메뉴 건너뛰기




Volumn 7, Issue 1, 2018, Pages

Reactive oxygen species and mitochondrial dynamics: The yin and yang of mitochondrial dysfunction and cancer progression

Author keywords

Cancer; Mitochondrial dynamics; Mitochondrial ultrastructure; Oxidative stress; Reactive oxygen species; Redox signaling; Superoxide

Indexed keywords


EID: 85041002780     PISSN: None     EISSN: 20763921     Source Type: Journal    
DOI: 10.3390/antiox7010013     Document Type: Review
Times cited : (377)

References (228)
  • 1
    • 0004064798 scopus 로고    scopus 로고
    • 4th ed.; Academic Press, Elsevier: Amsterdam, The Netherlands
    • Nicholls, D.G.; Ferguson, S.J. Bioenergetics, 4th ed.; Academic Press, Elsevier: Amsterdam, The Netherlands, 2013; 419p.
    • (2013) Bioenergetics
    • Nicholls, D.G.1    Ferguson, S.J.2
  • 2
    • 85048155379 scopus 로고    scopus 로고
    • Innate immunity and tolerance toward mitochondria
    • Rongvaux, A. Innate immunity and tolerance toward mitochondria. Mitochondrion 2017.
    • (2017) Mitochondrion
    • Rongvaux, A.1
  • 6
    • 84959516439 scopus 로고    scopus 로고
    • Metabolic regulation of mitochondrial dynamics
    • Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387.
    • (2016) J. Cell Biol , vol.212 , pp. 379-387
    • Mishra, P.1    Chan, D.C.2
  • 7
    • 85040994932 scopus 로고    scopus 로고
    • Regulation of long-distance transport of mitochondria along microtubules. Cell. Mol
    • Melkov, A.; Abdu, U. Regulation of long-distance transport of mitochondria along microtubules. Cell. Mol. Life Sci. 2017.
    • (2017) Life Sci
    • Melkov, A.1    Abdu, U.2
  • 8
    • 84886671031 scopus 로고    scopus 로고
    • Structural and biomechanical basis of mitochondrial movement in eukaryotic cells
    • Wu, M.; Kalyanasundaram, A.; Zhu, J. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells. Int. J. Nanomed. 2013, 8, 4033–4042.
    • (2013) Int. J. Nanomed , vol.8 , pp. 4033-4042
    • Wu, M.1    Kalyanasundaram, A.2    Zhu, J.3
  • 9
    • 85030033108 scopus 로고    scopus 로고
    • The mobility of mitochondria: Intercellular trafficking in health and disease
    • Berridge, M.V.; Neuzil, J. The mobility of mitochondria: Intercellular trafficking in health and disease. Clin. Exp. Pharmacol. Physiol. 2017.
    • (2017) Clin. Exp. Pharmacol. Physiol
    • Berridge, M.V.1    Neuzil, J.2
  • 10
    • 85117875336 scopus 로고    scopus 로고
    • MIRO GTPases in mitochondrial transport, homeostasis and pathology
    • Tang, B.L. MIRO GTPases in mitochondrial transport, homeostasis and pathology. Cells 2016, 5, 1.
    • (2016) Cells , vol.5
    • Tang, B.L.1
  • 11
    • 85036566337 scopus 로고    scopus 로고
    • Mitochondrial health maintenance in axons
    • Harbauer, A.B. Mitochondrial health maintenance in axons. Biochem. Soc. Trans. 2017, 45, 1045–1052.
    • (2017) Biochem. Soc. Trans , vol.45 , pp. 1045-1052
    • Harbauer, A.B.1
  • 12
    • 85029296904 scopus 로고    scopus 로고
    • Mitochondria on the move: Emerging paradigms of organelle trafficking in tumour plasticity and metastasis
    • Altieri, D.C. Mitochondria on the move: Emerging paradigms of organelle trafficking in tumour plasticity and metastasis. Br. J. Cancer 2017, 117, 301–305.
    • (2017) Br. J. Cancer , vol.117 , pp. 301-305
    • Altieri, D.C.1
  • 13
    • 85020070889 scopus 로고    scopus 로고
    • The concerted action of mitochondrial dynamics and positioning: New characters in cancer onset and progression
    • Pendin, D.; Filadi, R.; Pizzo, P. The concerted action of mitochondrial dynamics and positioning: New characters in cancer onset and progression. Front. Oncol. 2017, 7, 102.
    • (2017) Front. Oncol , vol.7
    • Pendin, D.1    Filadi, R.2    Pizzo, P.3
  • 14
    • 85016137069 scopus 로고    scopus 로고
    • Mfn1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion
    • Cao, Y.L.; Meng, S.; Chen, Y.; Feng, J.X.; Gu, D.D.; Yu, B.; Li, Y.J.; Yang, J.Y.; Liao, S.; Chan, D.C.; et al. Mfn1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 2017, 542, 372–376.
    • (2017) Nature , vol.542 , pp. 372-376
    • Cao, Y.L.1    Meng, S.2    Chen, Y.3    Feng, J.X.4    Gu, D.D.5    Yu, B.6    Li, Y.J.7    Yang, J.Y.8    Liao, S.9    Chan, D.C.10
  • 15
    • 84959550018 scopus 로고    scopus 로고
    • Mitofusins, from mitochondria to metabolism
    • Schrepfer, E.; Scorrano, L. Mitofusins, from mitochondria to metabolism. Mol. Cell. 2016, 61, 683–694.
    • (2016) Mol. Cell , vol.61 , pp. 683-694
    • Schrepfer, E.1    Scorrano, L.2
  • 16
    • 85040966912 scopus 로고    scopus 로고
    • The ever-growing complexity of the mitochondrial fission machinery
    • Pagliuso, A.; Cossart, P.; Stavru, F. The ever-growing complexity of the mitochondrial fission machinery. Cell. Mol. Life Sci. 2017.
    • (2017) Cell. Mol. Life Sci
    • Pagliuso, A.1    Cossart, P.2    Stavru, F.3
  • 17
    • 84976483506 scopus 로고    scopus 로고
    • Opa1 processing in cell death and disease—The long and short of it
    • MacVicar, T.; Langer, T. Opa1 processing in cell death and disease—The long and short of it. J. Cell Sci. 2016, 129, 2297–2306.
    • (2016) J. Cell Sci , vol.129 , pp. 2297-2306
    • Macvicar, T.1    Langer, T.2
  • 19
    • 84962276687 scopus 로고    scopus 로고
    • Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone
    • Van Laar, V.S.; Berman, S.B.; Hastings, T.G. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiol. Dis. 2016, 91, 247–261.
    • (2016) Neurobiol. Dis , vol.91 , pp. 247-261
    • Van Laar, V.S.1    Berman, S.B.2    Hastings, T.G.3
  • 20
    • 85044042625 scopus 로고    scopus 로고
    • Integrative functions of the mitochondrial contact site and cristae organizing system
    • Schorr, S.; van der Laan, M. Integrative functions of the mitochondrial contact site and cristae organizing system. Semin. Cell Dev. Biol. 2017.
    • (2017) Semin. Cell Dev. Biol
    • Schorr, S.1    Van Der Laan, M.2
  • 21
    • 85019682232 scopus 로고    scopus 로고
    • Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk
    • Wollweber, F.; von der Malsburg, K.; van der Laan, M. Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk. Biochim. Biophys. Acta 2017, 1864, 1481–1489.
    • (2017) Biochim. Biophys. Acta , vol.1864 , pp. 1481-1489
    • Wollweber, F.1    Von Der Malsburg, K.2    Van Der Laan, M.3
  • 22
    • 84925012024 scopus 로고    scopus 로고
    • Cyclin C mediates stress-induced mitochondrial fission and apoptosis
    • Wang, K.; Yan, R.; Cooper, K.F.; Strich, R. Cyclin C mediates stress-induced mitochondrial fission and apoptosis. Mol. Biol. Cell 2015, 26, 1030–1043.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 1030-1043
    • Wang, K.1    Yan, R.2    Cooper, K.F.3    Strich, R.4
  • 23
    • 84939438937 scopus 로고    scopus 로고
    • The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics
    • Strich, R.; Cooper, K.F. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics. Microb. Cell 2014, 1, 318–324.
    • (2014) Microb. Cell , vol.1 , pp. 318-324
    • Strich, R.1    Cooper, K.F.2
  • 24
    • 84892992099 scopus 로고    scopus 로고
    • Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast
    • Cooper, K.F.; Khakhina, S.; Kim, S.K.; Strich, R. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast. Dev. Cell 2014, 28, 161–173.
    • (2014) Dev. Cell , vol.28 , pp. 161-173
    • Cooper, K.F.1    Khakhina, S.2    Kim, S.K.3    Strich, R.4
  • 25
    • 84988700959 scopus 로고    scopus 로고
    • Mitochondrial dynamics during cell cycling
    • Horbay, R.; Bilyy, R. Mitochondrial dynamics during cell cycling. Apoptosis 2016, 21, 1327–1335.
    • (2016) Apoptosis , vol.21 , pp. 1327-1335
    • Horbay, R.1    Bilyy, R.2
  • 26
    • 85026673802 scopus 로고    scopus 로고
    • Mitochondrial dynamics: The dynamin superfamily and execution by collusion
    • Ramachandran, R. Mitochondrial dynamics: The dynamin superfamily and execution by collusion. Semin. Cell Dev. Biol. 2017.
    • (2017) Semin. Cell Dev. Biol
    • Ramachandran, R.1
  • 27
    • 85009841200 scopus 로고    scopus 로고
    • Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals
    • Hu, C.; Huang, Y.; Li, L. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int. J. Mol. Sci. 2017, 18, 144.
    • (2017) Int. J. Mol. Sci , vol.18
    • Hu, C.1    Huang, Y.2    Li, L.3
  • 29
    • 85029405699 scopus 로고    scopus 로고
    • The constriction and scission machineries involved in mitochondrial fission
    • Kraus, F.; Ryan, M.T. The constriction and scission machineries involved in mitochondrial fission. J. Cell Sci. 2017, 130, 2953–2960.
    • (2017) J. Cell Sci , vol.130 , pp. 2953-2960
    • Kraus, F.1    Ryan, M.T.2
  • 30
    • 85016415073 scopus 로고    scopus 로고
    • The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: Implications for human disease. Clin
    • Atkins, K.; Dasgupta, A.; Chen, K.H.; Mewburn, J.; Archer, S.L. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: Implications for human disease. Clin. Sci. 2016, 130, 1861–1874.
    • (2016) Sci , vol.130 , pp. 1861-1874
    • Atkins, K.1    Dasgupta, A.2    Chen, K.H.3    Mewburn, J.4    Archer, S.L.5
  • 32
    • 84949009711 scopus 로고    scopus 로고
    • The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1
    • Liu, R.; Chan, D.C. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol. Biol. Cell 2015, 26, 4466–4477.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 4466-4477
    • Liu, R.1    Chan, D.C.2
  • 33
    • 85019720957 scopus 로고    scopus 로고
    • The interplay between oncogenic signaling networks and mitochondrial dynamics
    • Nagdas, S.; Kashatus, D.F. The interplay between oncogenic signaling networks and mitochondrial dynamics. Antioxidants 2017, 6, 33.
    • (2017) Antioxidants , vol.6
    • Nagdas, S.1    Kashatus, D.F.2
  • 34
    • 85000386311 scopus 로고    scopus 로고
    • Multiple dynamin family members collaborate to drive mitochondrial division
    • Lee, J.E.; Westrate, L.M.; Wu, H.; Page, C.; Voeltz, G.K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 2016, 540, 139–143.
    • (2016) Nature , vol.540 , pp. 139-143
    • Lee, J.E.1    Westrate, L.M.2    Wu, H.3    Page, C.4    Voeltz, G.K.5
  • 35
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa, M.; Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17, 491–506.
    • (2013) Cell Metab , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 36
    • 85019652756 scopus 로고    scopus 로고
    • The close interconnection between mitochondrial dynamics and mitophagy in cancer
    • Bordi, M.; Nazio, F.; Campello, S. The close interconnection between mitochondrial dynamics and mitophagy in cancer. Front. Oncol. 2017, 7, 81.
    • (2017) Front. Oncol , vol.7
    • Bordi, M.1    Nazio, F.2    Campello, S.3
  • 38
    • 85020904487 scopus 로고    scopus 로고
    • Escaping death: Mitochondrial redox homeostasis in cancer cells
    • Ciccarese, F.; Ciminale, V. Escaping death: Mitochondrial redox homeostasis in cancer cells. Front. Oncol. 2017, 7, 117.
    • (2017) Front. Oncol , vol.7
    • Ciccarese, F.1    Ciminale, V.2
  • 39
    • 84867273800 scopus 로고    scopus 로고
    • ROS-induced mitochondrial depolarization initiates park2/parkin-dependent mitochondrial degradation by autophagy
    • Wang, Y.; Nartiss, Y.; Steipe, B.; McQuibban, G.A.; Kim, P.K. ROS-induced mitochondrial depolarization initiates park2/parkin-dependent mitochondrial degradation by autophagy. Autophagy 2012, 8, 1462–1476.
    • (2012) Autophagy , vol.8 , pp. 1462-1476
    • Wang, Y.1    Nartiss, Y.2    Steipe, B.3    McQuibban, G.A.4    Kim, P.K.5
  • 40
    • 85041765928 scopus 로고    scopus 로고
    • Bax, Bak and beyond-mitochondrial performance in apoptosis
    • Pena-Blanco, A.; Garcia-Saez, A.J. Bax, Bak and beyond-mitochondrial performance in apoptosis. FEBS J. 2017.
    • (2017) FEBS J
    • Pena-Blanco, A.1    Garcia-Saez, A.J.2
  • 42
    • 85018523450 scopus 로고    scopus 로고
    • Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPS)
    • Rathore, R.; McCallum, J.E.; Varghese, E.; Florea, A.M.; Busselberg, D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPS). Apoptosis 2017, 22, 898–919.
    • (2017) Apoptosis , vol.22 , pp. 898-919
    • Rathore, R.1    McCallum, J.E.2    Varghese, E.3    Florea, A.M.4    Busselberg, D.5
  • 44
    • 84958604397 scopus 로고    scopus 로고
    • Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis
    • Grosse, L.; Wurm, C.A.; Bruser, C.; Neumann, D.; Jans, D.C.; Jakobs, S. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 2016, 35, 402–413.
    • (2016) EMBO J , vol.35 , pp. 402-413
    • Grosse, L.1    Wurm, C.A.2    Bruser, C.3    Neumann, D.4    Jans, D.C.5    Jakobs, S.6
  • 46
    • 85046023994 scopus 로고    scopus 로고
    • Momp, cell suicide as a BCL-2 family business
    • Kalkavan, H.; Green, D.R. Momp, cell suicide as a BCL-2 family business. Cell Death Differ. 2018, 25, 46–55.
    • (2018) Cell Death Differ , vol.25 , pp. 46-55
    • Kalkavan, H.1    Green, D.R.2
  • 48
    • 85021747521 scopus 로고    scopus 로고
    • The mitochondrial dynamics in cancer and immune-surveillance
    • Simula, L.; Nazio, F.; Campello, S. The mitochondrial dynamics in cancer and immune-surveillance. Semin. Cancer Biol. 2017, 47, 29–42.
    • (2017) Semin. Cancer Biol , vol.47 , pp. 29-42
    • Simula, L.1    Nazio, F.2    Campello, S.3
  • 49
    • 85010916217 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection
    • Srinivasan, S.; Guha, M.; Kashina, A.; Avadhani, N.G. Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim. Biophys. Acta 2017, 1858, 602–614.
    • (2017) Biochim. Biophys. Acta , vol.1858 , pp. 602-614
    • Srinivasan, S.1    Guha, M.2    Kashina, A.3    Avadhani, N.G.4
  • 50
    • 85009291488 scopus 로고    scopus 로고
    • Mitochondrial dynamics as regulators of cancer biology
    • Trotta, A.P.; Chipuk, J.E. Mitochondrial dynamics as regulators of cancer biology. Cell. Mol. Life Sci. 2017, 74, 1999–2017.
    • (2017) Cell. Mol. Life Sci , vol.74 , pp. 1999-2017
    • Trotta, A.P.1    Chipuk, J.E.2
  • 51
    • 85020014738 scopus 로고    scopus 로고
    • Insulin resistance and mitochondrial dysfunction
    • Gonzalez-Franquesa, A.; Patti, M.E. Insulin resistance and mitochondrial dysfunction. Adv. Exp. Med. Biol. 2017, 982, 465–520.
    • (2017) Adv. Exp. Med. Biol , vol.982 , pp. 465-520
    • Gonzalez-Franquesa, A.1    Patti, M.E.2
  • 53
    • 84984839673 scopus 로고    scopus 로고
    • Mitochondrial dynamics and mitochondrial dysfunction in diabetes
    • Wada, J.; Nakatsuka, A. Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med. Okayama 2016, 70, 151–158.
    • (2016) Acta Med. Okayama , vol.70 , pp. 151-158
    • Wada, J.1    Nakatsuka, A.2
  • 54
    • 85043282748 scopus 로고    scopus 로고
    • Mitochondrial quality control and disease: Insights into ischemia-reperfusion injury
    • Anzell, A.R.; Maizy, R.; Przyklenk, K.; Sanderson, T.H. Mitochondrial quality control and disease: Insights into ischemia-reperfusion injury. Mol. Neurobiol. 2017.
    • (2017) Mol. Neurobiol
    • Anzell, A.R.1    Maizy, R.2    Przyklenk, K.3    Sanderson, T.H.4
  • 56
    • 84961160445 scopus 로고    scopus 로고
    • Mitochondrial autophagy in cardiomyopathy
    • Tong, M.; Sadoshima, J. Mitochondrial autophagy in cardiomyopathy. Curr. Opin. Genet. Dev. 2016, 38, 8–15.
    • (2016) Curr. Opin. Genet. Dev , vol.38 , pp. 8-15
    • Tong, M.1    Sadoshima, J.2
  • 57
    • 84959357402 scopus 로고    scopus 로고
    • Mitochondrial dynamics and cell death in heart failure
    • Marin-Garcia, J.; Akhmedov, A.T. Mitochondrial dynamics and cell death in heart failure. Heart Fail. Rev. 2016, 21, 123–136.
    • (2016) Heart Fail. Rev , vol.21 , pp. 123-136
    • Marin-Garcia, J.1    Akhmedov, A.T.2
  • 59
    • 85050590126 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, friedreich’s ataxia
    • Chiang, S.; Kalinowski, D.S.; Jansson, P.J.; Richardson, D.R.; Huang, M.L. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, friedreich’s ataxia. Neurochem. Int. 2017.
    • (2017) Neurochem. Int
    • Chiang, S.1    Kalinowski, D.S.2    Jansson, P.J.3    Richardson, D.R.4    Huang, M.L.5
  • 60
    • 85019062821 scopus 로고    scopus 로고
    • Abnormalities of mitochondrial dynamics in neurodegenerative diseases
    • Gao, J.; Wang, L.; Liu, J.; Xie, F.; Su, B.; Wang, X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 2017, 6, 25.
    • (2017) Antioxidants , vol.6
    • Gao, J.1    Wang, L.2    Liu, J.3    Xie, F.4    Su, B.5    Wang, X.6
  • 61
    • 85015190484 scopus 로고    scopus 로고
    • Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury
    • Wu, Q.; Luo, C.L.; Tao, L.Y. Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury. Histol. Histopathol. 2017, 32, 551–559.
    • (2017) Histol. Histopathol , vol.32 , pp. 551-559
    • Wu, Q.1    Luo, C.L.2    Tao, L.Y.3
  • 62
    • 85027917509 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in parkinson’s disease
    • Bose, A.; Beal, M.F. Mitochondrial dysfunction in parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. S1), 216–231.
    • (2016) J. Neurochem , vol.139 , pp. 216-231
    • Bose, A.1    Beal, M.F.2
  • 63
    • 84958748059 scopus 로고    scopus 로고
    • Alterations in mitochondrial quality control in alzheimer’s disease. Front
    • Cai, Q.; Tammineni, P. Alterations in mitochondrial quality control in alzheimer’s disease. Front. Cell Neurosci. 2016, 10, 24.
    • (2016) Cell Neurosci , vol.10
    • Cai, Q.1    Tammineni, P.2
  • 65
    • 85009179779 scopus 로고    scopus 로고
    • Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity
    • Lopez-Lluch, G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech. Ageing Dev. 2017, 162, 108–121.
    • (2017) Mech. Ageing Dev , vol.162 , pp. 108-121
    • Lopez-Lluch, G.1
  • 66
    • 84987934980 scopus 로고    scopus 로고
    • Mitochondrial flash: Integrative reactive oxygen species and ph signals in cell and organelle biology
    • Wang, W.; Gong, G.; Wang, X.; Wei-LaPierre, L.; Cheng, H.; Dirksen, R.; Sheu, S.S. Mitochondrial flash: Integrative reactive oxygen species and ph signals in cell and organelle biology. Antioxid. Redox Signal. 2016, 25, 534–549.
    • (2016) Antioxid. Redox Signal , vol.25 , pp. 534-549
    • Wang, W.1    Gong, G.2    Wang, X.3    Wei-Lapierre, L.4    Cheng, H.5    Dirksen, R.6    Sheu, S.S.7
  • 67
    • 84859897794 scopus 로고    scopus 로고
    • Regulation of reactive oxygen species generation in cell signaling
    • Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 2011, 32, 491–509.
    • (2011) Mol. Cells , vol.32 , pp. 491-509
    • Bae, Y.S.1    Oh, H.2    Rhee, S.G.3    Yoo, Y.D.4
  • 68
    • 84964890374 scopus 로고    scopus 로고
    • Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling
    • Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016, 100, 14–31.
    • (2016) Free Radic. Biol. Med , vol.100 , pp. 14-31
    • Brand, M.D.1
  • 69
    • 85031297478 scopus 로고    scopus 로고
    • Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions
    • Wong, H.S.; Dighe, P.A.; Mezera, V.; Monternier, P.A.; Brand, M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 2017, 292, 16804–16809.
    • (2017) J. Biol. Chem. , vol.292 , pp. 16804-16809
    • Wong, H.S.1    Dighe, P.A.2    Mezera, V.3    Monternier, P.A.4    Brand, M.D.5
  • 71
    • 85006371560 scopus 로고    scopus 로고
    • The Cu, Zn superoxide dismutase: Not only a dismutase enzyme. Front
    • Mondola, P.; Damiano, S.; Sasso, A.; Santillo, M. The Cu, Zn superoxide dismutase: Not only a dismutase enzyme. Front. Physiol. 2016, 7, 594.
    • (2016) Physiol , vol.7
    • Mondola, P.1    Damiano, S.2    Sasso, A.3    Santillo, M.4
  • 72
    • 85026734539 scopus 로고    scopus 로고
    • Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews
    • Gao, X.; Schottker, B. Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews. Oncotarget 2017, 8, 51888–51906.
    • (2017) Oncotarget , vol.8 , pp. 51888-51906
    • Gao, X.1    Schottker, B.2
  • 73
    • 85021653478 scopus 로고    scopus 로고
    • Role of mitochondrial reverse electron transport in ros signaling: Potential roles in health and disease
    • Scialo, F.; Fernandez-Ayala, D.J.; Sanz, A. Role of mitochondrial reverse electron transport in ros signaling: Potential roles in health and disease. Front. Physiol. 2017, 8, 428.
    • (2017) Front. Physiol. , vol.8
    • Scialo, F.1    Fernandez-Ayala, D.J.2    Sanz, A.3
  • 74
    • 85028417541 scopus 로고    scopus 로고
    • Progress in understanding the molecular oxygen paradox-function of mitochondrial reactive oxygen species in cell signaling
    • Kuksal, N.; Chalker, J.; Mailloux, R.J. Progress in understanding the molecular oxygen paradox-function of mitochondrial reactive oxygen species in cell signaling. Biol. Chem. 2017, 398, 1209–1227.
    • (2017) Biol. Chem , vol.398 , pp. 1209-1227
    • Kuksal, N.1    Chalker, J.2    Mailloux, R.J.3
  • 75
    • 85028934414 scopus 로고    scopus 로고
    • Physiological role of reactive oxygen species as promoters of natural defenses
    • Roy, J.; Galano, J.M.; Durand, T.; Le Guennec, J.Y.; Lee, J.C. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 2017, 31, 3729–3745.
    • (2017) FASEB J , vol.31 , pp. 3729-3745
    • Roy, J.1    Galano, J.M.2    Durand, T.3    Le Guennec, J.Y.4    Lee, J.C.5
  • 77
    • 85009877414 scopus 로고    scopus 로고
    • Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress
    • Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619.
    • (2017) Redox Biol , vol.11 , pp. 613-619
    • Sies, H.1
  • 78
    • 84995426631 scopus 로고    scopus 로고
    • Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes
    • Mahaseth, T.; Kuzminov, A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res. 2017, 773, 274–281.
    • (2017) Mutat. Res , vol.773 , pp. 274-281
    • Mahaseth, T.1    Kuzminov, A.2
  • 80
    • 84960969420 scopus 로고    scopus 로고
    • Dual role of ROS as signal and stress agents: Iron tips the balance in favor of toxic effects
    • Gammella, E.; Recalcati, S.; Cairo, G. Dual role of ROS as signal and stress agents: Iron tips the balance in favor of toxic effects. Oxid. Med. Cell. Longev. 2016, 2016, 8629024.
    • (2016) Oxid. Med. Cell. Longev , vol.2016
    • Gammella, E.1    Recalcati, S.2    Cairo, G.3
  • 82
    • 85029671217 scopus 로고    scopus 로고
    • Induction of reactive oxygen species: An emerging approach for cancer therapy
    • Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis 2017, 22, 1321–1335.
    • (2017) Apoptosis , vol.22 , pp. 1321-1335
    • Zou, Z.1    Chang, H.2    Li, H.3    Wang, S.4
  • 84
    • 85030710601 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype
    • Rodic, S.; Vincent, M.D. Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype. Int. J. Cancer 2018, 142, 440–448.
    • (2018) Int. J. Cancer , vol.142 , pp. 440-448
    • Rodic, S.1    Vincent, M.D.2
  • 86
    • 84939147804 scopus 로고    scopus 로고
    • Increased oxidative stress as a selective anticancer therapy
    • Liu, J.; Wang, Z. Increased oxidative stress as a selective anticancer therapy. Oxid. Med. Cell. Longev. 2015, 2015, 294303.
    • (2015) Oxid. Med. Cell. Longev , vol.2015
    • Liu, J.1    Wang, Z.2
  • 87
    • 85021073169 scopus 로고    scopus 로고
    • Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells
    • Chen, H.; Chan, D.C. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 2017, 26, 39–48.
    • (2017) Cell Metab , vol.26 , pp. 39-48
    • Chen, H.1    Chan, D.C.2
  • 90
    • 84911479104 scopus 로고    scopus 로고
    • Oxidative stress and antioxidants in carcinogenesis and integrative therapy of cancer
    • Milkovic, L.; Siems, W.; Siems, R.; Zarkovic, N. Oxidative stress and antioxidants in carcinogenesis and integrative therapy of cancer. Curr. Pharm. Des. 2014, 20, 6529–6542.
    • (2014) Curr. Pharm. Des , vol.20 , pp. 6529-6542
    • Milkovic, L.1    Siems, W.2    Siems, R.3    Zarkovic, N.4
  • 91
    • 36849034493 scopus 로고    scopus 로고
    • Experimental therapeutics: Targeting the redox achilles heel of cancer
    • Cabello, C.M.; Bair, W.B.; 3rd; Wondrak, G.T. Experimental therapeutics: Targeting the redox achilles heel of cancer. Curr. Opin. Investig. Drugs 2007, 8, 1022–1037.
    • (2007) Curr. Opin. Investig. Drugs , vol.8 , pp. 1022-1037
    • Cabello, C.M.1    Bair, W.B.2    Wondrak, G.T.3
  • 92
    • 84894184722 scopus 로고    scopus 로고
    • Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions
    • Marullo, R.; Werner, E.; Degtyareva, N.; Moore, B.; Altavilla, G.; Ramalingam, S.S.; Doetsch, P.W. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 2013, 8, e81162.
    • (2013) Plos ONE , vol.8
    • Marullo, R.1    Werner, E.2    Degtyareva, N.3    Moore, B.4    Altavilla, G.5    Ramalingam, S.S.6    Doetsch, P.W.7
  • 94
    • 85108124371 scopus 로고    scopus 로고
    • Treatment of cancer by low intensity laser radiation therapy
    • Abo-Neima, S.E. Treatment of cancer by low intensity laser radiation therapy. Prog. Biophys. Mol. Biol. 2017.
    • (2017) Prog. Biophys. Mol. Biol.
    • Abo-Neima, S.E.1
  • 95
    • 85034820178 scopus 로고    scopus 로고
    • Recent progress in near infrared light triggered photodynamic therapy
    • Deng, K.; Li, C.; Huang, S.; Xing, B.; Jin, D.; Zeng, Q.; Hou, Z.; Lin, J. Recent progress in near infrared light triggered photodynamic therapy. Small 2017, 13.
    • (2017) Small
    • Deng, K.1    Li, C.2    Huang, S.3    Xing, B.4    Jin, D.5    Zeng, Q.6    Hou, Z.7    Lin, J.8
  • 97
    • 84881587735 scopus 로고    scopus 로고
    • Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging
    • Wang, C.H.; Wu, S.B.; Wu, Y.T.; Wei, Y.H. Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging. Exp. Biol. Med. 2013, 238, 450–460.
    • (2013) Exp. Biol. Med. , vol.238 , pp. 450-460
    • Wang, C.H.1    Wu, S.B.2    Wu, Y.T.3    Wei, Y.H.4
  • 98
    • 84930536720 scopus 로고    scopus 로고
    • Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtdna
    • Yang, L.; Long, Q.; Liu, J.; Tang, H.; Li, Y.; Bao, F.; Qin, D.; Pei, D.; Liu, X. Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtdna. Cell. Mol. Life Sci. 2015, 72, 2585–2598.
    • (2015) Cell. Mol. Life Sci , vol.72 , pp. 2585-2598
    • Yang, L.1    Long, Q.2    Liu, J.3    Tang, H.4    Li, Y.5    Bao, F.6    Qin, D.7    Pei, D.8    Liu, X.9
  • 99
    • 85028346703 scopus 로고    scopus 로고
    • Glutathione as a redox biomarker in mitochondrial disease-implications for therapy
    • Enns, G.M.; Cowan, T.M. Glutathione as a redox biomarker in mitochondrial disease-implications for therapy. J. Clin. Med. 2017, 6, 50.
    • (2017) J. Clin. Med , vol.6
    • Enns, G.M.1    Cowan, T.M.2
  • 100
    • 85030463424 scopus 로고    scopus 로고
    • Glutathione peroxidases as oncotargets
    • Jiao, Y.; Wang, Y.; Guo, S.; Wang, G. Glutathione peroxidases as oncotargets. Oncotarget 2017, 8, 80093–80102.
    • (2017) Oncotarget , vol.8 , pp. 80093-80102
    • Jiao, Y.1    Wang, Y.2    Guo, S.3    Wang, G.4
  • 101
    • 84961680130 scopus 로고    scopus 로고
    • The role of glutathione reductase and related enzymes on cellular redox homoeostasis network
    • Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42.
    • (2016) Free Radic. Biol. Med , vol.95 , pp. 27-42
    • Couto, N.1    Wood, J.2    Barber, J.3
  • 102
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt, T.; Geoffrion, M.; Milne, R.; McBride, H.M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 2012, 13, 909–915.
    • (2012) EMBO Rep , vol.13 , pp. 909-915
    • Shutt, T.1    Geoffrion, M.2    Milne, R.3    McBride, H.M.4
  • 103
    • 85019730480 scopus 로고    scopus 로고
    • Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach
    • Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017, 398, 1095–1108.
    • (2017) Biol. Chem , vol.398 , pp. 1095-1108
    • Glorieux, C.1    Calderon, P.B.2
  • 104
    • 85018406717 scopus 로고    scopus 로고
    • Multiple functions and regulation of mammalian peroxiredoxins
    • Rhee, S.G.; Kil, I.S. Multiple functions and regulation of mammalian peroxiredoxins. Annu. Rev. Biochem. 2017, 86, 749–775.
    • (2017) Annu. Rev. Biochem , vol.86 , pp. 749-775
    • Rhee, S.G.1    Kil, I.S.2
  • 105
    • 85021149965 scopus 로고    scopus 로고
    • Targeting the thioredoxin system for cancer therapy
    • Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci. 2017, 38, 794–808.
    • (2017) Trends Pharmacol. Sci , vol.38 , pp. 794-808
    • Zhang, J.1    Li, X.2    Han, X.3    Liu, R.4    Fang, J.5
  • 106
    • 85026289614 scopus 로고    scopus 로고
    • Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development
    • Monteiro, H.P.; Ogata, F.T.; Stern, A. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development. Biomed. J. 2017, 40, 189–199.
    • (2017) Biomed. J , vol.40 , pp. 189-199
    • Monteiro, H.P.1    Ogata, F.T.2    Stern, A.3
  • 107
    • 84911891833 scopus 로고    scopus 로고
    • Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells
    • Cunniff, B.; Wozniak, A.N.; Sweeney, P.; DeCosta, K.; Heintz, N.H. Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells. Redox Biol. 2014, 3, 79–87.
    • (2014) Redox Biol , vol.3 , pp. 79-87
    • Cunniff, B.1    Wozniak, A.N.2    Sweeney, P.3    Decosta, K.4    Heintz, N.H.5
  • 108
    • 85009769733 scopus 로고    scopus 로고
    • Mitochondrial uncoupling in cancer cells: Liabilities and opportunities
    • Baffy, G. Mitochondrial uncoupling in cancer cells: Liabilities and opportunities. Biochim. Biophys. Acta 2017, 1858, 655–664.
    • (2017) Biochim. Biophys. Acta , vol.1858 , pp. 655-664
    • Baffy, G.1
  • 109
    • 84945956960 scopus 로고    scopus 로고
    • 2-activated mitochondrial phospholipase iPLA(2)gamma prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G-protein-coupled receptor GPR40, and regulates insulin secretion in pancreatic beta-cells
    • 2-activated mitochondrial phospholipase iPLA(2)gamma prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G-protein-coupled receptor GPR40, and regulates insulin secretion in pancreatic beta-cells. Antioxid. Redox Signal. 2015, 23, 958–972.
    • (2015) Antioxid. Redox Signal , vol.23 , pp. 958-972
    • Jezek, J.1    Dlaskova, A.2    Zelenka, J.3    Jaburek, M.4    Jezek, P.5
  • 110
    • 85029809346 scopus 로고    scopus 로고
    • Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction
    • Oh, S.E.; Mouradian, M.M. Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biol. 2018, 14, 211–217.
    • (2018) Redox Biol , vol.14 , pp. 211-217
    • Oh, S.E.1    Mouradian, M.M.2
  • 111
    • 84923315789 scopus 로고    scopus 로고
    • Set overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario
    • Almeida, L.O.; Goto, R.N.; Neto, M.P.; Sousa, L.O.; Curti, C.; Leopoldino, A.M. Set overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario. Biochem. Biophys. Res. Commun. 2015, 458, 300–306.
    • (2015) Biochem. Biophys. Res. Commun , vol.458 , pp. 300-306
    • Almeida, L.O.1    Goto, R.N.2    Neto, M.P.3    Sousa, L.O.4    Curti, C.5    Leopoldino, A.M.6
  • 113
    • 85026835225 scopus 로고    scopus 로고
    • New challenges to study heterogeneity in cancer redox metabolism. Front. Cell Dev
    • Benfeitas, R.; Uhlen, M.; Nielsen, J.; Mardinoglu, A. New challenges to study heterogeneity in cancer redox metabolism. Front. Cell Dev. Biol. 2017, 5, 65.
    • (2017) Biol , vol.5
    • Benfeitas, R.1    Uhlen, M.2    Nielsen, J.3    Mardinoglu, A.4
  • 115
    • 85020928558 scopus 로고    scopus 로고
    • Perspectives of the NRF-2 signaling pathway in cancer progression and therapy
    • Basak, P.; Sadhukhan, P.; Sarkar, P.; Sil, P.C. Perspectives of the NRF-2 signaling pathway in cancer progression and therapy. Toxicol. Rep. 2017, 4, 306–318.
    • (2017) Toxicol. Rep , vol.4 , pp. 306-318
    • Basak, P.1    Sadhukhan, P.2    Sarkar, P.3    Sil, P.C.4
  • 117
    • 85014401656 scopus 로고    scopus 로고
    • The NRF2-are signaling pathway: An update on its regulation and possible role in cancer prevention and treatment
    • Krajka-Kuzniak, V.; Paluszczak, J.; Baer-Dubowska, W. The NRF2-are signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep. 2017, 69, 393–402.
    • (2017) Pharmacol. Rep , vol.69 , pp. 393-402
    • Krajka-Kuzniak, V.1    Paluszczak, J.2    Baer-Dubowska, W.3
  • 119
    • 85031305447 scopus 로고    scopus 로고
    • Stress-sensing mechanisms and the physiological roles of the keap1-Nrf2 system during cellular stress
    • Suzuki, T.; Yamamoto, M. Stress-sensing mechanisms and the physiological roles of the keap1-Nrf2 system during cellular stress. J. Biol. Chem. 2017, 292, 16817–16824.
    • (2017) J. Biol. Chem , vol.292 , pp. 16817-16824
    • Suzuki, T.1    Yamamoto, M.2
  • 120
    • 84874564486 scopus 로고    scopus 로고
    • Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin
    • Jin, Y.N.; Yu, Y.V.; Gundemir, S.; Jo, C.; Cui, M.; Tieu, K.; Johnson, G.V. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS ONE 2013, 8, e57932.
    • (2013) Plos ONE , vol.57932
    • Jin, Y.N.1    Yu, Y.V.2    Gundemir, S.3    Jo, C.4    Cui, M.5    Tieu, K.6    Johnson, G.V.7
  • 122
    • 85004065577 scopus 로고    scopus 로고
    • Hypoxia-inducible factors: Master regulators of cancer progression
    • Schito, L.; Semenza, G.L. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer 2016, 2, 758–770.
    • (2016) Trends Cancer , vol.2 , pp. 758-770
    • Schito, L.1    Semenza, G.L.2
  • 123
    • 84947202428 scopus 로고    scopus 로고
    • Hif-1alpha pathway: Role, regulation and intervention for cancer therapy
    • Masoud, G.N.; Li, W. Hif-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 2015, 5, 378–389.
    • (2015) Acta Pharm. Sin. B , vol.5 , pp. 378-389
    • Masoud, G.N.1    Li, W.2
  • 124
    • 84989853089 scopus 로고    scopus 로고
    • Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism
    • Nguyen, T.L.; Duran, R.V. Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism. Int. J. Biochem. Cell Biol. 2016, 80, 71–80.
    • (2016) Int. J. Biochem. Cell Biol , vol.80 , pp. 71-80
    • Nguyen, T.L.1    Duran, R.V.2
  • 125
    • 85020774193 scopus 로고    scopus 로고
    • The EGLN-HIF O2-sensing system: Multiple inputs and feedbacks
    • Ivan, M.; Kaelin, W.G.; Jr. The EGLN-HIF O2-sensing system: Multiple inputs and feedbacks. Mol. Cell 2017, 66, 772–779.
    • (2017) Mol. Cell , vol.66 , pp. 772-779
    • Ivan, M.1    Kaelin, W.G.2
  • 126
    • 84948070059 scopus 로고    scopus 로고
    • Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells
    • Plecita-Hlavata, L.; Jezek, J.; Jezek, P. Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. J. Bioenerg. Biomembr. 2015, 47, 467–476.
    • (2015) J. Bioenerg. Biomembr , vol.47 , pp. 467-476
    • Plecita-Hlavata, L.1    Jezek, J.2    Jezek, P.3
  • 128
    • 85020317774 scopus 로고    scopus 로고
    • Redox signaling during hypoxia in mammalian cells
    • Smith, K.A.; Waypa, G.B.; Schumacker, P.T. Redox signaling during hypoxia in mammalian cells. Redox Biol. 2017, 13, 228–234.
    • (2017) Redox Biol , vol.13 , pp. 228-234
    • Smith, K.A.1    Waypa, G.B.2    Schumacker, P.T.3
  • 130
    • 33747596652 scopus 로고    scopus 로고
    • Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia
    • Guzy, R.D.; Schumacker, P.T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 2006, 91, 807–819.
    • (2006) Exp. Physiol , vol.91 , pp. 807-819
    • Guzy, R.D.1    Schumacker, P.T.2
  • 131
    • 77951238575 scopus 로고    scopus 로고
    • Mitochondrial regulation of oxygen sensing
    • Chandel, N.S. Mitochondrial regulation of oxygen sensing. Adv. Exp. Med. Biol. 2010, 661, 339–354.
    • (2010) Adv. Exp. Med. Biol , vol.661 , pp. 339-354
    • Chandel, N.S.1
  • 132
    • 84918511615 scopus 로고    scopus 로고
    • Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells
    • Han, X.J.; Yang, Z.J.; Jiang, L.P.; Wei, Y.F.; Liao, M.F.; Qian, Y.; Li, Y.; Huang, X.; Wang, J.B.; Xin, H.B.; et al. Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells. Int. J. Oncol. 2015, 46, 691–700.
    • (2015) Int. J. Oncol , vol.46 , pp. 691-700
    • Han, X.J.1    Yang, Z.J.2    Jiang, L.P.3    Wei, Y.F.4    Liao, M.F.5    Qian, Y.6    Li, Y.7    Huang, X.8    Wang, J.B.9    Xin, H.B.10
  • 133
    • 84903190525 scopus 로고    scopus 로고
    • Involvement of Drp1 in hypoxia-induced migration of human glioblastoma u251 cells. Oncol
    • Wan, Y.Y.; Zhang, J.F.; Yang, Z.J.; Jiang, L.P.; Wei, Y.F.; Lai, Q.N.; Wang, J.B.; Xin, H.B.; Han, X.J. Involvement of Drp1 in hypoxia-induced migration of human glioblastoma u251 cells. Oncol. Rep. 2014, 32, 619–626.
    • (2014) Rep , vol.32 , pp. 619-626
    • Wan, Y.Y.1    Zhang, J.F.2    Yang, Z.J.3    Jiang, L.P.4    Wei, Y.F.5    Lai, Q.N.6    Wang, J.B.7    Xin, H.B.8    Han, X.J.9
  • 135
    • 84901440552 scopus 로고    scopus 로고
    • Bioenergetic analysis of ovarian cancer cell lines: Profiling of histological subtypes and identification of a mitochondria-defective cell line
    • Dier, U.; Shin, D.H.; Hemachandra, L.P.; Uusitalo, L.M.; Hempel, N. Bioenergetic analysis of ovarian cancer cell lines: Profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS ONE 2014, 9, e98479.
    • (2014) Plos ONE , vol.9
    • Dier, U.1    Shin, D.H.2    Hemachandra, L.P.3    Uusitalo, L.M.4    Hempel, N.5
  • 137
    • 84975322262 scopus 로고    scopus 로고
    • Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction
    • Latimer, H.R.; Veal, E.A. Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol. Cells 2016, 39, 40–45.
    • (2016) Mol. Cells , vol.39 , pp. 40-45
    • Latimer, H.R.1    Veal, E.A.2
  • 138
    • 84867711090 scopus 로고    scopus 로고
    • Thioredoxin system in cell death progression
    • Lu, J.; Holmgren, A. Thioredoxin system in cell death progression. Antioxid. Redox Signal. 2012, 17, 1738–1747.
    • (2012) Antioxid. Redox Signal , vol.17 , pp. 1738-1747
    • Lu, J.1    Holmgren, A.2
  • 139
    • 84998705801 scopus 로고    scopus 로고
    • Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate
    • Matsuzawa, A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch Biochem. Biophys. 2017, 617, 101–105.
    • (2017) Arch Biochem. Biophys , vol.617 , pp. 101-105
    • Matsuzawa, A.1
  • 141
    • 84885923830 scopus 로고    scopus 로고
    • P38 MAPK: A dual role in hepatocyte proliferation through reactive oxygen species
    • Tormos, A.M.; Talens-Visconti, R.; Nebreda, A.R.; Sastre, J. P38 MAPK: A dual role in hepatocyte proliferation through reactive oxygen species. Free Radic. Res. 2013, 47, 905–916.
    • (2013) Free Radic. Res , vol.47 , pp. 905-916
    • Tormos, A.M.1    Talens-Visconti, R.2    Nebreda, A.R.3    Sastre, J.4
  • 142
    • 65549139358 scopus 로고    scopus 로고
    • The ubiquitin ligase siah2 and the hypoxia response
    • Nakayama, K.; Qi, J.; Ronai, Z. The ubiquitin ligase siah2 and the hypoxia response. Mol. Cancer Res. 2009, 7, 443–451.
    • (2009) Mol. Cancer Res , vol.7 , pp. 443-451
    • Nakayama, K.1    Qi, J.2    Ronai, Z.3
  • 143
    • 85030558353 scopus 로고    scopus 로고
    • Succinate promotes stem cell migration through the gpr91-dependent regulation of Drp1-mediated mitochondrial fission
    • Ko, S.H.; Choi, G.E.; Oh, J.Y.; Lee, H.J.; Kim, J.S.; Chae, C.W.; Choi, D.; Han, H.J. Succinate promotes stem cell migration through the gpr91-dependent regulation of Drp1-mediated mitochondrial fission. Sci. Rep. 2017, 7, 12582.
    • (2017) Sci. Rep , vol.7
    • Ko, S.H.1    Choi, G.E.2    Oh, J.Y.3    Lee, H.J.4    Kim, J.S.5    Chae, C.W.6    Choi, D.7    Han, H.J.8
  • 144
    • 84947033848 scopus 로고    scopus 로고
    • Suppression of mitochondrial fission in experimental cerebral ischemia: The potential neuroprotective target of p38 MAPK inhibition
    • Zhang, X.M.; Zhang, L.; Wang, G.; Niu, W.; He, Z.; Ding, L.; Jia, J. Suppression of mitochondrial fission in experimental cerebral ischemia: The potential neuroprotective target of p38 MAPK inhibition. Neurochem. Int. 2015, 90, 1–8.
    • (2015) Neurochem. Int. , vol.90 , pp. 1-8
    • Zhang, X.M.1    Zhang, L.2    Wang, G.3    Niu, W.4    He, Z.5    Ding, L.6    Jia, J.7
  • 145
    • 85039855438 scopus 로고    scopus 로고
    • Structural aspects of protein kinase ASK1 regulation
    • Obsil, T.; Obsilova, V. Structural aspects of protein kinase ASK1 regulation. Adv. Biol. Regul. 2017, 66, 31–36.
    • (2017) Adv. Biol. Regul , vol.66 , pp. 31-36
    • Obsil, T.1    Obsilova, V.2
  • 146
    • 54249119561 scopus 로고    scopus 로고
    • JNK signaling in apoptosis
    • Dhanasekaran, D.N.; Reddy, E.P. JNK signaling in apoptosis. Oncogene 2008, 27, 6245–6251.
    • (2008) Oncogene , vol.27 , pp. 6245-6251
    • Dhanasekaran, D.N.1    Reddy, E.P.2
  • 148
    • 85015320989 scopus 로고    scopus 로고
    • Drugging Ras: Know the enemy
    • Papke, B.; Der, C.J. Drugging Ras: Know the enemy. Science 2017, 355, 1158–1163.
    • (2017) Science , vol.355 , pp. 1158-1163
    • Papke, B.1    Der, C.J.2
  • 149
    • 85021634621 scopus 로고    scopus 로고
    • Ras proteins and their regulators in human disease
    • Simanshu, D.K.; Nissley, D.V.; McCormick, F. Ras proteins and their regulators in human disease. Cell 2017, 170, 17–33.
    • (2017) Cell , vol.170 , pp. 17-33
    • Simanshu, D.K.1    Nissley, D.V.2    McCormick, F.3
  • 150
    • 85017590638 scopus 로고    scopus 로고
    • The small gtpases ras and rheb studied by multidimensional nmr spectroscopy: Structure and function. Biol
    • Schopel, M.; Potheraveedu, V.N.; Al-Harthy, T.; Abdel-Jalil, R.; Heumann, R.; Stoll, R. The small gtpases ras and rheb studied by multidimensional nmr spectroscopy: Structure and function. Biol. Chem. 2017, 398, 577–588.
    • (2017) Chem , vol.398 , pp. 577-588
    • Schopel, M.1    Potheraveedu, V.N.2    Al-Harthy, T.3    Abdel-Jalil, R.4    Heumann, R.5    Stoll, R.6
  • 151
    • 85031699760 scopus 로고    scopus 로고
    • ERK signalling as a regulator of cell motility
    • Tanimura, S.; Takeda, K. ERK signalling as a regulator of cell motility. J. Biochem. 2017, 162, 145–154.
    • (2017) J. Biochem , vol.162 , pp. 145-154
    • Tanimura, S.1    Takeda, K.2
  • 153
    • 85020523556 scopus 로고    scopus 로고
    • Control of cell death and mitochondrial fission by ERK1/2 map kinase signalling
    • Cook, S.J.; Stuart, K.; Gilley, R.; Sale, M.J. Control of cell death and mitochondrial fission by ERK1/2 map kinase signalling. FEBS J. 2017, 284, 4177–4195.
    • (2017) FEBS J , vol.284 , pp. 4177-4195
    • Cook, S.J.1    Stuart, K.2    Gilley, R.3    Sale, M.J.4
  • 156
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529.
    • (2007) J. Biol. Chem , vol.282 , pp. 11521-11529
    • Taguchi, N.1    Ishihara, N.2    Jofuku, A.3    Oka, T.4    Mihara, K.5
  • 158
    • 85024128383 scopus 로고    scopus 로고
    • Nf-kappab as the main node of resistance to receptor tyrosine kinase inhibitors in triple-negative breast cancer
    • Darvishi, B.; Farahmand, L.; Eslami, S.Z.; Majidzadeh, A.K. Nf-kappab as the main node of resistance to receptor tyrosine kinase inhibitors in triple-negative breast cancer. Tumour Biol. 2017, 39.
    • (2017) Tumour Biol.
    • Darvishi, B.1    Farahmand, L.2    Eslami, S.Z.3    Majidzadeh, A.K.4
  • 162
    • 84961275684 scopus 로고    scopus 로고
    • Signaling via the NF-μB system. Wiley Interdiscip
    • Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NF-μB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241.
    • (2016) Rev. Syst. Biol. Med , vol.8 , pp. 227-241
    • Mitchell, S.1    Vargas, J.2    Hoffmann, A.3
  • 163
    • 84884344861 scopus 로고    scopus 로고
    • Redox activation of Nrf2 & NF-μB: A double end sword?
    • Buelna-Chontal, M.; Zazueta, C. Redox activation of Nrf2 & NF-μB: A double end sword? Cell Signal. 2013, 25, 2548–2557.
    • (2013) Cell Signal , vol.25 , pp. 2548-2557
    • Buelna-Chontal, M.1    Zazueta, C.2
  • 164
    • 85026913035 scopus 로고    scopus 로고
    • Training and acute exercise modulates mitochondrial dynamics in football players’ blood mononuclear cells
    • Busquets-Cortes, C.; Capo, X.; Martorell, M.; Tur, J.A.; Sureda, A.; Pons, A. Training and acute exercise modulates mitochondrial dynamics in football players’ blood mononuclear cells. Eur. J. Appl. Physiol. 2017, 117, 1977–1987.
    • (2017) Eur. J. Appl. Physiol. , vol.117 , pp. 1977-1987
    • Busquets-Cortes, C.1    Capo, X.2    Martorell, M.3    Tur, J.A.4    Sureda, A.5    Pons, A.6
  • 165
    • 84895732943 scopus 로고    scopus 로고
    • Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-μB pathways in CD4+ T cells. Antioxid
    • Uzhachenko, R.; Ivanov, S.V.; Yarbrough, W.G.; Shanker, A.; Medzhitov, R.; Ivanova, A.V. Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-μB pathways in CD4+ T cells. Antioxid. Redox Signal. 2014, 20, 1533–1547.
    • (2014) Redox Signal , vol.20 , pp. 1533-1547
    • Uzhachenko, R.1    Ivanov, S.V.2    Yarbrough, W.G.3    Shanker, A.4    Medzhitov, R.5    Ivanova, A.V.6
  • 167
    • 85041007844 scopus 로고    scopus 로고
    • Springer: Berlin/Heidelberg, Germany; New York, NY, USA
    • Cordero, M.D. AMP-Activated Protein Kinase; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016.
    • (2016) Amp-Activated Protein Kinase
    • Cordero, M.D.1
  • 168
    • 85039798017 scopus 로고    scopus 로고
    • AMPK: Guardian of metabolism and mitochondrial homeostasis
    • Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2017.
    • (2017) Nat. Rev. Mol. Cell Biol
    • Herzig, S.1    Shaw, R.J.2
  • 169
    • 85013230596 scopus 로고    scopus 로고
    • AMPK signalling in health and disease
    • Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 2017, 45, 31–37.
    • (2017) Curr. Opin. Cell Biol , vol.45 , pp. 31-37
    • Carling, D.1
  • 170
    • 85020822242 scopus 로고    scopus 로고
    • AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance
    • Garcia, D.; Shaw, R.J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 2017, 66, 789–800.
    • (2017) Mol. Cell , vol.66 , pp. 789-800
    • Garcia, D.1    Shaw, R.J.2
  • 171
    • 85030676864 scopus 로고    scopus 로고
    • AMP-activated protein kinase—Not just an energy sensor
    • Hardie, D.G.; Lin, S.C. AMP-activated protein kinase—Not just an energy sensor. F1000Research 2017, 6, 1724.
    • (2017) F1000research , vol.6
    • Hardie, D.G.1    Lin, S.C.2
  • 172
    • 84983252357 scopus 로고    scopus 로고
    • AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours
    • Ross, F.A.; MacKintosh, C.; Hardie, D.G. AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours. FEBS J. 2016, 283, 2987–3001.
    • (2016) FEBS J , vol.283 , pp. 2987-3001
    • Ross, F.A.1    Mackintosh, C.2    Hardie, D.G.3
  • 173
    • 85018612303 scopus 로고    scopus 로고
    • Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer
    • He, X.; Li, C.; Ke, R.; Luo, L.; Huang, D. Down-regulation of adenosine monophosphate-activated protein kinase activity: A driver of cancer. Tumour Biol. 2017, 39.
    • (2017) Tumour Biol.
    • He, X.1    Li, C.2    Ke, R.3    Luo, L.4    Huang, D.5
  • 174
    • 84923927635 scopus 로고    scopus 로고
    • The double-edged sword of AMPK signaling in cancer and its therapeutic implications
    • Jeon, S.M.; Hay, N. The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch. Pharm. Res. 2015, 38, 346–357.
    • (2015) Arch. Pharm. Res , vol.38 , pp. 346-357
    • Jeon, S.M.1    Hay, N.2
  • 175
    • 84920112762 scopus 로고    scopus 로고
    • The amp-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator
    • Faubert, B.; Vincent, E.E.; Poffenberger, M.C.; Jones, R.G. The amp-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator. Cancer Lett. 2015, 356, 165–170.
    • (2015) Cancer Lett , vol.356 , pp. 165-170
    • Faubert, B.1    Vincent, E.E.2    Poffenberger, M.C.3    Jones, R.G.4
  • 176
    • 77958501463 scopus 로고    scopus 로고
    • Exposure to hydrogen peroxide induces oxidation and activation of amp-activated protein kinase. J
    • Zmijewski, J.W.; Banerjee, S.; Bae, H.; Friggeri, A.; Lazarowski, E.R.; Abraham, E. Exposure to hydrogen peroxide induces oxidation and activation of amp-activated protein kinase. J. Biol. Chem. 2010, 285, 33154–33164.
    • (2010) Biol. Chem , vol.285 , pp. 33154-33164
    • Zmijewski, J.W.1    Banerjee, S.2    Bae, H.3    Friggeri, A.4    Lazarowski, E.R.5    Abraham, E.6
  • 178
    • 78149479438 scopus 로고    scopus 로고
    • Redox regulation of the amp-activated protein kinase
    • Han, Y.; Wang, Q.; Song, P.; Zhu, Y.; Zou, M.H. Redox regulation of the amp-activated protein kinase. PLoS ONE 2010, 5, e15420.
    • (2010) Plos ONE , vol.5
    • Han, Y.1    Wang, Q.2    Song, P.3    Zhu, Y.4    Zou, M.H.5
  • 179
    • 84893432818 scopus 로고    scopus 로고
    • A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation
    • Shao, D.; Oka, S.; Liu, T.; Zhai, P.; Ago, T.; Sciarretta, S.; Li, H.; Sadoshima, J. A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation. Cell Metab. 2014, 19, 232–245.
    • (2014) Cell Metab , vol.19 , pp. 232-245
    • Shao, D.1    Oka, S.2    Liu, T.3    Zhai, P.4    Ago, T.5    Sciarretta, S.6    Li, H.7    Sadoshima, J.8
  • 181
    • 84895555985 scopus 로고    scopus 로고
    • Role of ampk-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim. Biophys
    • Wu, S.B.; Wu, Y.T.; Wu, T.P.; Wei, Y.H. Role of ampk-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim. Biophys. Acta 2014, 1840, 1331–1344.
    • (2014) Acta , vol.1840 , pp. 1331-1344
    • Wu, S.B.1    Wu, Y.T.2    Wu, T.P.3    Wei, Y.H.4
  • 182
    • 84990876582 scopus 로고    scopus 로고
    • Functional characterization of amp-activated protein kinase signaling in tumorigenesis
    • Cheng, J.; Zhang, T.; Ji, H.; Tao, K.; Guo, J.; Wei, W. Functional characterization of amp-activated protein kinase signaling in tumorigenesis. Biochim. Biophys. Acta 2016, 1866, 232–251.
    • (2016) Biochim. Biophys. Acta , vol.1866 , pp. 232-251
    • Cheng, J.1    Zhang, T.2    Ji, H.3    Tao, K.4    Guo, J.5    Wei, W.6
  • 183
    • 84993928897 scopus 로고    scopus 로고
    • AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function
    • Kang, S.W.; Haydar, G.; Taniane, C.; Farrell, G.; Arias, I.M.; Lippincott-Schwartz, J.; Fu, D. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS ONE 2016, 11, e0165638.
    • (2016) Plos ONE , vol.11
    • Kang, S.W.1    Haydar, G.2    Taniane, C.3    Farrell, G.4    Arias, I.M.5    Lippincott-Schwartz, J.6    Fu, D.7
  • 185
    • 85009987918 scopus 로고    scopus 로고
    • The pharmacological regulation of cellular mitophagy
    • Georgakopoulos, N.D.; Wells, G.; Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 2017, 13, 136–146.
    • (2017) Nat. Chem. Biol , vol.13 , pp. 136-146
    • Georgakopoulos, N.D.1    Wells, G.2    Campanella, M.3
  • 186
    • 84958211754 scopus 로고    scopus 로고
    • Regulators of mitochondrial dynamics in cancer
    • Senft, D.; Ronai, Z.A. Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell Biol. 2016, 39, 43–52.
    • (2016) Curr. Opin. Cell Biol , vol.39 , pp. 43-52
    • Senft, D.1    Ronai, Z.A.2
  • 187
    • 84871820635 scopus 로고    scopus 로고
    • Mechanistic perspective of mitochondrial fusion: Tubulation vs. Fragmentation
    • Escobar-Henriques, M.; Anton, F. Mechanistic perspective of mitochondrial fusion: Tubulation vs. Fragmentation. Biochim. Biophys. Acta 2013, 1833, 162–175.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 162-175
    • Escobar-Henriques, M.1    Anton, F.2
  • 191
    • 84994424569 scopus 로고    scopus 로고
    • Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies
    • Kim, M.H.; Kim, J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell. Mol. Life Sci. 2017, 74, 1457–1474.
    • (2017) Cell. Mol. Life Sci , vol.74 , pp. 1457-1474
    • Kim, M.H.1    Kim, J.2
  • 192
    • 34250847654 scopus 로고    scopus 로고
    • CDK8 is a stimulus-specific positive coregulator of p53 target genes
    • Donner, A.J.; Szostek, S.; Hoover, J.M.; Espinosa, J.M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 2007, 27, 121–133.
    • (2007) Mol. Cell , vol.27 , pp. 121-133
    • Donner, A.J.1    Szostek, S.2    Hoover, J.M.3    Espinosa, J.M.4
  • 193
    • 84907210921 scopus 로고    scopus 로고
    • Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C
    • Khakhina, S.; Cooper, K.F.; Strich, R. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C. Mol. Biol. Cell 2014, 25, 2807–2816.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 2807-2816
    • Khakhina, S.1    Cooper, K.F.2    Strich, R.3
  • 198
    • 79961199862 scopus 로고    scopus 로고
    • Redox control and interplay between p53 isoforms: Roles in the regulation of basal p53 levels, cell fate, and senescence
    • Hafsi, H.; Hainaut, P. Redox control and interplay between p53 isoforms: Roles in the regulation of basal p53 levels, cell fate, and senescence. Antioxid. Redox Signal. 2011, 15, 1655–1667.
    • (2011) Antioxid. Redox Signal , vol.15 , pp. 1655-1667
    • Hafsi, H.1    Hainaut, P.2
  • 199
    • 85047746353 scopus 로고    scopus 로고
    • The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance
    • Yao, S.; Fan, L.Y.; Lam, E.W. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin. Cancer Biol. 2017.
    • (2017) Semin. Cancer Biol
    • Yao, S.1    Fan, L.Y.2    Lam, E.W.3
  • 201
    • 84896869459 scopus 로고    scopus 로고
    • ROS, Notch, and Wnt signaling pathways: Crosstalk between three major regulators of cardiovascular biology
    • Caliceti, C.; Nigro, P.; Rizzo, P.; Ferrari, R. ROS, Notch, and Wnt signaling pathways: Crosstalk between three major regulators of cardiovascular biology. BioMed Res. Int. 2014, 2014, 318714.
    • (2014) Biomed Res. Int , vol.2014
    • Caliceti, C.1    Nigro, P.2    Rizzo, P.3    Ferrari, R.4
  • 202
    • 84947748326 scopus 로고    scopus 로고
    • Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins
    • Verrastro, I.; Tveen-Jensen, K.; Woscholski, R.; Spickett, C.M.; Pitt, A.R. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins. Free Radic. Biol. Med. 2016, 90, 24–34.
    • (2016) Free Radic. Biol. Med , vol.90 , pp. 24-34
    • Verrastro, I.1    Tveen-Jensen, K.2    Woscholski, R.3    Spickett, C.M.4    Pitt, A.R.5
  • 203
    • 85011068071 scopus 로고    scopus 로고
    • Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1)
    • Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg. Med. Chem. 2017, 25, 2531–2544.
    • (2017) Bioorg. Med. Chem. , vol.25 , pp. 2531-2544
    • Laev, S.S.1    Salakhutdinov, N.F.2    Lavrik, O.I.3
  • 204
    • 84943790096 scopus 로고    scopus 로고
    • Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and wnt-beta-catenin signaling pathways
    • Tang, S.; Hou, Y.; Zhang, H.; Tu, G.; Yang, L.; Sun, Y.; Lang, L.; Tang, X.; Du, Y.E.; Zhou, M.; et al. Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and wnt-beta-catenin signaling pathways. Cell Cycle 2015, 14, 1908–1924.
    • (2015) Cell Cycle , vol.14 , pp. 1908-1924
    • Tang, S.1    Hou, Y.2    Zhang, H.3    Tu, G.4    Yang, L.5    Sun, Y.6    Lang, L.7    Tang, X.8    Du, Y.E.9    Zhou, M.10
  • 206
    • 84901741434 scopus 로고    scopus 로고
    • Hydrogen peroxide sensing, signaling and regulation of transcription factors
    • Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2, 535–562.
    • (2014) Redox Biol , vol.2 , pp. 535-562
    • Marinho, H.S.1    Real, C.2    Cyrne, L.3    Soares, H.4    Antunes, F.5
  • 207
    • 84994381512 scopus 로고    scopus 로고
    • Mitochondrial dynamics altered by oxidative stress in cancer
    • Kim, B.; Song, Y.S. Mitochondrial dynamics altered by oxidative stress in cancer. Free Radic. Res. 2016, 50, 1065–1070.
    • (2016) Free Radic. Res , vol.50 , pp. 1065-1070
    • Kim, B.1    Song, Y.S.2
  • 208
    • 84973931626 scopus 로고    scopus 로고
    • Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways
    • Huang, Q.; Zhan, L.; Cao, H.; Li, J.; Lyu, Y.; Guo, X.; Zhang, J.; Ji, L.; Ren, T.; An, J.; et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy 2016, 12, 999–1014.
    • (2016) Autophagy , vol.12 , pp. 999-1014
    • Huang, Q.1    Zhan, L.2    Cao, H.3    Li, J.4    Lyu, Y.5    Guo, X.6    Zhang, J.7    Ji, L.8    Ren, T.9    An, J.10
  • 211
    • 85019000823 scopus 로고    scopus 로고
    • Mitochondrial dynamics: In cell reprogramming as it is in cancer
    • Prieto, J.; Torres, J. Mitochondrial dynamics: In cell reprogramming as it is in cancer. Stem Cells Int. 2017, 2017, 8073721.
    • (2017) Stem Cells Int , vol.2017
    • Prieto, J.1    Torres, J.2
  • 212
    • 84947488862 scopus 로고    scopus 로고
    • Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency
    • Son, M.J.; Kwon, Y.; Son, M.Y.; Seol, B.; Choi, H.S.; Ryu, S.W.; Choi, C.; Cho, Y.S. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ. 2015, 22, 1957–1969.
    • (2015) Cell Death Differ , vol.22 , pp. 1957-1969
    • Son, M.J.1    Kwon, Y.2    Son, M.Y.3    Seol, B.4    Choi, H.S.5    Ryu, S.W.6    Choi, C.7    Cho, Y.S.8
  • 214
    • 46749156297 scopus 로고    scopus 로고
    • Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species
    • Yu, T.; Sheu, S.S.; Robotham, J.L.; Yoon, Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res. 2008, 79, 341–351.
    • (2008) Cardiovasc. Res , vol.79 , pp. 341-351
    • Yu, T.1    Sheu, S.S.2    Robotham, J.L.3    Yoon, Y.4
  • 215
    • 84988014760 scopus 로고    scopus 로고
    • Targeted modification of mitochondrial ros production converts high glucose-induced cytotoxicity to cytoprotection: Effects on anesthetic preconditioning
    • Sedlic, F.; Muravyeva, M.Y.; Sepac, A.; Sedlic, M.; Williams, A.M.; Yang, M.; Bai, X.; Bosnjak, Z.J. Targeted modification of mitochondrial ros production converts high glucose-induced cytotoxicity to cytoprotection: Effects on anesthetic preconditioning. J. Cell. Physiol. 2017, 232, 216–224.
    • (2017) J. Cell. Physiol , vol.232 , pp. 216-224
    • Sedlic, F.1    Muravyeva, M.Y.2    Sepac, A.3    Sedlic, M.4    Williams, A.M.5    Yang, M.6    Bai, X.7    Bosnjak, Z.J.8
  • 216
    • 84941055870 scopus 로고    scopus 로고
    • Inhibition to Drp1 translocation can mitigate p38 MAPK-signaling pathway activation in gmc induced by hyperglycemia
    • Zhang, L.; Ji, L.; Tang, X.; Chen, X.; Li, Z.; Mi, X.; Yang, L. Inhibition to Drp1 translocation can mitigate p38 MAPK-signaling pathway activation in gmc induced by hyperglycemia. Ren. Fail. 2015, 37, 903–910.
    • (2015) Ren. Fail , vol.37 , pp. 903-910
    • Zhang, L.1    Ji, L.2    Tang, X.3    Chen, X.4    Li, Z.5    Mi, X.6    Yang, L.7
  • 218
    • 85017125272 scopus 로고    scopus 로고
    • Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species
    • Zhang, L.; Gan, X.; He, Y.; Zhu, Z.; Zhu, J.; Yu, H. Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species. PLoS ONE 2017, 12, e0175262.
    • (2017) Plos ONE , vol.12
    • Zhang, L.1    Gan, X.2    He, Y.3    Zhu, Z.4    Zhu, J.5    Yu, H.6
  • 219
    • 84899657232 scopus 로고    scopus 로고
    • Dynamin related protein 1-dependent mitochondrial fission regulates oxidative signalling in t cells
    • Roth, D.; Krammer, P.H.; Gulow, K. Dynamin related protein 1-dependent mitochondrial fission regulates oxidative signalling in t cells. FEBS Lett. 2014, 588, 1749–1754.
    • (2014) FEBS Lett , vol.588 , pp. 1749-1754
    • Roth, D.1    Krammer, P.H.2    Gulow, K.3
  • 220
    • 85015400482 scopus 로고    scopus 로고
    • Anti-inflammatory effect of oleuropein on microglia through regulation of Drp1-dependent mitochondrial fission
    • Park, J.; Min, J.S.; Chae, U.; Lee, J.Y.; Song, K.S.; Lee, H.S.; Lee, H.J.; Lee, S.R.; Lee, D.S. Anti-inflammatory effect of oleuropein on microglia through regulation of Drp1-dependent mitochondrial fission. J. Neuroimmunol. 2017, 306, 46–52.
    • (2017) J. Neuroimmunol , vol.306 , pp. 46-52
    • Park, J.1    Min, J.S.2    Chae, U.3    Lee, J.Y.4    Song, K.S.5    Lee, H.S.6    Lee, H.J.7    Lee, S.R.8    Lee, D.S.9
  • 221
    • 84959109218 scopus 로고    scopus 로고
    • Cyclopamine tartrate, an inhibitor of hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells
    • Alam, M.M.; Sohoni, S.; Kalainayakan, S.P.; Garrossian, M.; Zhang, L. Cyclopamine tartrate, an inhibitor of hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells. BMC Cancer 2016, 16, 150.
    • (2016) BMC Cancer , vol.16
    • Alam, M.M.1    Sohoni, S.2    Kalainayakan, S.P.3    Garrossian, M.4    Zhang, L.5
  • 222
    • 84981309683 scopus 로고    scopus 로고
    • Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of nadph oxidase 1 and the alteration of mitochondrial morphology and dynamics
    • Shen, K.; Lu, F.; Xie, J.; Wu, M.; Cai, B.; Liu, Y.; Zhang, H.; Tan, H.; Pan, Y.; Xu, H. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of nadph oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget 2016, 7, 50596–50611.
    • (2016) Oncotarget , vol.7 , pp. 50596-50611
    • Shen, K.1    Lu, F.2    Xie, J.3    Wu, M.4    Cai, B.5    Liu, Y.6    Zhang, H.7    Tan, H.8    Pan, Y.9    Xu, H.10
  • 223
    • 85043294807 scopus 로고    scopus 로고
    • Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles
    • Guo, C.; Wang, J.; Jing, L.; Ma, R.; Liu, X.; Gao, L.; Cao, L.; Duan, J.; Zhou, X.; Li, Y.; et al. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ. Pollut. 2017.
    • (2017) Environ. Pollut
    • Guo, C.1    Wang, J.2    Jing, L.3    Ma, R.4    Liu, X.5    Gao, L.6    Cao, L.7    Duan, J.8    Zhou, X.9    Li, Y.10
  • 224
    • 84888378078 scopus 로고    scopus 로고
    • Cytoplasmic irradiation results in mitochondrial dysfunction and Drp1-dependent mitochondrial fission
    • Zhang, B.; Davidson, M.M.; Zhou, H.; Wang, C.; Walker, W.F.; Hei, T.K. Cytoplasmic irradiation results in mitochondrial dysfunction and Drp1-dependent mitochondrial fission. Cancer Res. 2013, 73, 6700–6710.
    • (2013) Cancer Res , vol.73 , pp. 6700-6710
    • Zhang, B.1    Davidson, M.M.2    Zhou, H.3    Wang, C.4    Walker, W.F.5    Hei, T.K.6
  • 226
    • 85035101729 scopus 로고    scopus 로고
    • Dealing with stress: Defective metabolic adaptation in chronic obstructive pulmonary disease pathogenesis
    • Michaeloudes, C.; Bhavsar, P.K.; Mumby, S.; Chung, K.F.; Adcock, I.M. Dealing with stress: Defective metabolic adaptation in chronic obstructive pulmonary disease pathogenesis. Ann. Am. Thorac. Soc. 2017, 14, S374–S382.
    • (2017) Ann. Am. Thorac. Soc , vol.14 , pp. S374-S382
    • Michaeloudes, C.1    Bhavsar, P.K.2    Mumby, S.3    Chung, K.F.4    Adcock, I.M.5
  • 227
    • 84864019055 scopus 로고    scopus 로고
    • Perspectives on: SGP symposium on mitochondrial physiology and medicine: What comes first, misshape or dysfunction? The view from metabolic excess
    • Galloway, C.A.; Yoon, Y. Perspectives on: SGP symposium on mitochondrial physiology and medicine: What comes first, misshape or dysfunction? The view from metabolic excess. J. Gen. Physiol. 2012, 139, 455–463.
    • (2012) J. Gen. Physiol , vol.139 , pp. 455-463
    • Galloway, C.A.1    Yoon, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.