메뉴 건너뛰기




Volumn 146, Issue , 2015, Pages 77-88

PCA model building with missing data: New proposals and a comparative study

Author keywords

Missing data; PCA model building; PCA model exploitation

Indexed keywords

DIESEL FUEL; OLIVE OIL;

EID: 84929578031     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.05.006     Document Type: Article
Times cited : (94)

References (35)
  • 1
    • 0032563620 scopus 로고    scopus 로고
    • Missing values in principal component analysis
    • Grung B., Manne R. Missing values in principal component analysis. Chemom. Intell. Lab. Syst. 1998, 42:125-139.
    • (1998) Chemom. Intell. Lab. Syst. , vol.42 , pp. 125-139
    • Grung, B.1    Manne, R.2
  • 2
    • 84882482245 scopus 로고    scopus 로고
    • Missing data
    • Elsevier, Oxford, S. Brown, R. Tauler, B. Walczak (Eds.)
    • Arteaga F., Ferrer A. Missing data. Comprehensive Chemometrics 2009, vol. 3:285-314. Elsevier, Oxford. S. Brown, R. Tauler, B. Walczak (Eds.).
    • (2009) Comprehensive Chemometrics , vol.3 , pp. 285-314
    • Arteaga, F.1    Ferrer, A.2
  • 4
    • 0030296884 scopus 로고    scopus 로고
    • Missing data methods in PCA and PLS: score calculations with incomplete observations
    • Nelson P.R.C., Taylor P.A., MacGregor J.F. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemom. Intell. Lab. Syst. 1996, 35:45-65.
    • (1996) Chemom. Intell. Lab. Syst. , vol.35 , pp. 45-65
    • Nelson, P.R.C.1    Taylor, P.A.2    MacGregor, J.F.3
  • 6
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with missing data in MSPC: several methods, different interpretations, some examples
    • Arteaga F., Ferrer A. Dealing with missing data in MSPC: several methods, different interpretations, some examples. J. Chemom. 2002, 16:408-418.
    • (2002) J. Chemom. , vol.16 , pp. 408-418
    • Arteaga, F.1    Ferrer, A.2
  • 7
    • 33644535120 scopus 로고    scopus 로고
    • Framework for regression-based missing data imputation methods in on-line MSPC
    • Arteaga F., Ferrer A. Framework for regression-based missing data imputation methods in on-line MSPC. J. Chemom. 2005, 19:439-447.
    • (2005) J. Chemom. , vol.19 , pp. 439-447
    • Arteaga, F.1    Ferrer, A.2
  • 8
    • 0002518154 scopus 로고
    • Pattern recognition: finding and using regularities in multivariate data
    • Applied Science Pub, London, H. Martens, H. Russwurm (Eds.)
    • Wold S., Albano C., Dunn W.J., Esbensen K., Hellberg S., Johansson E., Sjöström M. Pattern recognition: finding and using regularities in multivariate data. Food Research and Data Analysis 1983, vol. 3:183-185. Applied Science Pub, London. H. Martens, H. Russwurm (Eds.).
    • (1983) Food Research and Data Analysis , vol.3 , pp. 183-185
    • Wold, S.1    Albano, C.2    Dunn, W.J.3    Esbensen, K.4    Hellberg, S.5    Johansson, E.6    Sjöström, M.7
  • 9
    • 18844378950 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
    • Nelson P.R.C. Treatment of missing measurements in PCA and PLS models 2002, Ph.D. Dissertation, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
    • (2002) Treatment of missing measurements in PCA and PLS models
    • Nelson, P.R.C.1
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 1977, 39:1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 13
    • 84950758368 scopus 로고
    • The calculation of posterior distribution by data augmentation (with discussion)
    • Tanner M.A., Wong W.H. The calculation of posterior distribution by data augmentation (with discussion). J. Am. Stat. Assoc. 1987, 82:528-550.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 14
    • 77953996246 scopus 로고    scopus 로고
    • An efficient nonlinear programming strategy for PCA models with incomplete data sets
    • López-Negrete de la Fuente R., García-Muñoz S., Biegler L.T. An efficient nonlinear programming strategy for PCA models with incomplete data sets. J. Chemom. 2010, 24:301-311.
    • (2010) J. Chemom. , vol.24 , pp. 301-311
    • López-Negrete de la Fuente, R.1    García-Muñoz, S.2    Biegler, L.T.3
  • 15
    • 84871055543 scopus 로고    scopus 로고
    • Comparison of five iterative imputation methods for multivariate classification
    • Liu Y., Brown S.D. Comparison of five iterative imputation methods for multivariate classification. Chemom. Intell. Lab. Syst. 2013, 120:106-115.
    • (2013) Chemom. Intell. Lab. Syst. , vol.120 , pp. 106-115
    • Liu, Y.1    Brown, S.D.2
  • 16
    • 0038213576 scopus 로고
    • Missing value imputation in multivariate data using the singular value decomposition matrix
    • Krzanowski W.J. Missing value imputation in multivariate data using the singular value decomposition matrix. Biom. Lett. 1988, 25:31-39.
    • (1988) Biom. Lett. , vol.25 , pp. 31-39
    • Krzanowski, W.J.1
  • 18
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: issues and guidance for practice
    • White I.R., Royston P., Wood A.M. Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 2011, 30:377-399.
    • (2011) Stat. Med. , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 19
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • Schneider T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim. 2001, 14:853-871.
    • (2001) J. Clim. , vol.14 , pp. 853-871
    • Schneider, T.1
  • 21
    • 84896500167 scopus 로고    scopus 로고
    • A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets
    • Gómez-Carracedo M.P., Andrade J.M., López-Mahía P., Muniategui S., Prada D. A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets. Chemom. Intell. Lab. Syst. 2014, 134:23-33.
    • (2014) Chemom. Intell. Lab. Syst. , vol.134 , pp. 23-33
    • Gómez-Carracedo, M.P.1    Andrade, J.M.2    López-Mahía, P.3    Muniategui, S.4    Prada, D.5
  • 22
    • 82155196231 scopus 로고    scopus 로고
    • Robust PCA methods for complete and missing data
    • Karhunen J. Robust PCA methods for complete and missing data. Neural Netw. World 2011, 5(11):357-392.
    • (2011) Neural Netw. World , vol.5 , Issue.11 , pp. 357-392
    • Karhunen, J.1
  • 24
    • 33947303537 scopus 로고    scopus 로고
    • Dealing with missing values and outliers in principal component analysis
    • Stanimirova I., Daszykowski M., Walczak B. Dealing with missing values and outliers in principal component analysis. Talanta 2007, 72:172-178.
    • (2007) Talanta , vol.72 , pp. 172-178
    • Stanimirova, I.1    Daszykowski, M.2    Walczak, B.3
  • 25
    • 35548956430 scopus 로고    scopus 로고
    • Principal component analysis for data containing outliers and missing elements
    • Seernels S., Verdonck T. Principal component analysis for data containing outliers and missing elements. Comput. Stat. Data Anal. 2008, 52(3):1712-1727.
    • (2008) Comput. Stat. Data Anal. , vol.52 , Issue.3 , pp. 1712-1727
    • Seernels, S.1    Verdonck, T.2
  • 27
    • 29144523061 scopus 로고    scopus 로고
    • On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming
    • Wächter A., Biegler L.T. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106(1):25-57.
    • (2006) Math. Program. , vol.106 , Issue.1 , pp. 25-57
    • Wächter, A.1    Biegler, L.T.2
  • 28
    • 0012996824 scopus 로고
    • Classification of olive oils from their fatty acid composition
    • Applied Science Pub, London, H. Martens, H. Russwurm (Eds.)
    • Forina M., Armanino C., Lanteri S., Tiscornia E. Classification of olive oils from their fatty acid composition. Food Research and Data Analysis 1983, 189-214. Applied Science Pub, London. H. Martens, H. Russwurm (Eds.).
    • (1983) Food Research and Data Analysis , pp. 189-214
    • Forina, M.1    Armanino, C.2    Lanteri, S.3    Tiscornia, E.4
  • 29
    • 84977670160 scopus 로고    scopus 로고
    • U.S. Army TARDEC Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, United States
    • Hutzler S.A., Bessee G.B. Remote Near-Infrared Fuel Monitoring System, Interim Report 1997, U.S. Army TARDEC Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, United States.
    • (1997) Remote Near-Infrared Fuel Monitoring System, Interim Report
    • Hutzler, S.A.1    Bessee, G.B.2
  • 30
    • 76749124318 scopus 로고    scopus 로고
    • How to simulate normal data sets with the desired correlation structure
    • Arteaga F., Ferrer A. How to simulate normal data sets with the desired correlation structure. Chemom. Intell. Lab. Syst. 2010, 101:38-42.
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 38-42
    • Arteaga, F.1    Ferrer, A.2
  • 31
    • 84880312788 scopus 로고    scopus 로고
    • Building covariance matrices with the desired structure
    • Arteaga F., Ferrer A. Building covariance matrices with the desired structure. Chemom. Intell. Lab. Syst. 2013, 127:80-88.
    • (2013) Chemom. Intell. Lab. Syst. , vol.127 , pp. 80-88
    • Arteaga, F.1    Ferrer, A.2
  • 32
    • 84899848188 scopus 로고    scopus 로고
    • Visualizing big data with compressed score plots: approach and research challenges
    • Camacho J. Visualizing big data with compressed score plots: approach and research challenges. Chemom. Intell. Lab. Syst. 2014, 135:110-125.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 110-125
    • Camacho, J.1
  • 33
    • 84929592848 scopus 로고    scopus 로고
    • Ancaster, Ontario, Canada
    • ProSensus MultiVariate release 15.02 ProSensus Inc 2015, Ancaster, Ontario, Canada, (http://www.prosensus.com).
    • (2015)
  • 34
    • 84929582908 scopus 로고    scopus 로고
    • Umea, Sweden
    • SIMCA release 14 Umetrics 2015, Umea, Sweden, (http://www.umetrics.com).
    • (2015) Umetrics
  • 35
    • 84929578289 scopus 로고    scopus 로고
    • Manson, Washington, USA
    • PLS Toolbox release 7.9.5 Eigenvector Research Inc 2015, Manson, Washington, USA, (http://www.eigenvector.com).
    • (2015) Eigenvector Research Inc


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.