메뉴 건너뛰기




Volumn 5, Issue , 2016, Pages

mTOR inhibitors in cancer therapy.

Author keywords

[No Author keywords available]

Indexed keywords

4 (4 AMINO 5 (7 METHOXY 1H INDOL 2 YL)IMIDAZO[5,1 F][1,2,4]TRIAZIN 7 YL)CYCLOHEXANECARBOXYLIC ACID; AZD 8055; DACTOLISIB; EVEROLIMUS; FULVESTRANT; IBRUTINIB; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; OMIPALISIB; PACLITAXEL; RAPAMYCIN; SAPANISERTIB; SELUMETINIB; TEMSIROLIMUS; VISTUSERTIB; VOXTALISIB;

EID: 85010876707     PISSN: None     EISSN: 20461402     Source Type: Journal    
DOI: 10.12688/F1000RESEARCH.9207.1     Document Type: Review
Times cited : (211)

References (82)
  • 1
    • 84975478637 scopus 로고    scopus 로고
    • The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging
    • Kennedy BK, Lamming DW: The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab. 2016; 23(6): 990-1003.
    • (2016) Cell Metab , vol.23 , Issue.6 , pp. 990-1003
    • Kennedy, B.K.1    Lamming, D.W.2
  • 2
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: the mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN: Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014; 15(3): 155-62.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.3 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 3
    • 84920504512 scopus 로고    scopus 로고
    • mTOR: a pharmacologic target for autophagy regulation
    • Kim YC, Guan KL: mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015; 125(1): 25-32.
    • (2015) J Clin Invest , vol.125 , Issue.1 , pp. 25-32
    • Kim, Y.C.1    Guan, K.L.2
  • 5
    • 78650510609 scopus 로고    scopus 로고
    • mTOR: from growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011; 12(1): 21-35.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , Issue.1 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 7
    • 0030881836 scopus 로고    scopus 로고
    • Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin
    • Brunn GJ, Hudson CC, Sekulic A, et al.: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997; 277(5322): 99-101.
    • (1997) Science , vol.277 , Issue.5322 , pp. 99-101
    • Brunn, G.J.1    Hudson, C.C.2    Sekulic, A.3
  • 8
    • 84947292931 scopus 로고    scopus 로고
    • Signalling to eIF4E in cancer
    • Siddiqui N, Sonenberg N: Signalling to eIF4E in cancer. Biochem Soc Trans. 2015; 43(5): 763-72.
    • (2015) Biochem Soc Trans , vol.43 , Issue.5 , pp. 763-772
    • Siddiqui, N.1    Sonenberg, N.2
  • 9
    • 79953183694 scopus 로고    scopus 로고
    • Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis
    • Huo Y, Iadevaia V, Proud CG: Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochem Soc Trans. 2011; 39(2): 446-50.
    • (2011) Biochem Soc Trans , vol.39 , Issue.2 , pp. 446-450
    • Huo, Y.1    Iadevaia, V.2    Proud, C.G.3
  • 10
    • 84863045210 scopus 로고    scopus 로고
    • Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis
    • Iadevaia V, Huo Y, Zhang Z, et al.: Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans. 2012; 40(1): 168-72.
    • (2012) Biochem Soc Trans , vol.40 , Issue.1 , pp. 168-172
    • Iadevaia, V.1    Huo, Y.2    Zhang, Z.3
  • 12
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, et al.: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005; 307(5712): 1098-101.
    • (2005) Science , vol.307 , Issue.5712 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3
  • 13
    • 84878796897 scopus 로고    scopus 로고
    • Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
    • Humphrey SJ, Yang G, Yang P, et al.: Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 2013; 17(6): 1009-20.
    • (2013) Cell Metab , vol.17 , Issue.6 , pp. 1009-1020
    • Humphrey, S.J.1    Yang, G.2    Yang, P.3
  • 14
    • 68749116494 scopus 로고    scopus 로고
    • Hengstschlager M. Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle
    • Rosner M, Fuchs C, Siegel N, et al.: Hengstschlager M. Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet. 2009; 18(17): 3298-310.
    • (2009) Hum Mol Genet , vol.18 , Issue.17 , pp. 3298-3310
    • Rosner, M.1    Fuchs, C.2    Siegel, N.3
  • 15
    • 84947023702 scopus 로고    scopus 로고
    • A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation
    • Yang G, Murashige DS, Humphrey SJ, et al.: A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. Cell Rep. 2015; 12(6): 937-43.
    • (2015) Cell Rep , vol.12 , Issue.6 , pp. 937-943
    • Yang, G.1    Murashige, D.S.2    Humphrey, S.J.3
  • 16
    • 79960716001 scopus 로고    scopus 로고
    • Akt signalling in health and disease
    • Hers I, Vincent EE, Tavaré JM: Akt signalling in health and disease. Cell Signal. 2011; 23(10): 1515-27.
    • (2011) Cell Signal , vol.23 , Issue.10 , pp. 1515-1527
    • Hers, I.1    Vincent, E.E.2    Tavaré, J.M.3
  • 17
    • 84946231699 scopus 로고    scopus 로고
    • The SIN1-PH Domain Connects mTORC2 to PI3K
    • Yuan HX, Guan KL: The SIN1-PH Domain Connects mTORC2 to PI3K. Cancer Discov. 2015; 5(11): 1127-9.
    • (2015) Cancer Discov , vol.5 , Issue.11 , pp. 1127-1129
    • Yuan, H.X.1    Guan, K.L.2
  • 18
    • 78651330430 scopus 로고    scopus 로고
    • COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer
    • Forbes SA, Bindal N, Bamford S, et al.: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011; 39(Database issue): D945-50.
    • (2011) Nucleic Acids Res , vol.39 , Issue.DATABASE ISSUE , pp. D945-D950
    • Forbes, S.A.1    Bindal, N.2    Bamford, S.3
  • 19
    • 56249147509 scopus 로고    scopus 로고
    • Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
    • Choo AY, Yoon SO, Kim SG, et al.: Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008; 105(45): 17414-9.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.45 , pp. 17414-17419
    • Choo, A.Y.1    Yoon, S.O.2    Kim, S.G.3
  • 20
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip CK, Murata K, Walz T, et al.: Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell. 2010; 38(5): 768-74.
    • (2010) Mol Cell , vol.38 , Issue.5 , pp. 768-774
    • Yip, C.K.1    Murata, K.2    Walz, T.3
  • 21
    • 84952950121 scopus 로고    scopus 로고
    • Architecture of human mTOR complex 1
    • Aylett CH, Sauer E, Imseng S, et al.: Architecture of human mTOR complex 1. Science. 2016; 351(6268): 48-52.
    • (2016) Science , vol.351 , Issue.6268 , pp. 48-52
    • Aylett, C.H.1    Sauer, E.2    Imseng, S.3
  • 22
    • 84960117201 scopus 로고    scopus 로고
    • Structural insights of mTOR complex 1
    • Yuan HX, Guan KL: Structural insights of mTOR complex 1. Cell Res. 2016; 26(3): 267-8.
    • (2016) Cell Res , vol.26 , Issue.3 , pp. 267-268
    • Yuan, H.X.1    Guan, K.L.2
  • 23
    • 77952967459 scopus 로고    scopus 로고
    • mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
    • Dowling RJ, Topisirovic I, Alain T, et al.: mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010; 328(5982): 1172-6.
    • (2010) Science , vol.328 , Issue.5982 , pp. 1172-1176
    • Dowling, R.J.1    Topisirovic, I.2    Alain, T.3
  • 24
    • 62049084546 scopus 로고    scopus 로고
    • Rapamycin induces transactivation of the EGFR and increases cell survival
    • Chaturvedi D, Gao X, Cohen MS, et al.: Rapamycin induces transactivation of the EGFR and increases cell survival. Oncogene. 2009; 28(9): 1187-96.
    • (2009) Oncogene , vol.28 , Issue.9 , pp. 1187-1196
    • Chaturvedi, D.1    Gao, X.2    Cohen, M.S.3
  • 25
    • 80655126355 scopus 로고    scopus 로고
    • mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling
    • Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, et al.: mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2011; 1(3): 248-59.
    • (2011) Cancer Discov , vol.1 , Issue.3 , pp. 248-259
    • Rodrik-Outmezguine, V.S.1    Chandarlapaty, S.2    Pagano, N.C.3
  • 26
    • 84896692038 scopus 로고    scopus 로고
    • Rapamycin: one drug, many effects
    • Li J, Kim SG, Blenis J: Rapamycin: one drug, many effects. Cell Metab. 2014; 19(3): 373-9.
    • (2014) Cell Metab , vol.19 , Issue.3 , pp. 373-379
    • Li, J.1    Kim, S.G.2    Blenis, J.3
  • 27
    • 84959520989 scopus 로고    scopus 로고
    • Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases
    • Liu R, Proud CG: Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin. 2016; 37(3): 285-94.
    • (2016) Acta Pharmacol Sin , vol.37 , Issue.3 , pp. 285-294
    • Liu, R.1    Proud, C.G.2
  • 28
    • 67650228579 scopus 로고    scopus 로고
    • Rapamycin inhibits mTORC1, but not completely
    • Thoreen CC, Sabatini DM: Rapamycin inhibits mTORC1, but not completely. Autophagy. 2009; 5(5): 725-6.
    • (2009) Autophagy , vol.5 , Issue.5 , pp. 725-726
    • Thoreen, C.C.1    Sabatini, D.M.2
  • 29
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, Ali SM, Sengupta S, et al.: Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006; 22(2): 159-68.
    • (2006) Mol Cell , vol.22 , Issue.2 , pp. 159-168
    • Sarbassov, D.D.1    Ali, S.M.2    Sengupta, S.3
  • 30
    • 75749105049 scopus 로고    scopus 로고
    • mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien LA, Carriere A, Moreau J, et al.: mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol. 2010; 30(4): 908-21.
    • (2010) Mol Cell Biol , vol.30 , Issue.4 , pp. 908-921
    • Julien, L.A.1    Carriere, A.2    Moreau, J.3
  • 31
    • 84929209716 scopus 로고    scopus 로고
    • Signaling crosstalk between the mTOR complexes
    • Xie J, Proud CG: Signaling crosstalk between the mTOR complexes. Translation (Austin). 2014; 2(1): e28174.
    • (2014) Translation (Austin) , vol.2 , Issue.1
    • Xie, J.1    Proud, C.G.2
  • 32
    • 0030832514 scopus 로고    scopus 로고
    • SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo
    • Schuler W, Sedrani R, Cottens S, et al.: SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation. 1997; 64(1): 36-42.
    • (1997) Transplantation , vol.64 , Issue.1 , pp. 36-42
    • Schuler, W.1    Sedrani, R.2    Cottens, S.3
  • 33
    • 0030814696 scopus 로고    scopus 로고
    • SDZ RAD, a new rapamycin derivative: synergism with cyclosporine
    • Schuurman HJ, Cottens S, Fuchs S, et al.: SDZ RAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation. 1997; 64(1): 32-5.
    • (1997) Transplantation , vol.64 , Issue.1 , pp. 32-35
    • Schuurman, H.J.1    Cottens, S.2    Fuchs, S.3
  • 34
    • 67651155960 scopus 로고    scopus 로고
    • Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941
    • Raynaud FI, Eccles SA, Patel S, et al.: Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther. 2009; 8(7): 1725-38.
    • (2009) Mol Cancer Ther , vol.8 , Issue.7 , pp. 1725-1738
    • Raynaud, F.I.1    Eccles, S.A.2    Patel, S.3
  • 35
    • 51049109033 scopus 로고    scopus 로고
    • Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity
    • Maira S, Stauffer F, Brueggen J, et al.: Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008; 7(7): 1851-63.
    • (2008) Mol Cancer Ther , vol.7 , Issue.7 , pp. 1851-1863
    • Maira, S.1    Stauffer, F.2    Brueggen, J.3
  • 36
    • 78650322376 scopus 로고    scopus 로고
    • Vertical targeting of the phosphatidylinositol-3 kinase pathway as a strategy for treating melanoma
    • Aziz SA, Jilaveanu LB, Zito C, et al.: Vertical targeting of the phosphatidylinositol-3 kinase pathway as a strategy for treating melanoma. Clin Cancer Res. 2010; 16(24): 6029-39.
    • (2010) Clin Cancer Res , vol.16 , Issue.24 , pp. 6029-6039
    • Aziz, S.A.1    Jilaveanu, L.B.2    Zito, C.3
  • 37
    • 57349194139 scopus 로고    scopus 로고
    • Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers
    • Engelman JA, Chen L, Tan X, et al.: Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008; 14(12): 1351-6.
    • (2008) Nat Med , vol.14 , Issue.12 , pp. 1351-1356
    • Engelman, J.A.1    Chen, L.2    Tan, X.3
  • 38
    • 77954638677 scopus 로고    scopus 로고
    • Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin
    • Knight SD, Adams ND, Burgess JL, et al.: Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. ACS Med Chem Lett. 2010; 1(1): 39-43.
    • (2010) ACS Med Chem Lett , vol.1 , Issue.1 , pp. 39-43
    • Knight, S.D.1    Adams, N.D.2    Burgess, J.L.3
  • 39
    • 84899711229 scopus 로고    scopus 로고
    • Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway
    • Yu P, Laird AD, Du X, et al.: Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014; 13(5): 1078-91.
    • (2014) Mol Cancer Ther , vol.13 , Issue.5 , pp. 1078-1091
    • Yu, P.1    Laird, A.D.2    Du, X.3
  • 40
    • 39149123820 scopus 로고    scopus 로고
    • A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity
    • Garlich JR, De P, Dey N, et al.: A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 2008; 68(1): 206-15.
    • (2008) Cancer Res , vol.68 , Issue.1 , pp. 206-215
    • Garlich, J.R.1    De, P.2    Dey, N.3
  • 41
    • 54249162351 scopus 로고    scopus 로고
    • Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases
    • Apsel B, Blair JA, Gonzalez B, et al.: Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol. 2008; 4(11): 691-9.
    • (2008) Nat Chem Biol , vol.4 , Issue.11 , pp. 691-699
    • Apsel, B.1    Blair, J.A.2    Gonzalez, B.3
  • 42
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman ME, Apsel B, Uotila A, et al.: Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009; 7(2): e38.
    • (2009) PLoS Biol , vol.7 , Issue.2
    • Feldman, M.E.1    Apsel, B.2    Uotila, A.3
  • 43
    • 77649286736 scopus 로고    scopus 로고
    • Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBPeIF4E
    • Hsieh AC, Costa M, Zollo O, et al.: Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBPeIF4E. Cancer Cell. 2010; 17(3): 249-61.
    • (2010) Cancer Cell , vol.17 , Issue.3 , pp. 249-261
    • Hsieh, A.C.1    Costa, M.2    Zollo, O.3
  • 44
    • 84862777192 scopus 로고    scopus 로고
    • The translational landscape of mTOR signalling steers cancer initiation and metastasis
    • Hsieh AC, Liu Y, Edlind MP, et al.: The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012; 485(7396): 55-61.
    • (2012) Nature , vol.485 , Issue.7396 , pp. 55-61
    • Hsieh, A.C.1    Liu, Y.2    Edlind, M.P.3
  • 45
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, Kang SA, Chang JW, et al.: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009; 284(12): 8023-32.
    • (2009) J Biol Chem , vol.284 , Issue.12 , pp. 8023-8032
    • Thoreen, C.C.1    Kang, S.A.2    Chang, J.W.3
  • 46
    • 84876950862 scopus 로고    scopus 로고
    • Characterization of Torin2, an ATPcompetitive inhibitor of mTOR, ATM, and ATR
    • Liu Q, Xu C, Kirubakaran S, et al.: Characterization of Torin2, an ATPcompetitive inhibitor of mTOR, ATM, and ATR. Cancer Res. 2013; 73(8): 2574-86.
    • (2013) Cancer Res , vol.73 , Issue.8 , pp. 2574-2586
    • Liu, Q.1    Xu, C.2    Kirubakaran, S.3
  • 47
    • 67650312583 scopus 로고    scopus 로고
    • Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
    • García-Martínez JM, Moran J, Clarke RG, et al.: Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009; 421(1): 29-42.
    • (2009) Biochem J , vol.421 , Issue.1 , pp. 29-42
    • García-Martínez, J.M.1    Moran, J.2    Clarke, R.G.3
  • 48
    • 70349256453 scopus 로고    scopus 로고
    • The discovery and optimisation of pyrido[2, 3-d]pyrimidine-2, 4-diamines as potent and selective inhibitors of mTOR kinase
    • Malagu K, Duggan H, Menear K, et al.: The discovery and optimisation of pyrido[2, 3-d]pyrimidine-2, 4-diamines as potent and selective inhibitors of mTOR kinase. Bioorg Med Chem Lett. 2009; 19(20): 5950-3.
    • (2009) Bioorg Med Chem Lett , vol.19 , Issue.20 , pp. 5950-5953
    • Malagu, K.1    Duggan, H.2    Menear, K.3
  • 49
    • 68049137608 scopus 로고    scopus 로고
    • Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
    • Yu K, Toral-Barza L, Shi C, et al.: Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 2009; 69(15): 6232-40.
    • (2009) Cancer Res , vol.69 , Issue.15 , pp. 6232-6240
    • Yu, K.1    Toral-Barza, L.2    Shi, C.3
  • 50
    • 75149112670 scopus 로고    scopus 로고
    • AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
    • Chresta CM, Davies BR, Hickson I, et al.: AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010; 70(1): 288-98.
    • (2010) Cancer Res , vol.70 , Issue.1 , pp. 288-298
    • Chresta, C.M.1    Davies, B.R.2    Hickson, I.3
  • 51
    • 84873731572 scopus 로고    scopus 로고
    • Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014
    • Pike KG, Malagu K, Hummersone MG, et al.: Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014. Bioorg Med Chem Lett. 2013; 23(5): 1212-6.
    • (2013) Bioorg Med Chem Lett , vol.23 , Issue.5 , pp. 1212-1216
    • Pike, K.G.1    Malagu, K.2    Hummersone, M.G.3
  • 52
    • 0034721255 scopus 로고    scopus 로고
    • Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen
    • Shapiro AM, Lakey JR, Ryan EA, et al.: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000; 343(4): 230-8.
    • (2000) N Engl J Med , vol.343 , Issue.4 , pp. 230-238
    • Shapiro, A.M.1    Lakey, J.R.2    Ryan, E.A.3
  • 53
    • 21344462346 scopus 로고    scopus 로고
    • Five-year follow-up after clinical islet transplantation
    • Ryan EA, Paty BW, Senior PA, et al.: Five-year follow-up after clinical islet transplantation. Diabetes. 2005; 54(7): 2060-9.
    • (2005) Diabetes , vol.54 , Issue.7 , pp. 2060-2069
    • Ryan, E.A.1    Paty, B.W.2    Senior, P.A.3
  • 54
    • 10744228630 scopus 로고    scopus 로고
    • Rapamycin has a deleterious effect on MIN-6 cells and rat and human islets
    • Bell E, Cao X, Moibi JA, et al.: Rapamycin has a deleterious effect on MIN-6 cells and rat and human islets. Diabetes. 2003; 52(11): 2731-9.
    • (2003) Diabetes , vol.52 , Issue.11 , pp. 2731-2739
    • Bell, E.1    Cao, X.2    Moibi, J.A.3
  • 55
    • 33750583959 scopus 로고    scopus 로고
    • Sirolimus is associated with reduced islet engraftment and impaired beta-cell function
    • Zhang N, Su D, Qu S, et al.: Sirolimus is associated with reduced islet engraftment and impaired beta-cell function. Diabetes. 2006; 55(9): 2429-36.
    • (2006) Diabetes , vol.55 , Issue.9 , pp. 2429-2436
    • Zhang, N.1    Su, D.2    Qu, S.3
  • 56
    • 84862528153 scopus 로고    scopus 로고
    • Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)
    • Barlow AD, Xie J, Moore CE, et al.: Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2). Diabetologia. 2012; 55(5): 1355-65.
    • (2012) Diabetologia , vol.55 , Issue.5 , pp. 1355-1365
    • Barlow, A.D.1    Xie, J.2    Moore, C.E.3
  • 57
    • 81155132211 scopus 로고    scopus 로고
    • Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1
    • Huang S, Yang ZJ, Yu C, et al.: Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem. 2011; 286(46): 40002-12.
    • (2011) J Biol Chem , vol.286 , Issue.46 , pp. 40002-40012
    • Huang, S.1    Yang, Z.J.2    Yu, C.3
  • 58
    • 84862012594 scopus 로고    scopus 로고
    • The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia
    • Willems L, Chapuis N, Puissant A, et al.: The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 2012; 26(6): 1195-202.
    • (2012) Leukemia , vol.26 , Issue.6 , pp. 1195-1202
    • Willems, L.1    Chapuis, N.2    Puissant, A.3
  • 59
    • 79955398591 scopus 로고    scopus 로고
    • Otto Warburg's contributions to current concepts of cancer metabolism
    • Koppenol WH, Bounds PL, Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011; 11(5): 325-37.
    • (2011) Nat Rev Cancer , vol.11 , Issue.5 , pp. 325-337
    • Koppenol, W.H.1    Bounds, P.L.2    Dang, C.V.3
  • 60
    • 84871233832 scopus 로고    scopus 로고
    • eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies
    • Alain T, Morita M, Fonseca BD, et al.: eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res. 2012; 72(24): 6468-76.
    • (2012) Cancer Res , vol.72 , Issue.24 , pp. 6468-6476
    • Alain, T.1    Morita, M.2    Fonseca, B.D.3
  • 61
    • 84894136566 scopus 로고    scopus 로고
    • Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide
    • Jacobson BA, Thumma SC, Jay-Dixon J, et al.: Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide. PLoS One. 2013; 8(11): e81669.
    • (2013) PLoS One , vol.8 , Issue.11
    • Jacobson, B.A.1    Thumma, S.C.2    Jay-Dixon, J.3
  • 62
    • 33846449110 scopus 로고    scopus 로고
    • Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G
    • Moerke NJ, Aktas H, Chen H, et al.: Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell. 2007; 128(2): 257-67.
    • (2007) Cell , vol.128 , Issue.2 , pp. 257-267
    • Moerke, N.J.1    Aktas, H.2    Chen, H.3
  • 63
    • 59749098906 scopus 로고    scopus 로고
    • mTORC1 signalling and mRNA translation
    • Proud CG: mTORC1 signalling and mRNA translation. Biochem Soc Trans. 2009; 37(Pt 1): 227-31.
    • (2009) Biochem Soc Trans , vol.37 , pp. 227-231
    • Proud, C.G.1
  • 64
    • 84555189440 scopus 로고    scopus 로고
    • Regulation and function of the RSK family of protein kinases
    • Romeo Y, Zhang X, Roux PP: Regulation and function of the RSK family of protein kinases. Biochem J. 2012; 441(12): 553-69.
    • (2012) Biochem J , vol.441 , Issue.12 , pp. 553-569
    • Romeo, Y.1    Zhang, X.2    Roux, P.P.3
  • 65
    • 0032843917 scopus 로고    scopus 로고
    • Drosophila S6 kinase: a regulator of cell size
    • Montagne J, Stewart MJ, Stocker H, et al.: Drosophila S6 kinase: a regulator of cell size. Science. 1999; 285(5436): 2126-9.
    • (1999) Science , vol.285 , Issue.5436 , pp. 2126-2129
    • Montagne, J.1    Stewart, M.J.2    Stocker, H.3
  • 66
    • 0032538890 scopus 로고    scopus 로고
    • Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase
    • Shima H, Pende M, Chen Y, et al.: Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 1998; 17(22): 6649-59.
    • (1998) EMBO J , vol.17 , Issue.22 , pp. 6649-6659
    • Shima, H.1    Pende, M.2    Chen, Y.3
  • 67
    • 84896629473 scopus 로고    scopus 로고
    • Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
    • Chauvin C, Koka V, Nouschi A, et al.: Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014; 33(4): 474-83.
    • (2014) Oncogene , vol.33 , Issue.4 , pp. 474-483
    • Chauvin, C.1    Koka, V.2    Nouschi, A.3
  • 68
    • 0242637318 scopus 로고    scopus 로고
    • mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF
    • Hannan KM, Brandenburger Y, Jenkins A, et al.: mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol. 2003; 23(23): 8862-77.
    • (2003) Mol Cell Biol , vol.23 , Issue.23 , pp. 8862-8877
    • Hannan, K.M.1    Brandenburger, Y.2    Jenkins, A.3
  • 69
    • 84912533536 scopus 로고    scopus 로고
    • mTORC1 signaling controls multiple steps in ribosome biogenesis
    • Iadevaia V, Liu R, Proud CG: mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin Cell Dev Biol. 2014; 36: 113-20.
    • (2014) Semin Cell Dev Biol , vol.36 , pp. 113-120
    • Iadevaia, V.1    Liu, R.2    Proud, C.G.3
  • 70
    • 84863736613 scopus 로고    scopus 로고
    • Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53
    • Bywater MJ, Poortinga G, Sanij E, et al.: Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 2012; 22(1): 51-65.
    • (2012) Cancer Cell , vol.22 , Issue.1 , pp. 51-65
    • Bywater, M.J.1    Poortinga, G.2    Sanij, E.3
  • 71
    • 84954064847 scopus 로고    scopus 로고
    • Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma
    • Devlin JR, Hannan KM, Hein N, et al.: Combination Therapy Targeting Ribosome Biogenesis and mRNA Translation Synergistically Extends Survival in MYC-Driven Lymphoma. Cancer Discov. 2016; 6(1): 59-70.
    • (2016) Cancer Discov , vol.6 , Issue.1 , pp. 59-70
    • Devlin, J.R.1    Hannan, K.M.2    Hein, N.3
  • 72
    • 84938570135 scopus 로고    scopus 로고
    • Point mutations of the mTOR-RHEB pathway in renal cell carcinoma
    • Ghosh AP, Marshall CB, Coric T, et al.: Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget. 2015; 6(20): 17895-910.
    • (2015) Oncotarget , vol.6 , Issue.20 , pp. 17895-17910
    • Ghosh, A.P.1    Marshall, C.B.2    Coric, T.3
  • 73
    • 84899678098 scopus 로고    scopus 로고
    • A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity
    • Grabiner BC, Nardi V, Birsoy K, et al.: A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014; 4(5): 554-63.
    • (2014) Cancer Discov , vol.4 , Issue.5 , pp. 554-563
    • Grabiner, B.C.1    Nardi, V.2    Birsoy, K.3
  • 74
    • 84969872786 scopus 로고    scopus 로고
    • Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
    • Rodrik-Outmezguine VS, Okaniwa M, Yao Z, et al.: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016; 534(7606): 272-6.
    • (2016) Nature , vol.534 , Issue.7606 , pp. 272-276
    • Rodrik-Outmezguine, V.S.1    Okaniwa, M.2    Yao, Z.3
  • 75
    • 77952243626 scopus 로고    scopus 로고
    • Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer
    • Sato T, Nakashima A, Guo L, et al.: Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene. 2010; 29(18): 2746-52.
    • (2010) Oncogene , vol.29 , Issue.18 , pp. 2746-2752
    • Sato, T.1    Nakashima, A.2    Guo, L.3
  • 76
    • 84899680978 scopus 로고    scopus 로고
    • Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib
    • Wagle N, Grabiner BC, van Allen EM, et al.: Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 2014; 4(5): 546-53.
    • (2014) Cancer Discov , vol.4 , Issue.5 , pp. 546-553
    • Wagle, N.1    Grabiner, B.C.2    van Allen, E.M.3
  • 77
    • 0018101547 scopus 로고
    • Rapamycin (AY-22, 989), a new antifungal antibiotic. III. In vitro and in vivo evaluation
    • Baker H, Sidorowicz A, Sehgal SN, et al.: Rapamycin (AY-22, 989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot (Tokyo). 1978; 31(6): 539-45.
    • (1978) J Antibiot (Tokyo) , vol.31 , Issue.6 , pp. 539-545
    • Baker, H.1    Sidorowicz, A.2    Sehgal, S.N.3
  • 78
    • 0016713286 scopus 로고
    • Rapamycin (AY-22, 989), a new antifungal antibiotic. II. Fermentation, isolation and characterization
    • Sehgal SN, Baker H, Vézina C: Rapamycin (AY-22, 989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo). 1975; 28(10): 727-32.
    • (1975) J Antibiot (Tokyo) , vol.28 , Issue.10 , pp. 727-732
    • Sehgal, S.N.1    Baker, H.2    Vézina, C.3
  • 79
    • 0018606537 scopus 로고
    • Rapamycin (AY-22, 989), a new antifungal antibiotic. IV. Mechanism of action
    • Singh K, Sun S, Vézina C: Rapamycin (AY-22, 989), a new antifungal antibiotic. IV. Mechanism of action. J Antibiot (Tokyo). 1979; 32(6): 630-45.
    • (1979) J Antibiot (Tokyo) , vol.32 , Issue.6 , pp. 630-645
    • Singh, K.1    Sun, S.2    Vézina, C.3
  • 80
    • 0016724057 scopus 로고
    • Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
    • Vézina C, Kudelski A, Sehgal SN: Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975; 28(10): 721-6.
    • (1975) J Antibiot (Tokyo) , vol.28 , Issue.10 , pp. 721-726
    • Vézina, C.1    Kudelski, A.2    Sehgal, S.N.3
  • 81
    • 0035866358 scopus 로고    scopus 로고
    • Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy
    • Geoerger B, Kerr K, Tang CB, et al.: Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res. 2001; 61(4): 1527-32.
    • (2001) Cancer Res , vol.61 , Issue.4 , pp. 1527-1532
    • Geoerger, B.1    Kerr, K.2    Tang, C.B.3
  • 82
    • 77955443001 scopus 로고    scopus 로고
    • Critical roles for mTORC2-and rapamycininsensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells
    • Carayol N, Vakana E, Sassano A, et al.: Critical roles for mTORC2-and rapamycininsensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A. 2010; 107(28): 12469-74.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.28 , pp. 12469-12474
    • Carayol, N.1    Vakana, E.2    Sassano, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.