메뉴 건너뛰기




Volumn 107, Issue , 2015, Pages 118-128

Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation

Author keywords

Air mass trajectory based geographic model; Artificial neural networks; PM2.5 forecasting; Wavelet transformation

Indexed keywords

AIR POLLUTION; AIR QUALITY; BACKPROPAGATION; FORECASTING; MEAN SQUARE ERROR; NEURAL NETWORKS; POLLUTION; TRAJECTORIES; WAVELET DECOMPOSITION; WAVELET TRANSFORMS; WIND;

EID: 84923017379     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2015.02.030     Document Type: Article
Times cited : (512)

References (51)
  • 1
    • 84864651558 scopus 로고    scopus 로고
    • Neuro fuzzy modeling scheme for the prediction of air pollution
    • Alhanafy T.E., Zaghlool F., El A.S., Moustafa D. Neuro fuzzy modeling scheme for the prediction of air pollution. J.Am. Sci. 2010, 6:605-616.
    • (2010) J.Am. Sci. , vol.6 , pp. 605-616
    • Alhanafy, T.E.1    Zaghlool, F.2    El, A.S.3    Moustafa, D.4
  • 4
    • 84877038806 scopus 로고    scopus 로고
    • Environmental Protection Administration of China. China Environmental Science Press
    • EPA Technical Regulation on Ambient Air Quality Index (On Trial) 2012, Environmental Protection Administration of China. China Environmental Science Press.
    • (2012) Technical Regulation on Ambient Air Quality Index (On Trial)
  • 5
    • 80052642742 scopus 로고    scopus 로고
    • Application of WRF/Chem-MADRID for real-time air quality forecasting over the southeastern United States
    • Chuang M.-T., Zhang Y., Kang D. Application of WRF/Chem-MADRID for real-time air quality forecasting over the southeastern United States. Atmos. Environ. 2011, 45:6241-6250.
    • (2011) Atmos. Environ. , vol.45 , pp. 6241-6250
    • Chuang, M.-T.1    Zhang, Y.2    Kang, D.3
  • 7
    • 53949114438 scopus 로고    scopus 로고
    • Ahybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Díaz-Robles L.A., Ortega J.C., Fu J.S., Reed G.D., Chow J.C., Watson J.G., Moncada-Herrera J.A. Ahybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 2008, 42:8331-8340.
    • (2008) Atmos. Environ. , vol.42 , pp. 8331-8340
    • Díaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 8
    • 84900550850 scopus 로고    scopus 로고
    • Explorative forecasting of air pollution
    • Domańska D., Wojtylak M. Explorative forecasting of air pollution. Atmos. Environ. 2014, 92:19-30.
    • (2014) Atmos. Environ. , vol.92 , pp. 19-30
    • Domańska, D.1    Wojtylak, M.2
  • 9
    • 0026310221 scopus 로고
    • The accuracy of trajectories during ANATEX calculated using dynamic model analysis versus rawindsonde observations
    • Draxler R.A. The accuracy of trajectories during ANATEX calculated using dynamic model analysis versus rawindsonde observations. J.Appl. Meteorol. 1991, 30:1446-1467.
    • (1991) J.Appl. Meteorol. , vol.30 , pp. 1446-1467
    • Draxler, R.A.1
  • 10
    • 78349233069 scopus 로고    scopus 로고
    • Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing
    • Du X., Kong Q., Ge W., Zhang S., Fu L. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing. China J. Environ. Sci. 2010, 22:1757-1764.
    • (2010) China J. Environ. Sci. , vol.22 , pp. 1757-1764
    • Du, X.1    Kong, Q.2    Ge, W.3    Zhang, S.4    Fu, L.5
  • 11
    • 34147176086 scopus 로고    scopus 로고
    • A24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
    • Dutot A.L., Rynkiewicz J., Steiner F.E., Rude J. A24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ. Model. Softw. 2007, 22:1261-1269.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 1261-1269
    • Dutot, A.L.1    Rynkiewicz, J.2    Steiner, F.E.3    Rude, J.4
  • 12
    • 84903316347 scopus 로고    scopus 로고
    • Formation and dominant factors of haze pollution over Beijing and its peripheral areas in winter
    • Feng X., Li Q., Zhu Y., Wang J., Liang H., Xu R. Formation and dominant factors of haze pollution over Beijing and its peripheral areas in winter. Atmos. Pollut. Res. 2014, 5:528-538.
    • (2014) Atmos. Pollut. Res. , vol.5 , pp. 528-538
    • Feng, X.1    Li, Q.2    Zhu, Y.3    Wang, J.4    Liang, H.5    Xu, R.6
  • 13
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences
    • Gardner M.W., Dorling S.R. Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32:2627-2636.
    • (1998) Atmos. Environ. , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 15
    • 77954144269 scopus 로고    scopus 로고
    • Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere
    • Genc D.D., Yesilyurt C., Tuncel G. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environ. Monit. Assess. 2010, 166:11-27.
    • (2010) Environ. Monit. Assess. , vol.166 , pp. 11-27
    • Genc, D.D.1    Yesilyurt, C.2    Tuncel, G.3
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 70449405008 scopus 로고    scopus 로고
    • Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations
    • Hrust L., Klaić Z.B., Križan J., Antonić O., Hercog P. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmos. Environ. 2009, 43:5588-5596.
    • (2009) Atmos. Environ. , vol.43 , pp. 5588-5596
    • Hrust, L.1    Klaić, Z.B.2    Križan, J.3    Antonić, O.4    Hercog, P.5
  • 21
    • 9544219714 scopus 로고    scopus 로고
    • Progress in developing an ANN model for air pollution index forecast
    • Jiang D., Zhang Y., Hu X., Zeng Y., Tan J., Shao D. Progress in developing an ANN model for air pollution index forecast. Atmos. Environ. 2004, 38:7055-7064.
    • (2004) Atmos. Environ. , vol.38 , pp. 7055-7064
    • Jiang, D.1    Zhang, Y.2    Hu, X.3    Zeng, Y.4    Tan, J.5    Shao, D.6
  • 24
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
    • Kurt A., Oktay A.B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 2010, 37:7986-7992.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.B.2
  • 25
    • 84995523736 scopus 로고    scopus 로고
    • Urban air pollution forecasting using artificial intelligence based tools
    • In Tech, Chpt. 9, V. Villanyi (Ed.)
    • Li M., Hassan R. Urban air pollution forecasting using artificial intelligence based tools. Air Pollution 2010, 195-219. In Tech, Chpt. 9. V. Villanyi (Ed.).
    • (2010) Air Pollution , pp. 195-219
    • Li, M.1    Hassan, R.2
  • 28
    • 33745714336 scopus 로고    scopus 로고
    • Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network
    • Lu H.C., Hsieh J.C., Chang T.S. Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. Atmos. Res. 2006, 81:124-139.
    • (2006) Atmos. Res. , vol.81 , pp. 124-139
    • Lu, H.C.1    Hsieh, J.C.2    Chang, T.S.3
  • 29
    • 0024700097 scopus 로고
    • Atheory for multiresolution signal decomposition: the wavelet representation
    • Mallat S. Atheory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. PAMI 1989, 11:674-693.
    • (1989) IEEE Trans. PAMI , vol.11 , pp. 674-693
    • Mallat, S.1
  • 30
    • 38749096604 scopus 로고    scopus 로고
    • Within-urban variability in ambient air pollution: comparison of estimation methods
    • Marshall J.D., Nethery E., Brauer M. Within-urban variability in ambient air pollution: comparison of estimation methods. Atmos. Environ. 2008, 42:1359-1369.
    • (2008) Atmos. Environ. , vol.42 , pp. 1359-1369
    • Marshall, J.D.1    Nethery, E.2    Brauer, M.3
  • 31
    • 73749085864 scopus 로고    scopus 로고
    • An evaluation of real-time air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study
    • McKeen S., et al. An evaluation of real-time air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study. J.Geophys. Res. Atmos. 2009, 114:D00F11.
    • (2009) J.Geophys. Res. Atmos. , vol.114 , pp. D00F11
    • McKeen, S.1
  • 32
    • 26444607469 scopus 로고    scopus 로고
    • Evaluation of an integrated modeling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations
    • Niska H., Rantamäki M., Hiltuinen T., Karpinen A., Kukkonen J., Ruuskanen J., Kolehmainen M. Evaluation of an integrated modeling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmos. Environ. 2005, 39:6524-6536.
    • (2005) Atmos. Environ. , vol.39 , pp. 6524-6536
    • Niska, H.1    Rantamäki, M.2    Hiltuinen, T.3    Karpinen, A.4    Kukkonen, J.5    Ruuskanen, J.6    Kolehmainen, M.7
  • 33
    • 34250715899 scopus 로고    scopus 로고
    • Forecasting of the daily meteorological pollution using wavelets and support vector machine
    • Osowski S., Garanty K. Forecasting of the daily meteorological pollution using wavelets and support vector machine. Eng. Appl. Artif. Intell. 2007, 20:745-755.
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , pp. 745-755
    • Osowski, S.1    Garanty, K.2
  • 34
    • 0036708755 scopus 로고    scopus 로고
    • 10 concentrations 30 h in advance in Santiago, Chile
    • 10 concentrations 30 h in advance in Santiago, Chile. Atmos. Environ. 2002, 36:4555-4561.
    • (2002) Atmos. Environ. , vol.36 , pp. 4555-4561
    • Pérez, P.1    Reyes, J.2
  • 36
    • 84868225240 scopus 로고    scopus 로고
    • Differential effects of fine and coarse particles on daily emergency cardiovascular hospitalizations in Hong Kong
    • Qiu H., Yu I., Wang X., Tian L., Tse L.A., Wong T.W. Differential effects of fine and coarse particles on daily emergency cardiovascular hospitalizations in Hong Kong. Atmos. Environ. 2013, 64:296-302.
    • (2013) Atmos. Environ. , vol.64 , pp. 296-302
    • Qiu, H.1    Yu, I.2    Wang, X.3    Tian, L.4    Tse, L.A.5    Wong, T.W.6
  • 38
    • 70449708596 scopus 로고    scopus 로고
    • Predicting air pollution using fuzzy genetic linear membership Kriging in GIS
    • Shad R., Mesgari M.S., Abkar A., Shad A. Predicting air pollution using fuzzy genetic linear membership Kriging in GIS. Comput. Environ. Urban Syst. 2009, 33:472-481.
    • (2009) Comput. Environ. Urban Syst. , vol.33 , pp. 472-481
    • Shad, R.1    Mesgari, M.S.2    Abkar, A.3    Shad, A.4
  • 39
    • 46449137604 scopus 로고    scopus 로고
    • Application of wavelet transform on airborne suspended particulate matter and meteorological temporal variation
    • Shaharuddin M., Zaharim A., Nor M.J.M., Karim O.A., Sopian K. Application of wavelet transform on airborne suspended particulate matter and meteorological temporal variation. WSEAS Trans. Top. Environ. Dev. 2008, 4:89-98.
    • (2008) WSEAS Trans. Top. Environ. Dev. , vol.4 , pp. 89-98
    • Shaharuddin, M.1    Zaharim, A.2    Nor, M.J.M.3    Karim, O.A.4    Sopian, K.5
  • 41
    • 84864744928 scopus 로고    scopus 로고
    • 10 pollution by the wavelet transformation and an ensemble of neural predictors
    • 10 pollution by the wavelet transformation and an ensemble of neural predictors. Eng. Appl. Artif. Intell. 2012, 25:1246-1258.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 1246-1258
    • Siwek, K.1    Osowski, S.2
  • 44
    • 84869884924 scopus 로고    scopus 로고
    • 2.5 concentration using a hidden Markov model with different emission distributions in Northern California
    • 2.5 concentration using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 2013, 443:93-103.
    • (2013) Sci. Total Environ. , vol.443 , pp. 93-103
    • Sun, W.1    Zhang, H.2    Palazoglu, A.3    Singh, A.4    Zhang, W.5    Liu, S.6
  • 45
    • 77951184878 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, EPA-454/B-09e001
    • U.S.EPA Technical Assistance Document for Reporting of Daily Air Quality-air Quality Index 2009, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, EPA-454/B-09e001.
    • (2009) Technical Assistance Document for Reporting of Daily Air Quality-air Quality Index
  • 46
    • 84872178339 scopus 로고    scopus 로고
    • Estimation of citywide air pollution in Beijing
    • Wang J., Hu M., Xu C., Christakos G., Zhao Y. Estimation of citywide air pollution in Beijing. PLOS One 2013, 8:e53400.
    • (2013) PLOS One , vol.8 , pp. e53400
    • Wang, J.1    Hu, M.2    Xu, C.3    Christakos, G.4    Zhao, Y.5
  • 47
    • 65449134019 scopus 로고    scopus 로고
    • Relationship between airborne particulate matter and meteorological variables using non-decimated wavelet transform
    • Zaharim A., Shaharuddin M., Nor M.J.M., Karim O.A., Sopian K. Relationship between airborne particulate matter and meteorological variables using non-decimated wavelet transform. Eur. J. Sci. Res. 2009, 27:308-312.
    • (2009) Eur. J. Sci. Res. , vol.27 , pp. 308-312
    • Zaharim, A.1    Shaharuddin, M.2    Nor, M.J.M.3    Karim, O.A.4    Sopian, K.5
  • 48
    • 84864202516 scopus 로고    scopus 로고
    • Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols
    • Zhang X., Wang Y., Niu T., Zhang X., Gong S., Zhang Y., Sun J. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12:779-799.
    • (2012) Atmos. Chem. Phys. , vol.12 , pp. 779-799
    • Zhang, X.1    Wang, Y.2    Niu, T.3    Zhang, X.4    Gong, S.5    Zhang, Y.6    Sun, J.7
  • 49
    • 84865865895 scopus 로고    scopus 로고
    • Real-time air quality forecasting, part I: history, techniques, and current status
    • Zhang Y., Bocquet M., Mallet V., Seigneur C., Baklanov A. Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 2012, 60:632-655.
    • (2012) Atmos. Environ. , vol.60 , pp. 632-655
    • Zhang, Y.1    Bocquet, M.2    Mallet, V.3    Seigneur, C.4    Baklanov, A.5
  • 50
    • 84865863440 scopus 로고    scopus 로고
    • Real-time air quality forecasting, part II: state of the science, current research needs, and future prospects
    • Zhang Y., Bocquet M., Mallet V., Seigneur C., Baklanov A. Real-time air quality forecasting, part II: state of the science, current research needs, and future prospects. Atmos. Environ. 2012, 60:656-676.
    • (2012) Atmos. Environ. , vol.60 , pp. 656-676
    • Zhang, Y.1    Bocquet, M.2    Mallet, V.3    Seigneur, C.4    Baklanov, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.