메뉴 건너뛰기




Volumn 22, Issue 1, 2007, Pages 97-103

Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations

Author keywords

Artificial neural networks; Multiple linear regression; Principal components; Trophospheric ozone

Indexed keywords

CLIMATE CHANGE; COMPUTATIONAL COMPLEXITY; OZONE; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS;

EID: 33749247555     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2005.12.002     Document Type: Article
Times cited : (429)

References (25)
  • 1
    • 0036224943 scopus 로고    scopus 로고
    • Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks
    • Abdul-Wahab S.A., and Al-Alawi S.M. Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software 17 (2002) 219-228
    • (2002) Environmental Modelling & Software , vol.17 , pp. 219-228
    • Abdul-Wahab, S.A.1    Al-Alawi, S.M.2
  • 2
    • 16244417840 scopus 로고    scopus 로고
    • Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations
    • Abdul-Wahab S.A., Bakheit C.S., and Al-Alawi S.M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software 20 (2005) 1263-1271
    • (2005) Environmental Modelling & Software , vol.20 , pp. 1263-1271
    • Abdul-Wahab, S.A.1    Bakheit, C.S.2    Al-Alawi, S.M.3
  • 5
    • 8844227567 scopus 로고    scopus 로고
    • Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs
    • Çamdevýren H., Demýr N., Kanik A., and Keskýn S. Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs. Ecological Modelling 181 (2005) 581-589
    • (2005) Ecological Modelling , vol.181 , pp. 581-589
    • Çamdevýren, H.1    Demýr, N.2    Kanik, A.3    Keskýn, S.4
  • 6
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
    • Chaloulakou A., Saisana M., and Spyrellis N. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Science of the Total Environment 313 (2003) 1-13
    • (2003) Science of the Total Environment , vol.313 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 7
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • Cybenko G. Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2 (1989) 303-314
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: an improved methodology to account for non-linear behaviour
    • Gardner M.W., and Dorling S.R. Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment 34 (2000) 21-34
    • (2000) Atmospheric Environment , vol.34 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 9
    • 14244250238 scopus 로고    scopus 로고
    • The effects of air pollution and meteorological parameters on respiratory morbidity during the summer in São Paulo City
    • Gonçalves F.L.T., Carvalho L.M.V., Conde F.C., Latorre P.H.N., and Braga A.L.F. The effects of air pollution and meteorological parameters on respiratory morbidity during the summer in São Paulo City. Environment International 31 (2005) 343-349
    • (2005) Environment International , vol.31 , pp. 343-349
    • Gonçalves, F.L.T.1    Carvalho, L.M.V.2    Conde, F.C.3    Latorre, P.H.N.4    Braga, A.L.F.5
  • 10
    • 2442530447 scopus 로고    scopus 로고
    • A new method of ozone forecasting using fuzzy expert and neural network systems
    • Heo J.-S., and Kim D.-S. A new method of ozone forecasting using fuzzy expert and neural network systems. Science of the Total Environment 325 (2004) 221-237
    • (2004) Science of the Total Environment , vol.325 , pp. 221-237
    • Heo, J.-S.1    Kim, D.-S.2
  • 11
    • 5544251157 scopus 로고    scopus 로고
    • Prediction of ozone concentration in ambient air using multivariate methods
    • Lengyel A., Héberger K., Paksy L., Bánhidi O., and Rajkó R. Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere 57 (2004) 889-896
    • (2004) Chemosphere , vol.57 , pp. 889-896
    • Lengyel, A.1    Héberger, K.2    Paksy, L.3    Bánhidi, O.4    Rajkó, R.5
  • 12
    • 0034661261 scopus 로고    scopus 로고
    • Application of feedforward artificial neural networks to improve process control of PID-based control algorithms
    • Martins F.G., and Coelho M.A.N. Application of feedforward artificial neural networks to improve process control of PID-based control algorithms. Computers & Chemical Engineering 24 (2000) 853-858
    • (2000) Computers & Chemical Engineering , vol.24 , pp. 853-858
    • Martins, F.G.1    Coelho, M.A.N.2
  • 14
    • 0037380848 scopus 로고    scopus 로고
    • Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data
    • Morabito F.C., and Versaci M. Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data. Neural Networks 16 (2003) 493-506
    • (2003) Neural Networks , vol.16 , pp. 493-506
    • Morabito, F.C.1    Versaci, M.2
  • 16
    • 19044395321 scopus 로고    scopus 로고
    • How many principal components? Stopping rules for determining the number of non-trivial axes revisited
    • Peres-Neto P.R., Jackson D.A., and Somers K.M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis 49 (2005) 974-997
    • (2005) Computational Statistics & Data Analysis , vol.49 , pp. 974-997
    • Peres-Neto, P.R.1    Jackson, D.A.2    Somers, K.M.3
  • 18
    • 0030082709 scopus 로고    scopus 로고
    • Cross-validated structure selection for neural networks
    • Schenker B., and Agarwal M. Cross-validated structure selection for neural networks. Computers & Chemical Engineering 20 (1996) 175-186
    • (1996) Computers & Chemical Engineering , vol.20 , pp. 175-186
    • Schenker, B.1    Agarwal, M.2
  • 20
    • 32144456452 scopus 로고    scopus 로고
    • Schlink, U., Herbarth, O., Richter, M., Dorling, S., Nunnari, G., Cawley, G., Pelikan, E. Statistical models to assess the health effects and to forecast ground-level ozone. Environmental Modelling & Software, in press, doi:10.1016/j.envsoft.2004.12.002.
  • 21
    • 0033151714 scopus 로고    scopus 로고
    • x and hydrocarbons in urban and polluted rural environments
    • x and hydrocarbons in urban and polluted rural environments. Atmospheric Environment 33 (1999) 1821-1845
    • (1999) Atmospheric Environment , vol.33 , pp. 1821-1845
    • Sillman, S.1
  • 22
    • 33749268381 scopus 로고    scopus 로고
    • Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N. PM10 forecasting for Thessaloniki, Greece. Environmental Modelling & Software, in press.
  • 23
    • 0035238946 scopus 로고    scopus 로고
    • A review of statistical methods for the meteorological adjustment of tropospheric ozone
    • Thompson M.L., Reynolds J., Cox L.H., Guttorp P., and Sampson P.D. A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmospheric Environment 35 (2001) 617-630
    • (2001) Atmospheric Environment , vol.35 , pp. 617-630
    • Thompson, M.L.1    Reynolds, J.2    Cox, L.H.3    Guttorp, P.4    Sampson, P.D.5
  • 24
    • 9944241272 scopus 로고    scopus 로고
    • Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion
    • Warne K., Prasad G., Rezvani S., and Maguire L. Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion. Engineering Applications of Artificial Intelligence 17 (2004) 871-885
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 871-885
    • Warne, K.1    Prasad, G.2    Rezvani, S.3    Maguire, L.4
  • 25
    • 0024764296 scopus 로고
    • Incipient fault diagnosis of chemical processes via artificial neural networks
    • Watanabe K., Matsuura I., Abe M., Kubota M., and Himmelblau D.M. Incipient fault diagnosis of chemical processes via artificial neural networks. AIChE Journal 35 (1989) 1803-1811
    • (1989) AIChE Journal , vol.35 , pp. 1803-1811
    • Watanabe, K.1    Matsuura, I.2    Abe, M.3    Kubota, M.4    Himmelblau, D.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.