.
-
(2010)
Neural Networks
, vol.23
, Issue.2
, pp. 283-294
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
-
38
-
-
0030159380
-
Artificial neural networks as rainfallrunoff models
-
Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfallrunoff models, Hydrol. Sci. J., 41(3), 399-417.
-
(1996)
Hydrol. Sci. J
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
39
-
-
33746037215
-
Multiple outlier detection in multivariate data using self-organizing maps title
-
Nag, A., A. Mitra, and S. Mitra (2005), Multiple outlier detection in multivariate data using self-organizing maps title, Comput. Stat., 20(2), 245-264.
-
(2005)
Comput. Stat
, vol.20
, Issue.2
, pp. 245-264
-
-
Nag, A.1
Mitra, A.2
Mitra, S.3
-
40
-
-
77953022240
-
A conceptual and neural network model for real-time flood forecasting of the Tiber River in Rome
-
Napolitano, G., L. See, B. Calvo, F. Savi, and A. Heppenstall (2010), A conceptual and neural network model for real-time flood forecasting of the Tiber River in Rome, Phys. Chem. Earth, 35, 187-194.
-
(2010)
Phys. Chem. Earth
, Issue.35
, pp. 187-194
-
-
Napolitano, G.1
See, L.2
Calvo, B.3
Savi, F.4
Heppenstall, A.5
-
41
-
-
33745435792
-
Spiking modular neural networks: A neural network modeling approach for hydrological processes
-
doi:10.1029/2005WR004317
-
Parasuraman, K., A. Elshorbagy, and S. K. Carey (2006), Spiking modular neural networks: A neural network modeling approach for hydrological processes, Water Resour. Res., 42(5),W05412, doi:10.1029/2005WR004317.
-
(2006)
Water Resour. Res
, vol.42
, Issue.5
-
-
Parasuraman, K.1
Elshorbagy, A.2
Carey, S.K.3
-
42
-
-
0001473437
-
On estimation of probability density function and mode
-
Parzen, E. (1962), On estimation of probability density function and mode, Ann. Math. Stat., 33, 1065-1076.
-
(1962)
Ann. Math. Stat
, vol.33
, pp. 1065-1076
-
-
Parzen, E.1
-
43
-
-
79959429202
-
Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile data and a nonparametric decision-making process
-
doi:10.1029/2010WR009992
-
Pearce, A. R., D. M. Rizzo, and P. J. Mouser (2011), Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile data and a nonparametric decision-making process, Water Resour. Res., 47(6), W06511, doi:10.1029/2010WR009992.
-
(2011)
Water Resour. Res
, vol.47
, Issue.6
-
-
Pearce, A.R.1
Rizzo, D.M.2
Mouser, P.J.3
-
44
-
-
25844450147
-
Outlier detection algorithms in data mining systems
-
Petrovskiy, M. I. (2003), Outlier detection algorithms in data mining systems, Program. Comput. Software, 29(4), 228-237.
-
(2003)
Program. Comput. Software
, vol.29
, Issue.4
, pp. 228-237
-
-
Petrovskiy, M.I.1
-
45
-
-
46149092775
-
Microgenetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale
-
doi:10.1029/2007WR005875
-
Sahoo, G. B., and C. Ray (2008), Microgenetic algorithms and artificial neural networks to assess minimum data requirements for prediction of pesticide concentrations in shallow groundwater on a regional scale, Water Resour. Res., 44(5), W05414, doi:10.1029/2007WR005875.
-
(2008)
Water Resour. Res
, vol.44
, Issue.5
-
-
Sahoo, G.B.1
Ray, C.2
-
46
-
-
0003545910
-
-
Wiley, New York
-
Scott, D. (1992), Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley Series in Probability and Statistics), Wiley, New York.
-
(1992)
Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley Series in Probability and Statistics
-
-
Scott, D.1
-
47
-
-
0034694877
-
Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification
-
Sharma, A. (2000), Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-A strategy for system predictor identification, J. Hydrol., 239(1-4), 232-239.
-
(2000)
J. Hydrol
, vol.239
, Issue.1-4
, pp. 232-239
-
-
Sharma, A.1
-
48
-
-
84947734535
-
Outlier detection using classifier instability
-
A. Amin, et al., Springer, Sydney
-
Tax, D. M. J., and P. W. Duin (1998), Outlier detection using classifier instability, in Advances in Pattern Recognition, edited by A. Amin, et al., pp. 593-601, Springer, Sydney.
-
(1998)
Advances in Pattern Recognition
, pp. 593-601
-
-
Tax, D.M.J.1
Duin, P.W.2
-
49
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
Tokar, A. S., and P. A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232-239.
-
(1999)
J. Hydrol. Eng
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
50
-
-
38049168357
-
SOM-based data visualization methods
-
Vesanto, J. (1999), SOM-based data visualization methods, Intel. Data Anal., 3(2), 111-126.
-
(1999)
Intel. Data Anal
, vol.3
, Issue.2
, pp. 111-126
-
-
Vesanto, J.1
-
51
-
-
18844480083
-
Comparison of four updating models for real-time river flow forecasting
-
Xiong, L. H., and K. M. O'Connor (2002), Comparison of four updating models for real-time river flow forecasting, Hydrol. Sci. J., 47(4), 621-639.
-
(2002)
Hydrol. Sci. J
, vol.47
, Issue.4
, pp. 621-639
-
-
Xiong, L.H.1
O'Connor, K.M.2
|