메뉴 건너뛰기




Volumn 5, Issue 4, 2014, Pages 696-708

Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis

Author keywords

Air pollution modeling; Artificial neural networks; Meteorology; NO2 concentrations; Sensitivity analysis

Indexed keywords


EID: 84907578344     PISSN: 13091042     EISSN: None     Source Type: Journal    
DOI: 10.5094/APR.2014.079     Document Type: Article
Times cited : (119)

References (33)
  • 2
    • 84879686138 scopus 로고    scopus 로고
    • Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by monte carlo simulations
    • Arhami, M., Kamali, N., Rajabi, M.M., 2013. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by monte carlo simulations. Environmental Science and Pollution Research 20, 4777–4789.
    • (2013) Environmental Science and Pollution Research , vol.20 , pp. 4777-4789
    • Arhami, M.1    Kamali, N.2    Rajabi, M.M.3
  • 4
    • 84880609800 scopus 로고    scopus 로고
    • The openair manual — open-source tools for analyzing air pollution data
    • Manual for version 1.0, King’s College London
    • Carslaw, D.C., 2014. The openair manual — open-source tools for analyzing air pollution data. Manual for version 1.0, King’s College London.
    • (2014)
    • Carslaw, D.C.1
  • 5
    • 84855561999 scopus 로고    scopus 로고
    • Openair – an R package for air quality data analysis
    • Carslaw, D.C., Ropkins, K., 2012. Openair – an R package for air quality data analysis. Environmental Modelling & Software 27–28, 52–61.
    • (2012) Environmental Modelling & Software , vol.27-28 , pp. 52-61
    • Carslaw, D.C.1    Ropkins, K.2
  • 7
    • 34249337698 scopus 로고    scopus 로고
    • Detecting and characterising small changes in urban nitrogen dioxide concentrations
    • Carslaw, D.C., Carslaw, N., 2007. Detecting and characterising small changes in urban nitrogen dioxide concentrations. Atmospheric Environment 41, 4723–4733.
    • (2007) Atmospheric Environment , vol.41 , pp. 4723-4733
    • Carslaw, D.C.1    Carslaw, N.2
  • 9
    • 84866278986 scopus 로고    scopus 로고
    • A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling
    • Cheng, S.Y., Li, L., Chen, D.S., Li, J.B., 2012. A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling. Journal of Environmental Management 112, 404–414.
    • (2012) Journal of Environmental Management , vol.112 , pp. 404-414
    • Cheng, S.Y.1    Li, L.2    Chen, D.S.3    Li, J.B.4
  • 10
    • 84900990658 scopus 로고    scopus 로고
    • Source apportionment of airborne particles in the Auckland region: 2008 Update
    • GNS Science Consultancy Report 2009/165, Auckland, GNS
    • Davy, P., Trompetter, B., Markwitz, A., 2009. Source apportionment of airborne particles in the Auckland region: 2008 Update. GNS Science Consultancy Report 2009/165, Auckland, GNS.
    • (2009)
    • Davy, P.1    Trompetter, B.2    Markwitz, A.3
  • 11
    • 0037617421 scopus 로고    scopus 로고
    • A semi–empirical model for predicting the effect of changes in traffic flow patterns on carbon monoxide concentrations
    • Dirks, K.N., Johns, M.D., Hay, J.E., Sturman, A.P., 2003. A semi–empirical model for predicting the effect of changes in traffic flow patterns on carbon monoxide concentrations. Atmospheric Environment 37, 2719–2724.
    • (2003) Atmospheric Environment , vol.37 , pp. 2719-2724
    • Dirks, K.N.1    Johns, M.D.2    Hay, J.E.3    Sturman, A.P.4
  • 12
    • 0036882653 scopus 로고    scopus 로고
    • A simple semi– empirical model for predicting missing carbon monoxide concentrations
    • Dirks, K.N., Johns, M.D., Hay, J.E., Sturman, A.P., 2002. A simple semi– empirical model for predicting missing carbon monoxide concentrations. Atmospheric Environment 36, 5953–5959.
    • (2002) Atmospheric Environment , vol.36 , pp. 5953-5959
    • Dirks, K.N.1    Johns, M.D.2    Hay, J.E.3    Sturman, A.P.4
  • 14
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) – a review of applications in the atmospheric sciences
    • Gardner, M.W., Dorling, S.R., 1998. Artificial neural networks (the multilayer perceptron) – a review of applications in the atmospheric sciences. Atmospheric Environment 32, 2627–2636.
    • (1998) Atmospheric Environment , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 15
    • 31044433834 scopus 로고    scopus 로고
    • 10 hourly concentrations, in the greater area of Athens, Greece
    • 10 hourly concentrations, in the greater area of Athens, Greece. Atmospheric Environment 40, 1216–1229.
    • (2006) Atmospheric Environment , vol.40 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 16
    • 84907575190 scopus 로고
    • Meteorological factors affecting causes and controls of air pollution
    • Hewson, E. W., 1956. Meteorological factors affecting causes and controls of air pollution. Journal of the Air Pollution Control Association 5, 235–241.
    • (1956) Journal of the Air Pollution Control Association , vol.5 , pp. 235-241
    • Hewson, E.W.1
  • 17
    • 70449405008 scopus 로고    scopus 로고
    • Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations
    • Hrust, L., Klaic, Z.B., Krizan, J., Antonic, O., Hercog, P., 2009. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment 43, 5588–5596.
    • (2009) Atmospheric Environment , vol.43 , pp. 5588-5596
    • Hrust, L.1    Klaic, Z.B.2    Krizan, J.3    Antonic, O.4    Hercog, P.5
  • 19
    • 34547121841 scopus 로고    scopus 로고
    • Effects of meteorological conditions on concentrations of nitrogen oxides in Auckland
    • Jiang, N., Hay, J.E., Fisher, G.W., 2005. Effects of meteorological conditions on concentrations of nitrogen oxides in Auckland. Weather and Climate 24, 15–34.
    • (2005) Weather and Climate , vol.24 , pp. 15-34
    • Jiang, N.1    Hay, J.E.2    Fisher, G.W.3
  • 20
    • 36049030839 scopus 로고    scopus 로고
    • Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece
    • Karatzas, K.D., Kaltsatos, S., 2007. Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory 15, 1310–1319.
    • (2007) Simulation Modelling Practice and Theory , vol.15 , pp. 1310-1319
    • Karatzas, K.D.1    Kaltsatos, S.2
  • 21
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
    • Kurt, A., Oktay, A.B., 2010. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Systems with Applications 37, 7986–7992.
    • (2010) Expert Systems with Applications , vol.37 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.B.2
  • 22
    • 0029661447 scopus 로고    scopus 로고
    • Role of some environmental variables in trout abundance models using neural networks
    • Lek, S., Belaud, A., Baran, P., Dimopoulos, I., Delacoste, M., 1996. Role of some environmental variables in trout abundance models using neural networks. Aquatic Living Resources 9, 23–29.
    • (1996) Aquatic Living Resources , vol.9 , pp. 23-29
    • Lek, S.1    Belaud, A.2    Baran, P.3    Dimopoulos, I.4    Delacoste, M.5
  • 23
    • 84876715081 scopus 로고    scopus 로고
    • Conditional extraction of air– pollutant source signals from air–quality monitoring
    • Malby, A.R., Whyatt, J.D., Timmis, R.J., 2013. Conditional extraction of air– pollutant source signals from air–quality monitoring. Atmospheric Environment 74, 112–122.
    • (2013) Atmospheric Environment , vol.74 , pp. 112-122
    • Malby, A.R.1    Whyatt, J.D.2    Timmis, R.J.3
  • 24
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra, S.M.S., Khare, M., 2006. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological Modelling 190, 99–115.
    • (2006) Ecological Modelling , vol.190 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 25
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden, J.D., Joy, M.K., Death, R.G., 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling 178, 389–397.
    • (2004) Ecological Modelling , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 26
    • 0037102687 scopus 로고    scopus 로고
    • Lluminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks
    • Olden, J. D., Jackson, D.A., 2002. Lluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling 154, 135–150.
    • (2002) Ecological Modelling , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 27
    • 84864065954 scopus 로고    scopus 로고
    • 10 forecasting in a large city
    • 10 forecasting in a large city. Atmospheric Environment 60, 271–276.
    • (2012) Atmospheric Environment , vol.60 , pp. 271-276
    • Perez, P.1
  • 30
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh, K.P., Gupta, S., Kumar, A., Shukla, S.P., 2012. Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment 426, 244–255.
    • (2012) Science of the Total Environment , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 31
    • 0034962651 scopus 로고    scopus 로고
    • Summarizing multiple aspects of model performance in a single diagram
    • Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research–Atmospheres 106, 7183–7192.
    • (2001) Journal of Geophysical Research–Atmospheres , vol.106 , pp. 7183-7192
    • Taylor, K.E.1
  • 32
    • 84867870508 scopus 로고    scopus 로고
    • Identification of significant factors for air pollution levels using a neural network based knowledge discovery system
    • Yan Chan, K.Y., Jian, L., 2013. Identification of significant factors for air pollution levels using a neural network based knowledge discovery system. Neurocomputing 99, 564–569.
    • (2013) Neurocomputing , vol.99 , pp. 564-569
    • Yan Chan, K.Y.1    Jian, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.