메뉴 건너뛰기




Volumn 14, Issue 2, 2017, Pages

Prediction of air pollutants concentration based on an extreme learning machine: The case of Hong Kong

Author keywords

Air pollution; Back propagation; Extreme learning machine; Feed forward neural network; Prediction

Indexed keywords

AIR QUALITY; ALGORITHM; ARTIFICIAL NEURAL NETWORK; ATMOSPHERIC POLLUTION; BACK PROPAGATION; CONCENTRATION (COMPOSITION); MACHINE LEARNING; POLLUTANT SOURCE; POLLUTION MONITORING; PREDICTION; URBAN POLLUTION;

EID: 85011096722     PISSN: 16617827     EISSN: 16604601     Source Type: Journal    
DOI: 10.3390/ijerph14020114     Document Type: Article
Times cited : (115)

References (41)
  • 1
  • 2
    • 70350336131 scopus 로고    scopus 로고
    • Modeling near-road air quality ssing a computational fluid dynamics model, CFD-VIT-RIT
    • Wang, Y.J.; Zhang, K.M. Modeling near-road air quality ssing a computational fluid dynamics model, CFD-VIT-RIT. Environ. Sci. Technol. 2009, 43, 7778–7783.
    • (2009) Environ. Sci. Technol , vol.43 , pp. 7778-7783
    • Wang, Y.J.1    Zhang, K.M.2
  • 3
    • 84926303912 scopus 로고    scopus 로고
    • The near-source impacts of diesel backup generators in urban environments
    • Tong, Z.; Zhang, K.M. The near-source impacts of diesel backup generators in urban environments. Atmos. Environ. 2015, 109, 262-271.
    • (2015) Atmos. Environ , vol.109 , pp. 262-271
    • Tong, Z.1    Zhang, K.M.2
  • 4
    • 84943570584 scopus 로고    scopus 로고
    • Roadside vegetation barrier designs to mitigate near-road air pollution impacts
    • Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Zhang, M.K. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927.
    • (2016) Sci. Total Environ , vol.541 , pp. 920-927
    • Tong, Z.1    Baldauf, R.W.2    Isakov, V.3    Deshmukh, P.4    Zhang, M.K.5
  • 5
    • 84936980688 scopus 로고    scopus 로고
    • Mapping the urban asthma experience: Using qualitative GIS to understand contextual factors affecting asthma control
    • Keddem, S.; Barg, F.K.; Glanz, K.; Jackson, T.; Green, S.; George, M. Mapping the urban asthma experience: Using qualitative GIS to understand contextual factors affecting asthma control. Soc. Sci. Med. 2015, 140, 9–17.
    • (2015) Soc. Sci. Med , vol.140 , pp. 9-17
    • Keddem, S.1    Barg, F.K.2    Glanz, K.3    Jackson, T.4    Green, S.5    George, M.6
  • 6
    • 0001633899 scopus 로고    scopus 로고
    • Predicting the uncertainty of numerical weather forecasts: A review
    • Ehrendorfer, M. Predicting the uncertainty of numerical weather forecasts: A review. Meteorol. Z. 1997, 6, 147–183.
    • (1997) Meteorol. Z. , vol.6 , pp. 147-183
    • Ehrendorfer, M.1
  • 7
    • 0024476677 scopus 로고
    • A conditional probability density function for forecasting ozone air quality data
    • Robeson, S.M.; Steyn, D.G. A conditional probability density function for forecasting ozone air quality data. Atmos. Environ. 1989, 23, 689–692.
    • (1989) Atmos. Environ , vol.23 , pp. 689-692
    • Robeson, S.M.1    Steyn, D.G.2
  • 8
    • 84900437506 scopus 로고    scopus 로고
    • A cluster multivariate statistical method for environmental quality management
    • Tan, Q.; Wei, Y.; Wang, M.; Liu, Y. A cluster multivariate statistical method for environmental quality management. Eng. Appl. Artif. Intell. 2014, 32, 1–9.
    • (2014) Eng. Appl. Artif. Intell , vol.32 , pp. 1-9
    • Tan, Q.1    Wei, Y.2    Wang, M.3    Liu, Y.4
  • 10
    • 0035094109 scopus 로고    scopus 로고
    • Statistical modeling and prediction of atmo- spheric pollution by particulate material: Two nonparametric approaches
    • Silva, C.; Perez, P.; Trier, A. Statistical modeling and prediction of atmo- spheric pollution by particulate material: Two nonparametric approaches. Environmentrics 2001, 12, 147–159.
    • (2001) Environmentrics , vol.12 , pp. 147-159
    • Silva, C.1    Perez, P.2    Trier, A.3
  • 11
    • 13844267702 scopus 로고    scopus 로고
    • A hierarchical bayesian model to estimate and forecast ozone through space and time
    • McMillan, N.; Bortnick S.M.; Irwin, M.E.; Berliner, M. A hierarchical bayesian model to estimate and forecast ozone through space and time. Atmos. Environ. 2005, 39, 1373–1382.
    • (2005) Atmos. Environ , vol.39 , pp. 1373-1382
    • McMillan, N.1    Bortnick, S.M.2    Irwin, M.E.3    Berliner, M.4
  • 12
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classication with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P.L. The sample complexity of pattern classication with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44, 525–536.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 13
    • 84874626374 scopus 로고    scopus 로고
    • The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off
    • Barak, O.; Rigotti, M.; Fusi, S. The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off. J. Neurosci. 2013, 33, 3844–3856.
    • (2013) J. Neurosci , vol.33 , pp. 3844-3856
    • Barak, O.1    Rigotti, M.2    Fusi, S.3
  • 15
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257.
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Hornik, K.1
  • 16
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler, W. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240.
    • (1970) Econ. Geogr , vol.46 , pp. 234-240
    • Tobler, W.1
  • 17
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the Witwatersrand
    • Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 1951, 52, 119–139.
    • (1951) J. Chem. Metall. Min. Soc. S. Afr , vol.52 , pp. 119-139
    • Krige, D.G.1
  • 19
    • 0343339858 scopus 로고    scopus 로고
    • 2.5 concentrations several hours in advance using neural networks in Santiago, Chile
    • 2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos. Environ. 2000, 34, 1189–1196.
    • (2000) Atmos. Environ , vol.34 , pp. 1189-1196
    • Perez, P.1    Trier, A.2    Reyes, J.3
  • 20
    • 0036708755 scopus 로고    scopus 로고
    • 10 concentrations 30 h in advance in Santiago, Chile
    • 10 concentrations 30 h in advance in Santiago, Chile. Atmos. Environ. 2002, 36, 4555–4561.
    • (2002) Atmos. Environ , vol.36 , pp. 4555-4561
    • Perez, P.1    Reyes, J.2
  • 21
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Ferrari, S.; Stengel, R.F. Smooth function approximation using neural networks. IEEE Trans. Neural Netw. 2005, 16, 24–38.
    • (2005) IEEE Trans. Neural Netw , vol.16 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 22
    • 0037107821 scopus 로고    scopus 로고
    • Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks
    • Ballester, E.B.; Valls, G.C.I.; Carrasco-Rodriguez, J.L.; Olivas, E.S.; Valle-Tascon, S.D. Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecol. Model. 2002, 156, 27–41.
    • (2002) Ecol. Model , vol.156 , pp. 27-41
    • Ballester, E.B.1    Valls, G.C.I.2    Carrasco-Rodriguez, J.L.3    Olivas, E.S.4    Valle-Tascon, S.D.5
  • 23
    • 0038724560 scopus 로고    scopus 로고
    • Maximum likelihood cost functions for neural networkmodels of air quality data
    • Dorling, S.; Foxall, R.; Mandic, D.; Cawley, G. Maximum likelihood cost functions for neural networkmodels of air quality data. Atmos. Environ. 2003, 37, 3435–3443.
    • (2003) Atmos. Environ , vol.37 , pp. 3435-3443
    • Dorling, S.1    Foxall, R.2    Mandic, D.3    Cawley, G.4
  • 24
    • 84919967088 scopus 로고    scopus 로고
    • Feed-forward artificial neural network model for air pollutant index prediction in the southern region of Peninsular Malaysia
    • Azid, A.; Juahir, H.; Latif, M.T.; Zain, S.M.; Osman, M.R. Feed-forward artificial neural network model for air pollutant index prediction in the southern region of Peninsular Malaysia. J. Environ. Prot. 2013, 10, 1–10.
    • (2013) J. Environ. Prot. , vol.10 , pp. 1-10
    • Azid, A.1    Juahir, H.2    Latif, M.T.3    Zain, S.M.4    Osman, M.R.5
  • 25
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • Pai, P.; Hong, W. An improved neural network model in forecasting arrivals. Ann. Tour. Res. 2005, 32, 1138–1141.
    • (2005) Ann. Tour. Res , vol.32 , pp. 1138-1141
    • Pai, P.1    Hong, W.2
  • 26
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892.
    • (2006) IEEE Trans. Neural Netw , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 27
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang, G.B.; Chen, L. Convex incremental extreme learning machine. Neurocomputing 2007, 70, 3056–3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 29
    • 84904092315 scopus 로고    scopus 로고
    • Representational learning with extreme learning machine for big data
    • Kasun, L.C.; Zhou, H.; Huang, G.B.; Vong, C.M. Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 2013, 28, 31–34.
    • (2013) IEEE Intell. Syst , vol.28 , pp. 31-34
    • Kasun, L.C.1    Zhou, H.2    Huang, G.B.3    Vong, C.M.4
  • 30
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E.; Osindero, S.; Teh, Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 32
    • 0036837418 scopus 로고    scopus 로고
    • Analysis of pollutant in Center Hong Kong applying neural network method with particle swarm optimization
    • Lu, W.Z.; Fan, H.Y.; Leung, A.Y.T.; Wong, J.C.K. Analysis of pollutant in Center Hong Kong applying neural network method with particle swarm optimization. Environ. Monit. Assess. 2002, 79, 217–230.
    • (2002) Environ. Monit. Assess. , vol.79 , pp. 217-230
    • Lu, W.Z.1    Fan, H.Y.2    Leung, A.Y.T.3    Wong, J.C.K.4
  • 35
    • 84989818919 scopus 로고    scopus 로고
    • Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models
    • Zhao, W.; Fan, S.J.; Guo, H.; Gao, B.; Sun, J.R.; Chen, L.G. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models. Atmos. Environ. 2016, 144, 182–193.
    • (2016) Atmos. Environ , vol.144 , pp. 182-193
    • Zhao, W.1    Fan, S.J.2    Guo, H.3    Gao, B.4    Sun, J.R.5    Chen, L.G.6
  • 36
    • 84978224460 scopus 로고    scopus 로고
    • Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong
    • Gong, B.; Ordieres-Meré, J. Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Atmos. Environ. 2016, 84, 290–303.
    • (2016) Atmos. Environ , vol.84 , pp. 290-303
    • Gong, B.1    Ordieres-Meré, J.2
  • 37
    • 85013924468 scopus 로고    scopus 로고
    • HISYCOL a hybrid computational intelligence system for combined machine learning: The case of air pollution modeling in Athens
    • Bougoudis, I.; Demertzis, K.; Iliadis, L. HISYCOL a hybrid computational intelligence system for combined machine learning: The case of air pollution modeling in Athens. Neural Comput. Appl. 2016, 27, 1191–1206.
    • (2016) Neural Comput. Appl , vol.27 , pp. 1191-1206
    • Bougoudis, I.1    Demertzis, K.2    Iliadis, L.3
  • 38
    • 79551508219 scopus 로고    scopus 로고
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management. Environ. Sci. Pollut. Res. 2011, 18, 316–327.
    • (2011) Environ. Sci. Pollut. Res , vol.18 , pp. 316-327
    • Paschalidou, A.K.1    Karakitsios, S.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 39
    • 84887480472 scopus 로고    scopus 로고
    • Neurocomputing techniques to dynamically forecast spatiotemporal air pollution data
    • Papaleonidas, A.; Iliadis, L. Neurocomputing techniques to dynamically forecast spatiotemporal air pollution data. Evolv. Syst. 2013, 4, 221–233.
    • (2013) Evolv. Syst , vol.4 , pp. 221-233
    • Papaleonidas, A.1    Iliadis, L.2
  • 40
    • 84874984058 scopus 로고    scopus 로고
    • Forecasting of air quality index in Delhi using neural network based on principal component analysis
    • Kumar, A.; Goyal, P. Forecasting of air quality index in Delhi using neural network based on principal component analysis. Pure Appl. Geophys. 2013, 170, 711–722.
    • (2013) Pure Appl. Geophys , vol.170 , pp. 711-722
    • Kumar, A.1    Goyal, P.2
  • 41
    • 84943589427 scopus 로고    scopus 로고
    • Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia
    • Azid, A.; Juahir, H.; Toriman, M.; Kamarudin, M.; Saudi, A.; Hasnam, C.; Aziz, N.; Azaman, F.; Latif, M.; Zainuddin, S.; et al. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water Air Soil Pollut. 2014, 225, 1–14.
    • (2014) Water Air Soil Pollut , vol.225 , pp. 1-14
    • Azid, A.1    Juahir, H.2    Toriman, M.3    Kamarudin, M.4    Saudi, A.5    Hasnam, C.6    Aziz, N.7    Azaman, F.8    Latif, M.9    Zainuddin, S.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.