-
1
-
-
84878864199
-
The hallmarks of aging
-
López-Otín, C., et al. The hallmarks of aging. Cell 153 (2013), 1194–1217.
-
(2013)
Cell
, vol.153
, pp. 1194-1217
-
-
López-Otín, C.1
-
2
-
-
84904702784
-
Cellular senescence: from physiology to pathology
-
Muñoz-Espín, D., Serrano, M., Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15 (2014), 482–496.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 482-496
-
-
Muñoz-Espín, D.1
Serrano, M.2
-
3
-
-
84933050555
-
Forging a signature of in vivo senescence
-
Sharpless, N.E., Sherr, C.J., Forging a signature of in vivo senescence. Nat. Rev. Cancer 15 (2015), 397–408.
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 397-408
-
-
Sharpless, N.E.1
Sherr, C.J.2
-
4
-
-
84965082024
-
Context-dependent effects of cellular senescence in cancer development
-
Lecot, P., et al. Context-dependent effects of cellular senescence in cancer development. Br. J. Cancer 114 (2016), 1180–1184.
-
(2016)
Br. J. Cancer
, vol.114
, pp. 1180-1184
-
-
Lecot, P.1
-
5
-
-
70349773104
-
Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence
-
Adams, P.D., Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol. Cell 36 (2009), 2–14.
-
(2009)
Mol. Cell
, vol.36
, pp. 2-14
-
-
Adams, P.D.1
-
6
-
-
84919480323
-
An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA
-
Demaria, M., et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31 (2014), 722–733.
-
(2014)
Dev. Cell
, vol.31
, pp. 722-733
-
-
Demaria, M.1
-
7
-
-
85010936485
-
Therapeutic interventions for aging: the case of cellular senescence
-
Soto-Gamez, A., Demaria, M., Therapeutic interventions for aging: the case of cellular senescence. Drug Discov. Today 22 (2017), 786–795.
-
(2017)
Drug Discov. Today
, vol.22
, pp. 786-795
-
-
Soto-Gamez, A.1
Demaria, M.2
-
8
-
-
33745823159
-
The ATM-mediated DNA-damage response: taking shape
-
Shiloh, Y., The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31 (2006), 402–410.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 402-410
-
-
Shiloh, Y.1
-
9
-
-
34247251276
-
Single- and double-stranded DNA: Building a trigger of ATR-mediated DNA damage response
-
Zou, L., Single- and double-stranded DNA: Building a trigger of ATR-mediated DNA damage response. Genes Dev. 21 (2007), 879–885.
-
(2007)
Genes Dev.
, vol.21
, pp. 879-885
-
-
Zou, L.1
-
10
-
-
0037012845
-
Genomic instability in mice lacking histone H2AX
-
Celeste, A., et al. Genomic instability in mice lacking histone H2AX. Science 296 (2002), 922–927.
-
(2002)
Science
, vol.296
, pp. 922-927
-
-
Celeste, A.1
-
11
-
-
84903446359
-
DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin
-
Ayrapetov, M.K., et al. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc. Natl. Acad. Sci. 111 (2014), 9169–9174.
-
(2014)
Proc. Natl. Acad. Sci.
, vol.111
, pp. 9169-9174
-
-
Ayrapetov, M.K.1
-
12
-
-
84855909177
-
DNA damage signaling triggers degradation of histone methyltransferases through APC/C Cdh1 in senescent cells
-
Takahashi, A., et al. DNA damage signaling triggers degradation of histone methyltransferases through APC/C Cdh1 in senescent cells. Mol. Cell 45 (2012), 123–131.
-
(2012)
Mol. Cell
, vol.45
, pp. 123-131
-
-
Takahashi, A.1
-
13
-
-
33646117239
-
Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks
-
Bekker-Jensen, S., et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173 (2006), 195–206.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 195-206
-
-
Bekker-Jensen, S.1
-
14
-
-
0037341599
-
Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage
-
Lukas, C., et al. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 5 (2003), 255–260.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 255-260
-
-
Lukas, C.1
-
15
-
-
0035939844
-
Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53
-
Turenne, G.A., et al. Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene 20 (2001), 5100–5110.
-
(2001)
Oncogene
, vol.20
, pp. 5100-5110
-
-
Turenne, G.A.1
-
16
-
-
84872569990
-
Monitoring tumorigenesis and senescence in vivo with a p16INK4a –luciferase model
-
Burd, C.E., et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a –luciferase model. Cell 152 (2013), 340–351.
-
(2013)
Cell
, vol.152
, pp. 340-351
-
-
Burd, C.E.1
-
17
-
-
80855138775
-
Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
-
Baker, D.J., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479 (2011), 232–236.
-
(2011)
Nature
, vol.479
, pp. 232-236
-
-
Baker, D.J.1
-
18
-
-
0037089557
-
Cell division is required for de novo methylation of CpG islands in bladder cancer cells
-
Velicescu, M., et al. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res. 62 (2002), 2378–2384.
-
(2002)
Cancer Res.
, vol.62
, pp. 2378-2384
-
-
Velicescu, M.1
-
19
-
-
84885665873
-
Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells
-
Venturelli, S., et al. Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Mol. Cancer Ther. 12 (2013), 2226–2236.
-
(2013)
Mol. Cancer Ther.
, vol.12
, pp. 2226-2236
-
-
Venturelli, S.1
-
20
-
-
85019727604
-
Atorvastatin treatment modulates p16 promoter methylation to regulate p16 expression
-
Zhu, B., et al. Atorvastatin treatment modulates p16 promoter methylation to regulate p16 expression. FEBS J. 284 (2017), 1868–1881.
-
(2017)
FEBS J.
, vol.284
, pp. 1868-1881
-
-
Zhu, B.1
-
21
-
-
84874698936
-
HBP1-mediated transcriptional regulation of DNA methyltransferase 1 and its impact on cell senescence
-
Pan, K., et al. HBP1-mediated transcriptional regulation of DNA methyltransferase 1 and its impact on cell senescence. Mol. Cell Biol. 33 (2013), 887–903.
-
(2013)
Mol. Cell Biol.
, vol.33
, pp. 887-903
-
-
Pan, K.1
-
22
-
-
54249083919
-
P16 methylation does not affect protein expression in cervical carcinogenesis
-
Nehls, K., et al. P16 methylation does not affect protein expression in cervical carcinogenesis. Eur. J. Cancer 44 (2008), 2496–2505.
-
(2008)
Eur. J. Cancer
, vol.44
, pp. 2496-2505
-
-
Nehls, K.1
-
23
-
-
79959412690
-
Regulatory mechanisms of tumor suppressor P16 INK4A and their relevance to cancer
-
Li, J., et al. Regulatory mechanisms of tumor suppressor P16 INK4A and their relevance to cancer. Biochemistry 50 (2011), 5566–5582.
-
(2011)
Biochemistry
, vol.50
, pp. 5566-5582
-
-
Li, J.1
-
24
-
-
77953096072
-
Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a
-
Yap, K.L., et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38 (2010), 662–674.
-
(2010)
Mol. Cell
, vol.38
, pp. 662-674
-
-
Yap, K.L.1
-
25
-
-
79952335474
-
Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A)
-
Barzily-Rokni, M., et al. Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A). Nucleic Acids Res. 39 (2011), 1326–1335.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 1326-1335
-
-
Barzily-Rokni, M.1
-
26
-
-
34250212156
-
The proximal GC-rich region of p16INK4a gene promoter plays a role in its transcriptional regulation
-
Wang, X., et al. The proximal GC-rich region of p16INK4a gene promoter plays a role in its transcriptional regulation. Mol. Cell. Biochem. 301 (2007), 259–266.
-
(2007)
Mol. Cell. Biochem.
, vol.301
, pp. 259-266
-
-
Wang, X.1
-
27
-
-
0035931859
-
Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence
-
Ohtani, N., et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409 (2001), 1067–1070.
-
(2001)
Nature
, vol.409
, pp. 1067-1070
-
-
Ohtani, N.1
-
28
-
-
0034660640
-
JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression
-
Passegue, E., JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J. 19 (2000), 2969–2979.
-
(2000)
EMBO J.
, vol.19
, pp. 2969-2979
-
-
Passegue, E.1
-
29
-
-
48049108701
-
PPAR accelerates cellular senescence by inducing p16INK4 expression in human diploid fibroblasts
-
Gan, Q., et al. PPAR accelerates cellular senescence by inducing p16INK4 expression in human diploid fibroblasts. J. Cell Sci. 121 (2008), 2235–2245.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2235-2245
-
-
Gan, Q.1
-
30
-
-
79951575793
-
B-MYB delays cell aging by repressing p16 INK4α transcription
-
Huang, Y., et al. B-MYB delays cell aging by repressing p16 INK4α transcription. Cell. Mol. Life Sci. 68 (2011), 893–901.
-
(2011)
Cell. Mol. Life Sci.
, vol.68
, pp. 893-901
-
-
Huang, Y.1
-
31
-
-
84886718424
-
YB1 binds to and represses the p16 tumor suppressor gene
-
Kotake, Y., et al. YB1 binds to and represses the p16 tumor suppressor gene. Genes Cells 18 (2013), 999–1006.
-
(2013)
Genes Cells
, vol.18
, pp. 999-1006
-
-
Kotake, Y.1
-
32
-
-
0036771637
-
Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: Implications for cellular senescence
-
Zhu, D., et al. Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: Implications for cellular senescence. J. Cell. Physiol. 193 (2002), 19–25.
-
(2002)
J. Cell. Physiol.
, vol.193
, pp. 19-25
-
-
Zhu, D.1
-
33
-
-
77950381329
-
Hydrogen peroxide induces p16INK4a through an AUF1-dependent manner
-
Guo, G.E., et al. Hydrogen peroxide induces p16INK4a through an AUF1-dependent manner. J. Cell. Biochem. 109 (2010), 1000–1005.
-
(2010)
J. Cell. Biochem.
, vol.109
, pp. 1000-1005
-
-
Guo, G.E.1
-
34
-
-
84880726285
-
P16INK4A positively regulates p21WAF1 expression by suppressing AUF1-dependent mRNA decay
-
Al-Khalaf, H.H., Aboussekhra, A., P16INK4A positively regulates p21WAF1 expression by suppressing AUF1-dependent mRNA decay. PLoS One 8 (2013), 13–15.
-
(2013)
PLoS One
, vol.8
, pp. 13-15
-
-
Al-Khalaf, H.H.1
Aboussekhra, A.2
-
35
-
-
84950140475
-
The 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding
-
Bisio, A., et al. The 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget 6 (2015), 39980–39994.
-
(2015)
Oncotarget
, vol.6
, pp. 39980-39994
-
-
Bisio, A.1
-
36
-
-
85011006661
-
The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence
-
Lu, Y., et al. The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence. Sci. Rep., 7, 2017, 41390.
-
(2017)
Sci. Rep.
, vol.7
, pp. 41390
-
-
Lu, Y.1
-
37
-
-
4744371446
-
The tumor suppressor protein p16INK4a and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system: Direct evidence for ubiquitination at the N-terminal residue
-
Ben-Saadon, R., et al. The tumor suppressor protein p16INK4a and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system: Direct evidence for ubiquitination at the N-terminal residue. J. Biol. Chem. 279 (2004), 41414–41421.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 41414-41421
-
-
Ben-Saadon, R.1
-
38
-
-
85009228884
-
Dynamics of ARF regulation that control senescence and cancer
-
Ko, A., et al. Dynamics of ARF regulation that control senescence and cancer. BMB Rep. 49 (2016), 598–606.
-
(2016)
BMB Rep.
, vol.49
, pp. 598-606
-
-
Ko, A.1
-
39
-
-
85009962395
-
-
Carr, M.I., Jones, S.N., Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis, 5, 2016, 707–724.
-
(2016)
Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis
, vol.5
, pp. 707-724
-
-
Carr, M.I.1
Jones, S.N.2
-
40
-
-
84969567873
-
Conserved senescence associated genes and pathways in primary human fibroblasts detected by RNA-seq
-
Marthandan, S., et al. Conserved senescence associated genes and pathways in primary human fibroblasts detected by RNA-seq. PLoS One, 11, 2016, e0154531.
-
(2016)
PLoS One
, vol.11
-
-
Marthandan, S.1
-
41
-
-
0343293944
-
Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b)
-
Malumbres, M., et al. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol. Cell. Biol. 20 (2000), 2915–2925.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 2915-2925
-
-
Malumbres, M.1
-
42
-
-
84937731227
-
INK4b signaling
-
INK4b signaling. Cell. Mol. Life Sci. 72 (2015), 2949–2960.
-
(2015)
Cell. Mol. Life Sci.
, vol.72
, pp. 2949-2960
-
-
Liu, S.1
-
43
-
-
28144434441
-
Histone deacetylase 3 represses p15INK4b and p21 WAF1/cip1 transcription by interacting with Sp1
-
Huang, W., et al. Histone deacetylase 3 represses p15INK4b and p21 WAF1/cip1 transcription by interacting with Sp1. Biochem. Biophys. Res. Commun. 339 (2006), 165–171.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.339
, pp. 165-171
-
-
Huang, W.1
-
44
-
-
84984910905
-
MSK1 triggers the expression of the INK4AB/ARF locus in oncogene-induced senescence
-
Culerrier, R., et al. MSK1 triggers the expression of the INK4AB/ARF locus in oncogene-induced senescence. Mol. Biol. Cell 27 (2016), 2726–2734.
-
(2016)
Mol. Biol. Cell
, vol.27
, pp. 2726-2734
-
-
Culerrier, R.1
-
45
-
-
84899514159
-
Regulation of CDKN2B expression by interaction of Arnt with Miz-1 – a basis for functional integration between the HIF and Myc gene regulatory pathways
-
Aesoy, R., et al. Regulation of CDKN2B expression by interaction of Arnt with Miz-1 – a basis for functional integration between the HIF and Myc gene regulatory pathways. Mol. Cancer, 13, 2014, 54.
-
(2014)
Mol. Cancer
, vol.13
, pp. 54
-
-
Aesoy, R.1
-
46
-
-
0030614549
-
Expression and regulation of G1 cell-cycle inhibitors (p16INK4A, p15INK4B, p18INK4C, p19INK4D) in human acute myeloid leukemia and normal myeloid cells
-
Schwaller, J., et al. Expression and regulation of G1 cell-cycle inhibitors (p16INK4A, p15INK4B, p18INK4C, p19INK4D) in human acute myeloid leukemia and normal myeloid cells. Leukemia 11 (1997), 54–63.
-
(1997)
Leukemia
, vol.11
, pp. 54-63
-
-
Schwaller, J.1
-
47
-
-
0030974040
-
Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells
-
Sandhu, C., et al. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells. Mol. Cell. Biol. 17 (1997), 2458–2467.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 2458-2467
-
-
Sandhu, C.1
-
48
-
-
77951985216
-
Examination of the expanding pathways for the regulation of p21 expression and activity
-
Jung, Y.-S., et al. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal. 22 (2010), 62–70.
-
(2010)
Cell Signal.
, vol.22
, pp. 62-70
-
-
Jung, Y.-S.1
-
49
-
-
85028067576
-
Unmasking transcriptional heterogeneity in senescent cells
-
Hernandez-Segura, A., et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27 (2017), 2652–2660.
-
(2017)
Curr. Biol.
, vol.27
, pp. 2652-2660
-
-
Hernandez-Segura, A.1
-
50
-
-
84937785587
-
Distinct roles of transforming growth factor-β signaling and transforming growth factor-β receptor inhibitor SB431542 in the regulation of p21 expression
-
Koo, B.-H., et al. Distinct roles of transforming growth factor-β signaling and transforming growth factor-β receptor inhibitor SB431542 in the regulation of p21 expression. Eur. J. Pharmacol. 764 (2015), 413–423.
-
(2015)
Eur. J. Pharmacol.
, vol.764
, pp. 413-423
-
-
Koo, B.-H.1
-
51
-
-
84891713034
-
Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
-
Coppé J.-P., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6 (2008), 2853–2868.
-
(2008)
PLoS Biol.
, vol.6
, pp. 2853-2868
-
-
Coppé, J.-P.1
-
52
-
-
77949881221
-
The senescence-associated secretory phenotype: the dark side of tumor suppression
-
Coppé J.-P., et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5 (2010), 99–118.
-
(2010)
Annu. Rev. Pathol.
, vol.5
, pp. 99-118
-
-
Coppé, J.-P.1
-
53
-
-
79959635610
-
Senescent cells develop a PARP-1 and nuclear factor- k B-associated secretome (PNAS)
-
Ohanna, M., et al. Senescent cells develop a PARP-1 and nuclear factor- k B-associated secretome (PNAS). Genes Dev. 25 (2011), 1245–1261.
-
(2011)
Genes Dev.
, vol.25
, pp. 1245-1261
-
-
Ohanna, M.1
-
54
-
-
85020284517
-
cGAS is essential for cellular senescence
-
Yang, H., et al. cGAS is essential for cellular senescence. Proc. Natl. Acad. Sci. 114 (2017), E4612–E4620.
-
(2017)
Proc. Natl. Acad. Sci.
, vol.114
, pp. E4612-E4620
-
-
Yang, H.1
-
55
-
-
85031901650
-
Cytoplasmic chromatin triggers inflammation in senescence and cancer
-
Dou, Z., et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550 (2017), 402–406.
-
(2017)
Nature
, vol.550
, pp. 402-406
-
-
Dou, Z.1
-
56
-
-
84957952429
-
Mitochondrial dysfunction induces senescence with a distinct secretory phenotype
-
Wiley, C.D., et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23 (2016), 303–314.
-
(2016)
Cell Metab.
, vol.23
, pp. 303-314
-
-
Wiley, C.D.1
-
57
-
-
44649101304
-
Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network
-
Kuilman, T., et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133 (2008), 1019–1031.
-
(2008)
Cell
, vol.133
, pp. 1019-1031
-
-
Kuilman, T.1
-
58
-
-
84942456107
-
The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4
-
Kang, C., et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 349, 2015, aaa5612.
-
(2015)
Science
, vol.349
-
-
Kang, C.1
-
59
-
-
84982133301
-
NOTCH1 mediates a switch between two distinct secretomes during senescence
-
Hoare, M., et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18 (2016), 979–992.
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 979-992
-
-
Hoare, M.1
-
60
-
-
84907998102
-
Enhancing chemotherapy efficacy in pten-deficient prostate tumors by activating the senescence-associated antitumor immunity
-
Toso, A., et al. Enhancing chemotherapy efficacy in pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9 (2014), 75–89.
-
(2014)
Cell Rep.
, vol.9
, pp. 75-89
-
-
Toso, A.1
-
61
-
-
84922149440
-
SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation
-
Hayakawa, T., et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10 (2015), 1–16.
-
(2015)
PLoS One
, vol.10
, pp. 1-16
-
-
Hayakawa, T.1
-
62
-
-
84940887570
-
MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype
-
Chen, H., et al. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol. Cell 59 (2015), 719–731.
-
(2015)
Mol. Cell
, vol.59
, pp. 719-731
-
-
Chen, H.1
-
63
-
-
85033793586
-
Histone variant H2A.J. accumulates in senescent cells and promotes inflammatory gene expression
-
Contrepois, K., et al. Histone variant H2A.J. accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun., 8, 2017, 14995.
-
(2017)
Nat. Commun.
, vol.8
, pp. 14995
-
-
Contrepois, K.1
-
64
-
-
85011977713
-
BRD4 connects enhancer remodeling to senescence immune surveillance
-
Tasdemir, N., et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6 (2016), 613–629.
-
(2016)
Cancer Discov.
, vol.6
, pp. 613-629
-
-
Tasdemir, N.1
-
65
-
-
84995878336
-
HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci
-
Aird, K.M., et al. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215 (2016), 325–334.
-
(2016)
J. Cell Biol.
, vol.215
, pp. 325-334
-
-
Aird, K.M.1
-
66
-
-
84938751873
-
mTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation
-
Laberge, R.-M., et al. mTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17 (2015), 1049–1061.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1049-1061
-
-
Laberge, R.-M.1
-
67
-
-
84940587703
-
mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype
-
Herranz, N., et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17 (2015), 1205–1217.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1205-1217
-
-
Herranz, N.1
-
68
-
-
84986917873
-
A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses
-
Bent, E.H., et al. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev. 30 (2016), 1811–1821.
-
(2016)
Genes Dev.
, vol.30
, pp. 1811-1821
-
-
Bent, E.H.1
-
69
-
-
84866951611
-
The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation
-
Tiedje, C., et al. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet., 8, 2012, e1002977.
-
(2012)
PLoS Genet.
, vol.8
-
-
Tiedje, C.1
-
70
-
-
84881399206
-
A complex secretory program orchestrated by the inflammasome controls paracrine senescence
-
Acosta, J.C., et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15 (2013), 978–990.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 978-990
-
-
Acosta, J.C.1
-
71
-
-
44649120132
-
Chemokine signaling via the CXCR2 receptor reinforces senescence
-
Acosta, J.C., et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133 (2008), 1006–1018.
-
(2008)
Cell
, vol.133
, pp. 1006-1018
-
-
Acosta, J.C.1
-
72
-
-
77949458344
-
A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen
-
Coppe, J.P., et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One, 5, 2010, e9188.
-
(2010)
PLoS One
, vol.5
-
-
Coppe, J.P.1
-
73
-
-
84881249534
-
Intracellular trafficking and secretion of inflammatory cytokines
-
Stow, J.L., Murray, R.Z., Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev. 24 (2013), 227–239.
-
(2013)
Cytokine Growth Factor Rev.
, vol.24
, pp. 227-239
-
-
Stow, J.L.1
Murray, R.Z.2
-
74
-
-
84912081105
-
Senescence-associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding
-
Effenberger, T., et al. Senescence-associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. FASEB J. 28 (2014), 4847–4856.
-
(2014)
FASEB J.
, vol.28
, pp. 4847-4856
-
-
Effenberger, T.1
-
75
-
-
84938782783
-
Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence
-
Morancho, B., et al. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res., 17, 2015, 106.
-
(2015)
Breast Cancer Res.
, vol.17
, pp. 106
-
-
Morancho, B.1
-
76
-
-
85020415355
-
Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2
-
Takasugi, M., et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8 (2017), 1–11.
-
(2017)
Nat. Commun.
, vol.8
, pp. 1-11
-
-
Takasugi, M.1
-
77
-
-
54249125009
-
Senescence-associated exosome release from human prostate cancer cells
-
Lehmann, B.D., et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68 (2008), 7864–7871.
-
(2008)
Cancer Res.
, vol.68
, pp. 7864-7871
-
-
Lehmann, B.D.1
-
78
-
-
82455198983
-
Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets
-
Jun, J. II, Lau, L.F., Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat. Rev. Drug Discov. 10 (2011), 945–963.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 945-963
-
-
Jun, J.1
Lau, L.F.2
-
79
-
-
85011802318
-
Cellular senescence promotes adverse effects of chemotherapy and cancer relapse
-
Demaria, M., et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7 (2017), 165–176.
-
(2017)
Cancer Discov.
, vol.7
, pp. 165-176
-
-
Demaria, M.1
-
80
-
-
84958093401
-
Naturally occurring p16 Ink4a - positive cells shorten healthy lifespan
-
Baker, D.J., et al. Naturally occurring p16 Ink4a - positive cells shorten healthy lifespan. Nature 530 (2016), 184–189.
-
(2016)
Nature
, vol.530
, pp. 184-189
-
-
Baker, D.J.1
-
81
-
-
84910145588
-
Senescence and apoptosis: dueling or complementary cell fates?
-
Childs, B.G., et al. Senescence and apoptosis: dueling or complementary cell fates?. EMBO Rep. 15 (2014), 1139–1153.
-
(2014)
EMBO Rep.
, vol.15
, pp. 1139-1153
-
-
Childs, B.G.1
-
82
-
-
34247371847
-
Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts
-
Ryu, S.J., et al. Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ. 14 (2007), 1020–1028.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1020-1028
-
-
Ryu, S.J.1
-
83
-
-
84878802360
-
Histone modifications in senescence-associated resistance to apoptosis by oxidative stress
-
Sanders, Y.Y., et al. Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox Biol. 1 (2013), 8–16.
-
(2013)
Redox Biol.
, vol.1
, pp. 8-16
-
-
Sanders, Y.Y.1
-
84
-
-
84928243456
-
The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs
-
Zhu, Y., et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging 14 (2015), 644–658.
-
(2015)
Aging
, vol.14
, pp. 644-658
-
-
Zhu, Y.1
-
85
-
-
84963650460
-
Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL
-
Yosef, R., et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun., 7, 2016, 11190.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11190
-
-
Yosef, R.1
-
86
-
-
85016052515
-
Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging
-
Baar, M.P., et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169 (2017), 132–147.
-
(2017)
Cell
, vol.169
, pp. 132-147
-
-
Baar, M.P.1
-
87
-
-
85020435509
-
p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling
-
Yosef, R., et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 36 (2017), 2280–2295.
-
(2017)
EMBO J.
, vol.36
, pp. 2280-2295
-
-
Yosef, R.1
-
88
-
-
85028760817
-
Identification of HSP90 inhibitors as a novel class of senolytics
-
Fuhrmann-Stroissnigg, H., et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun., 8, 2017, 422.
-
(2017)
Nat. Commun.
, vol.8
, pp. 422
-
-
Fuhrmann-Stroissnigg, H.1
-
89
-
-
0027282044
-
Bcl-X, a Bcl-2-related gene that functions as a dominant regulator of apoptotic cell death
-
Boise, L.H., et al. Bcl-X, a Bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74 (1993), 597–608.
-
(1993)
Cell
, vol.74
, pp. 597-608
-
-
Boise, L.H.1
-
90
-
-
84961290321
-
Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease
-
James, E.L., et al. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J. Proteome Res. 14 (2015), 1854–1871.
-
(2015)
J. Proteome Res.
, vol.14
, pp. 1854-1871
-
-
James, E.L.1
-
91
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao, B., et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472 (2011), 230–233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
92
-
-
85011593450
-
Is p53 involved in tissue-specific insulin resistance formation?
-
Strycharz, J., et al. Is p53 involved in tissue-specific insulin resistance formation?. Oxid. Med. Cell. Longev., 2017, 2017, 9270549.
-
(2017)
Oxid. Med. Cell. Longev.
, vol.2017
, pp. 9270549
-
-
Strycharz, J.1
-
93
-
-
84878679199
-
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
-
Kaplon, J., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498 (2013), 109–112.
-
(2013)
Nature
, vol.498
, pp. 109-112
-
-
Kaplon, J.1
-
94
-
-
51849086880
-
PTEN: a new guardian of the genome
-
Yin, Y., Shen, W.H., PTEN: a new guardian of the genome. Oncogene 27 (2008), 5443–5453.
-
(2008)
Oncogene
, vol.27
, pp. 5443-5453
-
-
Yin, Y.1
Shen, W.H.2
-
95
-
-
84941730889
-
Mitochondria: are they causal players in cellular senescence?
-
Correia-Melo, C., Passos, J.F., Mitochondria: are they causal players in cellular senescence?. Biochim. Biophys. Acta 1847 (2015), 1373–1379.
-
(2015)
Biochim. Biophys. Acta
, vol.1847
, pp. 1373-1379
-
-
Correia-Melo, C.1
Passos, J.F.2
-
96
-
-
84959065037
-
Mitochondria are required for pro-ageing features of the senescent phenotype
-
Correia-Melo, C., et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35 (2016), 724–742.
-
(2016)
EMBO J.
, vol.35
, pp. 724-742
-
-
Correia-Melo, C.1
-
97
-
-
84992327128
-
Targeting metabolism in cellular senescence, a role for intervention
-
Nacarelli, T., Sell, C., Targeting metabolism in cellular senescence, a role for intervention. Mol. Cell. Endocrinol. 455 (2016), 83–92.
-
(2016)
Mol. Cell. Endocrinol.
, vol.455
, pp. 83-92
-
-
Nacarelli, T.1
Sell, C.2
-
98
-
-
85046836594
-
Autophagy and senescence
-
Gewirtz, D.A., Autophagy and senescence. Autophagy, 9, 2013, 808812.
-
(2013)
Autophagy
, vol.9
, pp. 808812
-
-
Gewirtz, D.A.1
-
99
-
-
84930323338
-
Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells
-
Takebayashi, S., et al. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells. Aging Cell 14 (2015), 689–697.
-
(2015)
Aging Cell
, vol.14
, pp. 689-697
-
-
Takebayashi, S.1
-
100
-
-
84887621106
-
The multiple connections between pRB and cell metabolism
-
Nicolay, B.N., Dyson, N.J., The multiple connections between pRB and cell metabolism. Curr. Opin. Cell Biol. 25 (2013), 735–740.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 735-740
-
-
Nicolay, B.N.1
Dyson, N.J.2
-
101
-
-
84975510266
-
Review from ancient pathways to aging cells — connecting metabolism and cellular senescence
-
Wiley, C.D., Campisi, J., Review from ancient pathways to aging cells — connecting metabolism and cellular senescence. Cell Metab. 23 (2016), 1013–1021.
-
(2016)
Cell Metab.
, vol.23
, pp. 1013-1021
-
-
Wiley, C.D.1
Campisi, J.2
-
102
-
-
85032431524
-
Metabolic alterations accompanying oncogene-induced senescence
-
Aird, K.M., Zhang, R., Metabolic alterations accompanying oncogene-induced senescence. Mol. Cell. Oncol., 1, 2014, e963481.
-
(2014)
Mol. Cell. Oncol.
, vol.1
-
-
Aird, K.M.1
Zhang, R.2
-
103
-
-
85020193513
-
Metabolomics-proteomics combined approach identifies differential metabolism-associated molecular events between senescence and apoptosis
-
Wu, M., et al. Metabolomics-proteomics combined approach identifies differential metabolism-associated molecular events between senescence and apoptosis. J. Proteome Res. 16 (2017), 2250–2261.
-
(2017)
J. Proteome Res.
, vol.16
, pp. 2250-2261
-
-
Wu, M.1
-
104
-
-
79955613626
-
Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells
-
Kim, J.S., et al. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells. Exp. Gerontol. 46 (2011), 500–510.
-
(2011)
Exp. Gerontol.
, vol.46
, pp. 500-510
-
-
Kim, J.S.1
-
105
-
-
84942081698
-
The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease
-
Pluquet, O., et al. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol. Cell Physiol. 308 (2015), C415–C425.
-
(2015)
Am. J. Physiol. Cell Physiol.
, vol.308
, pp. C415-C425
-
-
Pluquet, O.1
-
106
-
-
85007146049
-
ATF6a regulates morphological changes associated with senescence in human fibroblasts
-
Druelle, C., et al. ATF6a regulates morphological changes associated with senescence in human fibroblasts. Oncotarget 7 (2016), 67699–67715.
-
(2016)
Oncotarget
, vol.7
, pp. 67699-67715
-
-
Druelle, C.1
-
107
-
-
85027566567
-
The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E 2 intracrine pathway
-
Published online August 10, 2017
-
Cormenier, J., et al. The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E 2 intracrine pathway. Mech. Ageing Dev., 2017, 10.1016/j.mad.2017.08.003 Published online August 10, 2017.
-
(2017)
Mech. Ageing Dev.
-
-
Cormenier, J.1
-
108
-
-
85025126079
-
Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes
-
Liu, Y., et al. Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. Biochem. Biophys. Res. Commun. 491 (2017), 368–373.
-
(2017)
Biochem. Biophys. Res. Commun.
, vol.491
, pp. 368-373
-
-
Liu, Y.1
-
109
-
-
84940896820
-
ER Stress response in human cellular models of senescence
-
Matos, L., et al. ER Stress response in human cellular models of senescence. J. Gerontol. A Biol. Sci. Med. Sci. 70 (2014), 924–935.
-
(2014)
J. Gerontol. A Biol. Sci. Med. Sci.
, vol.70
, pp. 924-935
-
-
Matos, L.1
-
110
-
-
84906712846
-
The impact of the endoplasmic reticulum protein-folding environment on cancer development
-
Wang, M., Kaufman, R.J., The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14 (2014), 581–597.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 581-597
-
-
Wang, M.1
Kaufman, R.J.2
-
111
-
-
0036591973
-
BiP is feed-back regulated by control of protein translation efficiency
-
Gülow, K., et al. BiP is feed-back regulated by control of protein translation efficiency. J. Cell Sci. 115 (2002), 2443–2452.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 2443-2452
-
-
Gülow, K.1
-
112
-
-
84884249668
-
The regulation of cell size
-
Lloyd, A.C., The regulation of cell size. Cell 154 (2013), 1194–1205.
-
(2013)
Cell
, vol.154
, pp. 1194-1205
-
-
Lloyd, A.C.1
-
113
-
-
84862891914
-
Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR – driven aging
-
Blagosklonny, M.V., Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR – driven aging. Aging (Albany. NY) 4 (2012), 159–165.
-
(2012)
Aging (Albany. NY)
, vol.4
, pp. 159-165
-
-
Blagosklonny, M.V.1
-
114
-
-
84877687210
-
Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy
-
Loffredo, F.S., et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153 (2013), 828–839.
-
(2013)
Cell
, vol.153
, pp. 828-839
-
-
Loffredo, F.S.1
-
115
-
-
59749090661
-
Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor
-
Avruch, J., et al. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans. 37 (2009), 223–226.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 223-226
-
-
Avruch, J.1
-
116
-
-
67650828068
-
A comparative analysis of the cell biology of senescence and aging
-
Hwang, E.S., et al. A comparative analysis of the cell biology of senescence and aging. Cell. Mol. Life Sci. 66 (2009), 2503–2524.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, pp. 2503-2524
-
-
Hwang, E.S.1
-
117
-
-
84868130018
-
ER stress activates NF-kB by integrating functions of basal IKK activity, IRE1 and PERK
-
Tam, A.B., et al. ER stress activates NF-kB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One, 7, 2012, e45078.
-
(2012)
PLoS One
, vol.7
-
-
Tam, A.B.1
-
118
-
-
84903169952
-
ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia reperfusion injury
-
Rao, J., et al. ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia reperfusion injury. Am. J. Transplant. 14 (2014), 1552–1561.
-
(2014)
Am. J. Transplant.
, vol.14
, pp. 1552-1561
-
-
Rao, J.1
-
119
-
-
77954672564
-
Plasma membrane microdomains in aging and disease
-
Ohno-Iwashita, Y., et al. Plasma membrane microdomains in aging and disease. Geriatr. Gerontol. Int. 10:Suppl. 1 (2010), S41–S52.
-
(2010)
Geriatr. Gerontol. Int.
, vol.10
, pp. S41-S52
-
-
Ohno-Iwashita, Y.1
-
120
-
-
84901288438
-
The role of senescent cells in ageing
-
van Deursen, J.M., The role of senescent cells in ageing. Nature 509 (2014), 439–446.
-
(2014)
Nature
, vol.509
, pp. 439-446
-
-
van Deursen, J.M.1
-
121
-
-
33845345975
-
Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements
-
Dasari, A., et al. Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res. 66 (2006), 10805–10814.
-
(2006)
Cancer Res.
, vol.66
, pp. 10805-10814
-
-
Dasari, A.1
-
122
-
-
43549100630
-
Increased abundance of cytoplasmic and nuclear caveolin 1 in human diploid fibroblasts in H2O2-induced premature senescence and interplay with p38αMAPK
-
Chrétien, A., et al. Increased abundance of cytoplasmic and nuclear caveolin 1 in human diploid fibroblasts in H2O2-induced premature senescence and interplay with p38αMAPK. FEBS Lett. 582 (2008), 1685–1692.
-
(2008)
FEBS Lett.
, vol.582
, pp. 1685-1692
-
-
Chrétien, A.1
-
123
-
-
4744371424
-
Morphological adjustment of senescent cells by modulating caveolin-1 status
-
Cho, K.A., et al. Morphological adjustment of senescent cells by modulating caveolin-1 status. J. Biol. Chem. 279 (2004), 42270–42278.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 42270-42278
-
-
Cho, K.A.1
-
124
-
-
33645112711
-
Detachment-associated changes in lipid rafts of senescent human fibroblasts
-
Inomata, M., et al. Detachment-associated changes in lipid rafts of senescent human fibroblasts. Biochem. Biophys. Res. Commun. 343 (2006), 489–495.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.343
, pp. 489-495
-
-
Inomata, M.1
-
125
-
-
84922769591
-
Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6)
-
Volonte, D., et al. Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6). J. Biol. Chem. 290 (2015), 4202–4214.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 4202-4214
-
-
Volonte, D.1
-
126
-
-
84855893320
-
Caveolin-1, cellular senescence and age-related diseases
-
Zou, H., et al. Caveolin-1, cellular senescence and age-related diseases. Mech. Ageing Dev. 132 (2011), 533–542.
-
(2011)
Mech. Ageing Dev.
, vol.132
, pp. 533-542
-
-
Zou, H.1
-
127
-
-
84927915994
-
Characterization of novel markers of senescence and their prognostic potential in cancer
-
Althubiti, M., et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis., 5, 2014, e1528.
-
(2014)
Cell Death Dis.
, vol.5
-
-
Althubiti, M.1
-
128
-
-
85014248635
-
Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody
-
Frescas, D., et al. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc. Natl. Acad. Sci. 114 (2017), E1668–E1677.
-
(2017)
Proc. Natl. Acad. Sci.
, vol.114
, pp. E1668-E1677
-
-
Frescas, D.1
-
129
-
-
85029718809
-
Identification of senescent cell surface targetable protein DPP4
-
Kim, K.M., et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 31 (2017), 1529–1534.
-
(2017)
Genes Dev.
, vol.31
, pp. 1529-1534
-
-
Kim, K.M.1
-
130
-
-
84863430906
-
Status of mTOR activity may phenotypically differentiate senescence and quiescence
-
Cho, S., Hwang, E.S., Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol. Cells 33 (2012), 597–604.
-
(2012)
Mol. Cells
, vol.33
, pp. 597-604
-
-
Cho, S.1
Hwang, E.S.2
-
131
-
-
33646946746
-
Senescence-associated β-galactosidase is lysosomal β-galactosidase
-
Lee, B.Y., et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5 (2006), 187–195.
-
(2006)
Aging Cell
, vol.5
, pp. 187-195
-
-
Lee, B.Y.1
-
132
-
-
0033730616
-
Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells
-
Kurz, D.J., et al. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113 (2000), 3613–3622.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 3613-3622
-
-
Kurz, D.J.1
-
133
-
-
0024367979
-
Alternative splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-galactosidase-related protein
-
Morreau, H., et al. Alternative splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-galactosidase-related protein. J. Biol. Chem. 264 (1989), 20655–20663.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 20655-20663
-
-
Morreau, H.1
-
134
-
-
0025850934
-
Organization of the gene encoding human lysosomal ß-galactosidase
-
Morreau, H., et al. Organization of the gene encoding human lysosomal ß-galactosidase. DNA Cell Biol. 10 (1991), 495–504.
-
(1991)
DNA Cell Biol.
, vol.10
, pp. 495-504
-
-
Morreau, H.1
-
135
-
-
70350706515
-
SR proteins and the nonsense-mediated decay mechanism are involved in human GLB1 gene alternative splicing
-
Santamaria, R., et al. SR proteins and the nonsense-mediated decay mechanism are involved in human GLB1 gene alternative splicing. BMC Res. Notes, 1, 2008, 137.
-
(2008)
BMC Res. Notes
, vol.1
, pp. 137
-
-
Santamaria, R.1
-
136
-
-
0034615927
-
Processing of lysosomal beta-galactosidase
-
van der Spoel, A., et al. Processing of lysosomal beta-galactosidase. J. Biol. Chem. 275 (2000), 10035–10040.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 10035-10040
-
-
van der Spoel, A.1
-
137
-
-
84874967976
-
Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues
-
Georgakopoulou, E.A., et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany (NY) 5 (2013), 37–50.
-
(2013)
Aging (Albany (NY)
, vol.5
, pp. 37-50
-
-
Georgakopoulou, E.A.1
-
138
-
-
84896091755
-
Oncogenic H-Ras up-regulates acid β-hexosaminidase by a mechanism dependent on the autophagy regulator TFEB
-
Urbanelli, L., et al. Oncogenic H-Ras up-regulates acid β-hexosaminidase by a mechanism dependent on the autophagy regulator TFEB. PLoS One, 9, 2014, e89485.
-
(2014)
PLoS One
, vol.9
-
-
Urbanelli, L.1
-
139
-
-
84967318087
-
Critical role of lysosomes in the dysfunction of human cardiac stem cells obtained from failing hearts
-
Gianfranceschi, G., et al. Critical role of lysosomes in the dysfunction of human cardiac stem cells obtained from failing hearts. Int. J. Cardiol. 216 (2016), 140–150.
-
(2016)
Int. J. Cardiol.
, vol.216
, pp. 140-150
-
-
Gianfranceschi, G.1
-
140
-
-
85003441787
-
Robust, universal biomarker assay to detect senescent cells in biological specimens
-
Evangelou, K., et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16 (2017), 192–197.
-
(2017)
Aging Cell
, vol.16
, pp. 192-197
-
-
Evangelou, K.1
-
141
-
-
34447132079
-
β-galactosidase staining on bone marrow. The osteoclast pitfall
-
Kopp, H.G., et al. β-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22 (2007), 971–976.
-
(2007)
Histol. Histopathol.
, vol.22
, pp. 971-976
-
-
Kopp, H.G.1
-
142
-
-
84996598519
-
Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence
-
Tai, H., et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 13 (2017), 99–113.
-
(2017)
Autophagy
, vol.13
, pp. 99-113
-
-
Tai, H.1
-
143
-
-
34249028642
-
Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence
-
Passos, J.F., et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5 (2007), 1138–1151.
-
(2007)
PLoS Biol.
, vol.5
, pp. 1138-1151
-
-
Passos, J.F.1
-
144
-
-
85019150025
-
Senoptosis: non-lethal DNA cleavage as a route to deep senescence
-
Studencka, M., Schaber, J., Senoptosis: non-lethal DNA cleavage as a route to deep senescence. Oncotarget 8 (2017), 30656–30671.
-
(2017)
Oncotarget
, vol.8
, pp. 30656-30671
-
-
Studencka, M.1
Schaber, J.2
-
145
-
-
85015334575
-
Mitochondria in cell senescence: Is mitophagy the weakest link?
-
Korolchuk, V.I., et al. Mitochondria in cell senescence: Is mitophagy the weakest link?. EBioMedicine 21 (2017), 7–13.
-
(2017)
EBioMedicine
, vol.21
, pp. 7-13
-
-
Korolchuk, V.I.1
-
146
-
-
84926469999
-
Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions
-
Dalle Pezze, P., et al. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol., 10, 2014, e1003728.
-
(2014)
PLoS Comput. Biol.
, vol.10
-
-
Dalle Pezze, P.1
-
147
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria
-
Chen, Y., Dorn, G.W. II, PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science 340 (2013), 471–475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
148
-
-
84882425828
-
Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
-
Hoshino, A., et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4 (2013), 1–12.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1-12
-
-
Hoshino, A.1
-
149
-
-
84953872755
-
Autophagy maintains stemness by preventing senescence
-
García-Prat, L., et al. Autophagy maintains stemness by preventing senescence. Nature 529 (2016), 37–42.
-
(2016)
Nature
, vol.529
, pp. 37-42
-
-
García-Prat, L.1
-
150
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex
-
Cunningham, J.T., et al. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature 450 (2007), 736–740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
-
151
-
-
84882642434
-
Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence
-
Sadaie, M., et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27 (2013), 1800–1808.
-
(2013)
Genes Dev.
, vol.27
, pp. 1800-1808
-
-
Sadaie, M.1
-
152
-
-
84880585547
-
Lysosome-mediated processing of chromatin in senescence
-
Ivanov, A., et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202 (2013), 129–143.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 129-143
-
-
Ivanov, A.1
-
153
-
-
84864297655
-
Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation
-
Chandra, T., et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol. Cell 47 (2012), 203–214.
-
(2012)
Mol. Cell
, vol.47
, pp. 203-214
-
-
Chandra, T.1
-
154
-
-
84963600109
-
Chromosome organisation during ageing and senescence
-
Chandra, T., Kirschner, K., Chromosome organisation during ageing and senescence. Curr. Opin. Cell Biol. 40 (2016), 161–167.
-
(2016)
Curr. Opin. Cell Biol.
, vol.40
, pp. 161-167
-
-
Chandra, T.1
Kirschner, K.2
-
155
-
-
84874972344
-
Lamin B1 fluctuations have differential effects on cellular proliferation and senescence
-
Dreesen, O., et al. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J. Cell Biol. 200 (2013), 605–617.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 605-617
-
-
Dreesen, O.1
-
156
-
-
84946567021
-
Autophagy mediates degradation of nuclear lamina
-
Dou, Z., et al. Autophagy mediates degradation of nuclear lamina. Nature 527 (2015), 105–109.
-
(2015)
Nature
, vol.527
, pp. 105-109
-
-
Dou, Z.1
-
157
-
-
84861673276
-
Lamin B1 loss is a senescence-associated biomarker
-
Freund, A., et al. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23 (2012), 2066–2075.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 2066-2075
-
-
Freund, A.1
-
158
-
-
85040200652
-
Senescence-associated reprogramming promotes cancer stemness
-
Milanovic, M., et al. Senescence-associated reprogramming promotes cancer stemness. Nature 553 (2017), 96–100.
-
(2017)
Nature
, vol.553
, pp. 96-100
-
-
Milanovic, M.1
-
159
-
-
85010876707
-
mTOR inhibitors in cancer therapy
-
Xie, J., et al. mTOR inhibitors in cancer therapy. F1000Res., 5, 2016, 2078.
-
(2016)
F1000Res.
, vol.5
, pp. 2078
-
-
Xie, J.1
-
160
-
-
0344622606
-
The serial cultivation of human diploid cell strains
-
Hayflick, L., Moorhead, P.S., The serial cultivation of human diploid cell strains. Exp. Cell Res. 25 (1961), 585–621.
-
(1961)
Exp. Cell Res.
, vol.25
, pp. 585-621
-
-
Hayflick, L.1
Moorhead, P.S.2
-
161
-
-
46049101008
-
Relative quantification
-
T. Dorak International University
-
Pfaffl, M.W., Relative quantification. Dorak, T., (eds.) Real Time PCR, 2006, International University, 63–82.
-
(2006)
Real Time PCR
, pp. 63-82
-
-
Pfaffl, M.W.1
-
162
-
-
85022329906
-
Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence
-
Wiley, C.D., et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16 (2017), 1043–1050.
-
(2017)
Aging Cell
, vol.16
, pp. 1043-1050
-
-
Wiley, C.D.1
-
163
-
-
84987754745
-
Small molecule compounds that induce cellular senescence
-
Petrova, N.V., et al. Small molecule compounds that induce cellular senescence. Aging Cell 15 (2016), 999–1017.
-
(2016)
Aging Cell
, vol.15
, pp. 999-1017
-
-
Petrova, N.V.1
|