-
1
-
-
0032563620
-
Missing values in principal component analysis
-
Grung B., Manne R. Missing values in principal component analysis. Chemom. Intell. Lab. Syst. 1998, 42:125-139.
-
(1998)
Chemom. Intell. Lab. Syst.
, vol.42
, pp. 125-139
-
-
Grung, B.1
Manne, R.2
-
2
-
-
84882482245
-
Missing data
-
Elsevier, Oxford, S. Brown, R. Tauler, B. Walczak (Eds.)
-
Arteaga F., Ferrer A. Missing data. Comprehensive Chemometrics 2009, vol. 3:285-314. Elsevier, Oxford. S. Brown, R. Tauler, B. Walczak (Eds.).
-
(2009)
Comprehensive Chemometrics
, vol.3
, pp. 285-314
-
-
Arteaga, F.1
Ferrer, A.2
-
3
-
-
0002878789
-
Recent Advances in Multivariate Statistical Process Control: Improving Robustness and Sensitivity
-
Wise B.M., Ricker N.L. Recent Advances in Multivariate Statistical Process Control: Improving Robustness and Sensitivity. Proceedings of IFAC International Symposium, ADCHEM'91, Toulouse, France 1991, 125-130.
-
(1991)
Proceedings of IFAC International Symposium, ADCHEM'91, Toulouse, France
, pp. 125-130
-
-
Wise, B.M.1
Ricker, N.L.2
-
4
-
-
0030296884
-
Missing data methods in PCA and PLS: score calculations with incomplete observations
-
Nelson P.R.C., Taylor P.A., MacGregor J.F. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemom. Intell. Lab. Syst. 1996, 35:45-65.
-
(1996)
Chemom. Intell. Lab. Syst.
, vol.35
, pp. 45-65
-
-
Nelson, P.R.C.1
Taylor, P.A.2
MacGregor, J.F.3
-
6
-
-
0036685755
-
Dealing with missing data in MSPC: several methods, different interpretations, some examples
-
Arteaga F., Ferrer A. Dealing with missing data in MSPC: several methods, different interpretations, some examples. J. Chemom. 2002, 16:408-418.
-
(2002)
J. Chemom.
, vol.16
, pp. 408-418
-
-
Arteaga, F.1
Ferrer, A.2
-
7
-
-
33644535120
-
Framework for regression-based missing data imputation methods in on-line MSPC
-
Arteaga F., Ferrer A. Framework for regression-based missing data imputation methods in on-line MSPC. J. Chemom. 2005, 19:439-447.
-
(2005)
J. Chemom.
, vol.19
, pp. 439-447
-
-
Arteaga, F.1
Ferrer, A.2
-
8
-
-
0002518154
-
Pattern recognition: finding and using regularities in multivariate data
-
Applied Science Pub, London, H. Martens, H. Russwurm (Eds.)
-
Wold S., Albano C., Dunn W.J., Esbensen K., Hellberg S., Johansson E., Sjöström M. Pattern recognition: finding and using regularities in multivariate data. Food Research and Data Analysis 1983, vol. 3:183-185. Applied Science Pub, London. H. Martens, H. Russwurm (Eds.).
-
(1983)
Food Research and Data Analysis
, vol.3
, pp. 183-185
-
-
Wold, S.1
Albano, C.2
Dunn, W.J.3
Esbensen, K.4
Hellberg, S.5
Johansson, E.6
Sjöström, M.7
-
9
-
-
18844378950
-
-
Ph.D. Dissertation, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
-
Nelson P.R.C. Treatment of missing measurements in PCA and PLS models 2002, Ph.D. Dissertation, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
-
(2002)
Treatment of missing measurements in PCA and PLS models
-
-
Nelson, P.R.C.1
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 1977, 39:1-38.
-
(1977)
J. R. Stat. Soc. Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
84950758368
-
The calculation of posterior distribution by data augmentation (with discussion)
-
Tanner M.A., Wong W.H. The calculation of posterior distribution by data augmentation (with discussion). J. Am. Stat. Assoc. 1987, 82:528-550.
-
(1987)
J. Am. Stat. Assoc.
, vol.82
, pp. 528-550
-
-
Tanner, M.A.1
Wong, W.H.2
-
14
-
-
77953996246
-
An efficient nonlinear programming strategy for PCA models with incomplete data sets
-
López-Negrete de la Fuente R., García-Muñoz S., Biegler L.T. An efficient nonlinear programming strategy for PCA models with incomplete data sets. J. Chemom. 2010, 24:301-311.
-
(2010)
J. Chemom.
, vol.24
, pp. 301-311
-
-
López-Negrete de la Fuente, R.1
García-Muñoz, S.2
Biegler, L.T.3
-
15
-
-
84871055543
-
Comparison of five iterative imputation methods for multivariate classification
-
Liu Y., Brown S.D. Comparison of five iterative imputation methods for multivariate classification. Chemom. Intell. Lab. Syst. 2013, 120:106-115.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.120
, pp. 106-115
-
-
Liu, Y.1
Brown, S.D.2
-
16
-
-
0038213576
-
Missing value imputation in multivariate data using the singular value decomposition matrix
-
Krzanowski W.J. Missing value imputation in multivariate data using the singular value decomposition matrix. Biom. Lett. 1988, 25:31-39.
-
(1988)
Biom. Lett.
, vol.25
, pp. 31-39
-
-
Krzanowski, W.J.1
-
18
-
-
78651256743
-
Multiple imputation using chained equations: issues and guidance for practice
-
White I.R., Royston P., Wood A.M. Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 2011, 30:377-399.
-
(2011)
Stat. Med.
, vol.30
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
19
-
-
0035284320
-
Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
-
Schneider T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 2001, 14:853-871.
-
(2001)
J. Clim.
, vol.14
, pp. 853-871
-
-
Schneider, T.1
-
20
-
-
0031173551
-
Regularization by truncated total least squares
-
Fierro R.D., Golub G.H., Hansen P.C., O'Leary D.P. Regularization by truncated total least squares. SIAM J. Sci. Comput. 1997, 18:1223-1241.
-
(1997)
SIAM J. Sci. Comput.
, vol.18
, pp. 1223-1241
-
-
Fierro, R.D.1
Golub, G.H.2
Hansen, P.C.3
O'Leary, D.P.4
-
21
-
-
84896500167
-
A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets
-
Gómez-Carracedo M.P., Andrade J.M., López-Mahía P., Muniategui S., Prada D. A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets. Chemom. Intell. Lab. Syst. 2014, 134:23-33.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.134
, pp. 23-33
-
-
Gómez-Carracedo, M.P.1
Andrade, J.M.2
López-Mahía, P.3
Muniategui, S.4
Prada, D.5
-
22
-
-
82155196231
-
Robust PCA methods for complete and missing data
-
Karhunen J. Robust PCA methods for complete and missing data. Neural Netw. World 2011, 5(11):357-392.
-
(2011)
Neural Netw. World
, vol.5
, Issue.11
, pp. 357-392
-
-
Karhunen, J.1
-
24
-
-
33947303537
-
Dealing with missing values and outliers in principal component analysis
-
Stanimirova I., Daszykowski M., Walczak B. Dealing with missing values and outliers in principal component analysis. Talanta 2007, 72:172-178.
-
(2007)
Talanta
, vol.72
, pp. 172-178
-
-
Stanimirova, I.1
Daszykowski, M.2
Walczak, B.3
-
25
-
-
35548956430
-
Principal component analysis for data containing outliers and missing elements
-
Seernels S., Verdonck T. Principal component analysis for data containing outliers and missing elements. Comput. Stat. Data Anal. 2008, 52(3):1712-1727.
-
(2008)
Comput. Stat. Data Anal.
, vol.52
, Issue.3
, pp. 1712-1727
-
-
Seernels, S.1
Verdonck, T.2
-
27
-
-
29144523061
-
On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming
-
Wächter A., Biegler L.T. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106(1):25-57.
-
(2006)
Math. Program.
, vol.106
, Issue.1
, pp. 25-57
-
-
Wächter, A.1
Biegler, L.T.2
-
28
-
-
0012996824
-
Classification of olive oils from their fatty acid composition
-
Applied Science Pub, London, H. Martens, H. Russwurm (Eds.)
-
Forina M., Armanino C., Lanteri S., Tiscornia E. Classification of olive oils from their fatty acid composition. Food Research and Data Analysis 1983, 189-214. Applied Science Pub, London. H. Martens, H. Russwurm (Eds.).
-
(1983)
Food Research and Data Analysis
, pp. 189-214
-
-
Forina, M.1
Armanino, C.2
Lanteri, S.3
Tiscornia, E.4
-
29
-
-
84977670160
-
-
U.S. Army TARDEC Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, United States
-
Hutzler S.A., Bessee G.B. Remote Near-Infrared Fuel Monitoring System, Interim Report 1997, U.S. Army TARDEC Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, United States.
-
(1997)
Remote Near-Infrared Fuel Monitoring System, Interim Report
-
-
Hutzler, S.A.1
Bessee, G.B.2
-
30
-
-
76749124318
-
How to simulate normal data sets with the desired correlation structure
-
Arteaga F., Ferrer A. How to simulate normal data sets with the desired correlation structure. Chemom. Intell. Lab. Syst. 2010, 101:38-42.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.101
, pp. 38-42
-
-
Arteaga, F.1
Ferrer, A.2
-
31
-
-
84880312788
-
Building covariance matrices with the desired structure
-
Arteaga F., Ferrer A. Building covariance matrices with the desired structure. Chemom. Intell. Lab. Syst. 2013, 127:80-88.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.127
, pp. 80-88
-
-
Arteaga, F.1
Ferrer, A.2
-
32
-
-
84899848188
-
Visualizing big data with compressed score plots: approach and research challenges
-
Camacho J. Visualizing big data with compressed score plots: approach and research challenges. Chemom. Intell. Lab. Syst. 2014, 135:110-125.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.135
, pp. 110-125
-
-
Camacho, J.1
-
33
-
-
84929592848
-
-
Ancaster, Ontario, Canada
-
ProSensus MultiVariate release 15.02 ProSensus Inc 2015, Ancaster, Ontario, Canada, (http://www.prosensus.com).
-
(2015)
-
-
-
34
-
-
84929582908
-
-
Umea, Sweden
-
SIMCA release 14 Umetrics 2015, Umea, Sweden, (http://www.umetrics.com).
-
(2015)
Umetrics
-
-
-
35
-
-
84929578289
-
-
Manson, Washington, USA
-
PLS Toolbox release 7.9.5 Eigenvector Research Inc 2015, Manson, Washington, USA, (http://www.eigenvector.com).
-
(2015)
Eigenvector Research Inc
-
-
|