메뉴 건너뛰기




Volumn 50, Issue 2, 2000, Pages 219-226

Forecasts using neural network versus box-jenkins methodology for ambient air quality monitoring data

Author keywords

[No Author keywords available]

Indexed keywords

OZONE; SULFUR DIOXIDE;

EID: 0034131752     PISSN: 10473289     EISSN: None     Source Type: Journal    
DOI: 10.1080/10473289.2000.10463997     Document Type: Article
Times cited : (36)

References (21)
  • 2
    • 0015335306 scopus 로고
    • Aerometric data analysis—time-series analysis and forecast and an atmospheric smog
    • Merz, P.H.; Painte, L.J.; Ryason, PR. “Aerometric data analysis—time-series analysis and forecast and an atmospheric smog,” Atmos. Environ. 1972, 6, 319-342.
    • (1972) Atmos. Environ. , vol.6 , pp. 319-342
    • Merz, P.H.1    Painte, L.J.2    Ryason, P.R.3
  • 3
    • 0016754228 scopus 로고
    • Time-series analysis of Riverside, California air quality
    • Chock, D.P.; Terrell, T.R.; Levitt, S.B. “Time-series analysis of Riverside, California air quality,” Atmos. Environ. 1975, 9, 978-989.
    • (1975) Atmos. Environ. , vol.9 , pp. 978-989
    • Chock, D.P.1    Terrell, T.R.2    Levitt, S.B.3
  • 4
    • 0018332062 scopus 로고
    • Statistical analysis of the maximum concentration of an air pollutant: Effects of autocorrelation and non-stationarity
    • Horowitz, J.; Barakat, S. “Statistical analysis of the maximum concentration of an air pollutant: effects of autocorrelation and non-stationarity,” Atmos. Environ. 1979, 13, 811-818.
    • (1979) Atmos. Environ. , vol.13 , pp. 811-818
    • Horowitz, J.1    Barakat, S.2
  • 5
    • 0020415459 scopus 로고
    • Time-series analysis of an historical visibility data base
    • Murray, L.C.; Farber, R.H. “Time-series analysis of an historical visibility data base,” Atmos. Environ. 1992, 10, 2299-2308.
    • (1992) Atmos. Environ. , vol.10 , pp. 2299-2308
    • Murray, L.C.1    Farber, R.H.2
  • 6
    • 0016491465 scopus 로고
    • Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants
    • McCollister, G.M. “Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants,” Atmos. Environ. 1975, 9, 417-423.
    • (1975) Atmos. Environ. , vol.9 , pp. 417-423
    • McCollister, G.M.1
  • 7
    • 33750288957 scopus 로고
    • A Comparison of Two Automatic Systems for Building Vector Time-Series Models in Air Pollution Research
    • Anderson, O.D., Ed.; Elsevier Science Publishers: Cincinnati, OH
    • Kapoor, S.G.; Terry, W.R. A Comparison of Two Automatic Systems for Building Vector Time-Series Models in Air Pollution Research. In Time-Series Analysis: Theory and Practice, vol. 7; Anderson, O.D., Ed.; Elsevier Science Publishers: Cincinnati, OH, 1985, 211-200.
    • (1985) Time-Series Analysis: Theory and Practice , vol.7 , pp. 200-211
    • Kapoor, S.G.1    Terry, W.R.2
  • 10
    • 0027610496 scopus 로고
    • A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain
    • 2 concentrations in highly polluted industrial areas of complex terrain,” Atmos. Environ. 1993, 27B, 221-230.
    • (1993) Atmos. Environ. , vol.27B , pp. 221-230
    • Boznar, M.1    Lesjak, M.2    Mlakar, P.3
  • 11
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie, A.C. “Comparing neural networks and regression models for ozone forecasting,” J. Air & Waste Manage. Assoc. 1997, 47, 653-663.
    • (1997) J. Air & Waste Manage. Assoc , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 13
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time-series using neural networks
    • Chakraborty, K.; Mehrotra, K.; Mohan, C.K.; Ranka, S. “Forecasting the behavior of multivariate time-series using neural networks,” Neural Networks 1992, 5, 961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 17
    • 0008914629 scopus 로고
    • On a measure of lack of fit in time models
    • Ljung, G.M.; Box, G.E.P. “On a measure of lack of fit in time models,” Biometrika 1978, 64, 517-522.
    • (1978) Biometrika , vol.64 , pp. 517-522
    • Ljung, G.M.1    Box, G.E.P.2
  • 18
    • 0024861871 scopus 로고    scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko, G. “Approximation by superposition of a sigmoidal function,” Math. Control Signal System 1999, 2, 303-314.
    • (1999) Math. Control Signal System , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 20
    • 0011839240 scopus 로고
    • Version 3.1; Department of Computer Science, University of Toronto: Toronto, Canada
    • Camp, D.; Plate, T.; Hinton, G. The XERIONNeural Network Simulator, Version 3.1; Department of Computer Science, University of Toronto: Toronto, Canada, 1993.
    • (1993) The Xerionneural Network Simulator
    • Camp, D.1    Plate, T.2    Hinton, G.3
  • 21
    • 85011156023 scopus 로고
    • Parallel Distributed Processing Research Group. Parallel Distributed Processing; MIT Press: Cambridge
    • Rumelhart, D.E.; McClelland, J.L; Parallel Distributed Processing Research Group. Parallel Distributed Processing; MIT Press: Cambridge, MA, 1989.
    • (1989) MA
    • Rumelhart, D.E.1    McClelland, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.