-
1
-
-
84858287883
-
Phenformin as prophylaxis and therapy in breast cancer xenografts
-
1:CAS:528:DC%2BC38XktVaitrk%3D 22361631
-
Appleyard, M.V., K.E. Murray, P.J. Coates, S. Wullschleger, S.E. Bray, N.M. Kernohan, S. Fleming, D.R. Alessi, and A.M. Thompson. 2012. Phenformin as prophylaxis and therapy in breast cancer xenografts. British Journal of Cancer 106: 1117-1122.
-
(2012)
British Journal of Cancer
, vol.106
, pp. 1117-1122
-
-
Appleyard, M.V.1
Murray, K.E.2
Coates, P.J.3
Wullschleger, S.4
Bray, S.E.5
Kernohan, N.M.6
Fleming, S.7
Alessi, D.R.8
Thompson, A.M.9
-
2
-
-
84908681880
-
Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP
-
1:CAS:528:DC%2BC2cXhtleisrvL 25084564
-
Auciello, F.R., F.A. Ross, N. Ikematsu, and D.G. Hardie. 2014. Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Letters 588: 3361-3366.
-
(2014)
FEBS Letters
, vol.588
, pp. 3361-3366
-
-
Auciello, F.R.1
Ross, F.A.2
Ikematsu, N.3
Hardie, D.G.4
-
3
-
-
0037068461
-
Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation
-
1:CAS:528:DC%2BD38XmvV2qsbo%3D 12226664
-
Bardeesy, N., M. Sinha, A.F. Hezel, S. Signoretti, N.A. Hathaway, N.E. Sharpless, M. Loda, D.R. Carrasco, and R.A. Depinho. 2002. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419: 162-167.
-
(2002)
Nature
, vol.419
, pp. 162-167
-
-
Bardeesy, N.1
Sinha, M.2
Hezel, A.F.3
Signoretti, S.4
Hathaway, N.A.5
Sharpless, N.E.6
Loda, M.7
Carrasco, D.R.8
Depinho, R.A.9
-
4
-
-
84900460428
-
A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF
-
1:CAS:528:DC%2BC3sXosFOgt7Y%3D 23728343
-
Borgdorff, V., U. Rix, G.E. Winter, M. Gridling, A.C. Muller, F.P. Breitwieser, C. Wagner, J. Colinge, K.L. Bennett, G. Superti-Furga, and S.N. Wagner. 2014. A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene 33: 2531-2539.
-
(2014)
Oncogene
, vol.33
, pp. 2531-2539
-
-
Borgdorff, V.1
Rix, U.2
Winter, G.E.3
Gridling, M.4
Muller, A.C.5
Breitwieser, F.P.6
Wagner, C.7
Colinge, J.8
Bennett, K.L.9
Superti-Furga, G.10
Wagner, S.N.11
-
5
-
-
34547114031
-
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
-
1:CAS:528:DC%2BD2sXnslOju7s%3D 17638885
-
Buzzai, M., R.G. Jones, R.K. Amaravadi, J.J. Lum, R.J. Deberardinis, F. Zhao, B. Viollet, and C.B. Thompson. 2007. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Research 67: 6745-6752.
-
(2007)
Cancer Research
, vol.67
, pp. 6745-6752
-
-
Buzzai, M.1
Jones, R.G.2
Amaravadi, R.K.3
Lum, J.J.4
Deberardinis, R.J.5
Zhao, F.6
Viollet, B.7
Thompson, C.B.8
-
6
-
-
84862849835
-
Redox implications of AMPK-mediated signal transduction beyond energetic clues
-
1:CAS:528:DC%2BC38XhtVGltr7L 22619229
-
Cardaci, S., G. Filomeni, and M.R. Ciriolo. 2012. Redox implications of AMPK-mediated signal transduction beyond energetic clues. Journal of Cell Science 125: 2115-2125.
-
(2012)
Journal of Cell Science
, vol.125
, pp. 2115-2125
-
-
Cardaci, S.1
Filomeni, G.2
Ciriolo, M.R.3
-
7
-
-
0023642627
-
A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis
-
1:CAS:528:DyaL1cXltFOksA%3D%3D 2889619
-
Carling, D., V.A. Zammit, and D.G. Hardie. 1987. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Letters 223: 217-222.
-
(1987)
FEBS Letters
, vol.223
, pp. 217-222
-
-
Carling, D.1
Zammit, V.A.2
Hardie, D.G.3
-
8
-
-
77953238558
-
Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors
-
1:CAS:528:DC%2BC3cXot1Cgsbw%3D 20541700
-
Carretero, J., T. Shimamura, K. Rikova, A.L. Jackson, M.D. Wilkerson, C.L. Borgman, M.S. Buttarazzi, B.A. Sanofsky, K.L. Mcnamara, K.A. Brandstetter, Z.E. Walton, T.L. Gu, J.C. Silva, K. Crosby, G.I. Shapiro, S.M. Maira, H. Ji, D.H. Castrillon, C.F. Kim, C. Garcia-Echeverria, N. Bardeesy, N.E. Sharpless, N.D. Hayes, W.Y. Kim, J.A. Engelman, and K.K. Wong. 2010. Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 17: 547-559.
-
(2010)
Cancer Cell
, vol.17
, pp. 547-559
-
-
Carretero, J.1
Shimamura, T.2
Rikova, K.3
Jackson, A.L.4
Wilkerson, M.D.5
Borgman, C.L.6
Buttarazzi, M.S.7
Sanofsky, B.A.8
McNamara, K.L.9
Brandstetter, K.A.10
Walton, Z.E.11
Gu, T.L.12
Silva, J.C.13
Crosby, K.14
Shapiro, G.I.15
Maira, S.M.16
Ji, H.17
Castrillon, D.H.18
Kim, C.F.19
Garcia-Echeverria, C.20
Bardeesy, N.21
Sharpless, N.E.22
Hayes, N.D.23
Kim, W.Y.24
Engelman, J.A.25
Wong, K.K.26
more..
-
9
-
-
84892743258
-
A genetic mouse model of invasive endometrial cancer driven by concurrent loss of Pten and Lkb1 is highly responsive to mTOR inhibition
-
1:CAS:528:DC%2BC2cXislGqtw%3D%3D 24322983
-
Cheng, H., P. Liu, F. Zhang, E. Xu, L. Symonds, C.E. Ohlson, R.T. Bronson, S.M. Maira, E. Di Tomaso, J. Li, A.P. Myers, L.C. Cantley, G.B. Mills, and J.J. Zhao. 2014. A genetic mouse model of invasive endometrial cancer driven by concurrent loss of Pten and Lkb1 Is highly responsive to mTOR inhibition. Cancer Research 74: 15-23.
-
(2014)
Cancer Research
, vol.74
, pp. 15-23
-
-
Cheng, H.1
Liu, P.2
Zhang, F.3
Xu, E.4
Symonds, L.5
Ohlson, C.E.6
Bronson, R.T.7
Maira, S.M.8
Di Tomaso, E.9
Li, J.10
Myers, A.P.11
Cantley, L.C.12
Mills, G.B.13
Zhao, J.J.14
-
10
-
-
0035860237
-
The regulation of AMP-activated protein kinase by H(2)O(2)
-
1:CAS:528:DC%2BD3MXms1anu7k%3D 11549258
-
Choi, S.L., S.J. Kim, K.T. Lee, J. Kim, J. Mu, M.J. Birnbaum, S. Soo Kim, and J. Ha. 2001. The regulation of AMP-activated protein kinase by H(2)O(2). Biochemical and biophysical research communications 287: 92-97.
-
(2001)
Biochemical and Biophysical Research Communications
, vol.287
, pp. 92-97
-
-
Choi, S.L.1
Kim, S.J.2
Lee, K.T.3
Kim, J.4
Mu, J.5
Birnbaum, M.J.6
Soo Kim, S.7
Ha, J.8
-
11
-
-
77949469320
-
Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy
-
1:CAS:528:DC%2BC3cXhsFyhtLjL
-
Contreras, C.M., E.A. Akbay, T.D. Gallardo, J.M. Haynie, S. Sharma, O. Tagao, N. Bardeesy, M. Takahashi, J. Settleman, K.K. Wong, and D.H. Castrillon. 2010. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy. Disease models & mechanisms 3: 181-193.
-
(2010)
Disease Models & Mechanisms
, vol.3
, pp. 181-193
-
-
Contreras, C.M.1
Akbay, E.A.2
Gallardo, T.D.3
Haynie, J.M.4
Sharma, S.5
Tagao, O.6
Bardeesy, N.7
Takahashi, M.8
Settleman, J.9
Wong, K.K.10
Castrillon, D.H.11
-
12
-
-
38849193504
-
Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas
-
1:CAS:528:DC%2BD1cXhtlygsLc%3D 18245476
-
Contreras, C.M., S. Gurumurthy, J.M. Haynie, L.J. Shirley, E.A. Akbay, S.N. Wingo, J.O. Schorge, R.R. Broaddus, K.K. Wong, N. Bardeesy, and D.H. Castrillon. 2008. Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Research 68: 759-766.
-
(2008)
Cancer Research
, vol.68
, pp. 759-766
-
-
Contreras, C.M.1
Gurumurthy, S.2
Haynie, J.M.3
Shirley, L.J.4
Akbay, E.A.5
Wingo, S.N.6
Schorge, J.O.7
Broaddus, R.R.8
Wong, K.K.9
Bardeesy, N.10
Castrillon, D.H.11
-
13
-
-
3042818799
-
Regulation of the TSC pathway by LKB1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome
-
1:CAS:528:DC%2BD2cXlslWnurY%3D
-
Corradetti, M.N., K. Inoki, N. Bardeesy, R.A. Depinho, and K.L. Guan. 2004. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes & Development 18: 1533-1538.
-
(2004)
Genes & Development
, vol.18
, pp. 1533-1538
-
-
Corradetti, M.N.1
Inoki, K.2
Bardeesy, N.3
Depinho, R.A.4
Guan, K.L.5
-
14
-
-
0029561919
-
5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC
-
1:CAS:528:DyaK28Xnt1Ok 8549768
-
Davies, S.P., N.R. Helps, P.T. Cohen, and D.G. Hardie. 1995. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Letters 377: 421-425.
-
(1995)
FEBS Letters
, vol.377
, pp. 421-425
-
-
Davies, S.P.1
Helps, N.R.2
Cohen, P.T.3
Hardie, D.G.4
-
15
-
-
78649302320
-
Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis
-
1:CAS:528:DC%2BC3cXhs1Wrsr7J 20947488
-
Decensi, A., M. Puntoni, P. Goodwin, M. Cazzaniga, A. Gennari, B. Bonanni, and S. Gandini. 2010. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer prevention research 3: 1451-1461.
-
(2010)
Cancer Prevention Research
, vol.3
, pp. 1451-1461
-
-
Decensi, A.1
Puntoni, M.2
Goodwin, P.3
Cazzaniga, M.4
Gennari, A.5
Bonanni, B.6
Gandini, S.7
-
16
-
-
84901345781
-
LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer
-
Dupuy, F., T. Griss, J. Blagih, G. Bridon, D. Avizonis, C. Ling, Z. Dong, D.R. Siwak, M.G. Annis, G.B. Mills, W.J. Muller, P.M. Siegel, and R.G. Jones. 2013. LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer. Cancer & metabolism 1: 18.
-
(2013)
Cancer & Metabolism
, vol.1
, pp. 18
-
-
Dupuy, F.1
Griss, T.2
Blagih, J.3
Bridon, G.4
Avizonis, D.5
Ling, C.6
Dong, Z.7
Siwak, D.R.8
Annis, M.G.9
Mills, G.B.10
Muller, W.J.11
Siegel, P.M.12
Jones, R.G.13
-
17
-
-
84855242079
-
Effects of activation of AMPK on human breast cancer cell lines with different genetic backgrounds
-
3362498 1:CAS:528:DC%2BC38Xht1Sksbw%3D 22740885
-
El-Masry, O.S., B.L. Brown, and P.R. Dobson. 2012. Effects of activation of AMPK on human breast cancer cell lines with different genetic backgrounds. Oncology letters 3: 224-228.
-
(2012)
Oncology Letters
, vol.3
, pp. 224-228
-
-
El-Masry, O.S.1
Brown, B.L.2
Dobson, P.R.3
-
18
-
-
64449087671
-
Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
-
1:CAS:528:DC%2BD1MXkvVWnt70%3D 19268526
-
Emerling, B.M., F. Weinberg, C. Snyder, Z. Burgess, G.M. Mutlu, B. Viollet, G.R. Budinger, and N.S. Chandel. 2009. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radical Biology and Medicine 46: 1386-1391.
-
(2009)
Free Radical Biology and Medicine
, vol.46
, pp. 1386-1391
-
-
Emerling, B.M.1
Weinberg, F.2
Snyder, C.3
Burgess, Z.4
Mutlu, G.M.5
Viollet, B.6
Budinger, G.R.7
Chandel, N.S.8
-
19
-
-
20444461067
-
Metformin and reduced risk of cancer in diabetic patients
-
Evans, J.M., L.A. Donnelly, A.M. Emslie-Smith, D.R. Alessi, and A.D. Morris. 2005. Metformin and reduced risk of cancer in diabetic patients. BMJ 330: 1304-1305.
-
(2005)
BMJ
, vol.330
, pp. 1304-1305
-
-
Evans, J.M.1
Donnelly, L.A.2
Emslie-Smith, A.M.3
Alessi, D.R.4
Morris, A.D.5
-
20
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
1:CAS:528:DC%2BC3sXnvVem 23274086
-
Faubert, B., G. Boily, S. Izreig, T. Griss, B. Samborska, Z. Dong, F. Dupuy, C. Chambers, B.J. Fuerth, B. Viollet, O.A. Mamer, D. Avizonis, R.J. Deberardinis, P.M. Siegel, and R.G. Jones. 2013. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metabolism 17: 113-124.
-
(2013)
Cell Metabolism
, vol.17
, pp. 113-124
-
-
Faubert, B.1
Boily, G.2
Izreig, S.3
Griss, T.4
Samborska, B.5
Dong, Z.6
Dupuy, F.7
Chambers, C.8
Fuerth, B.J.9
Viollet, B.10
Mamer, O.A.11
Avizonis, D.12
Deberardinis, R.J.13
Siegel, P.M.14
Jones, R.G.15
-
21
-
-
84894359469
-
Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha
-
1:CAS:528:DC%2BC2cXivFantrg%3D 24550282
-
Faubert, B., E.E. Vincent, T. Griss, B. Samborska, S. Izreig, R.U. Svensson, O.A. Mamer, D. Avizonis, D.B. Shackelford, R.J. Shaw, and R.G. Jones. 2014a. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proceedings of the National Academy of Sciences of the United States of America 111: 2554-2559.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, pp. 2554-2559
-
-
Faubert, B.1
Vincent, E.E.2
Griss, T.3
Samborska, B.4
Izreig, S.5
Svensson, R.U.6
Mamer, O.A.7
Avizonis, D.8
Shackelford, D.B.9
Shaw, R.J.10
Jones, R.G.11
-
22
-
-
84920112762
-
The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator
-
doi: 10.1016/j.canlet.2014.01.018
-
Faubert, B., E.E. Vincent, M.C. Poffenberger, and R.G. Jones, 2014b. The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator. Cancer letters 356(2): 165-70. doi: 10.1016/j.canlet.2014.01.018.
-
(2014)
Cancer Letters
, vol.356
, Issue.2
, pp. 165-170
-
-
Faubert, B.1
Vincent, E.E.2
Poffenberger, M.C.3
Jones, R.G.4
-
23
-
-
84866385871
-
Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK
-
1:CAS:528:DC%2BC38XhtlemsrnF 22801368
-
Fernandez, M.R., M.D. Henry, and R.E. Lewis. 2012. Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK. Molecular and Cellular Biology 32: 3718-3731.
-
(2012)
Molecular and Cellular Biology
, vol.32
, pp. 3718-3731
-
-
Fernandez, M.R.1
Henry, M.D.2
Lewis, R.E.3
-
24
-
-
78751475852
-
CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells
-
1:CAS:528:DC%2BC3MXlsFKltw%3D%3D 21098087
-
Frigo, D.E., M.K. Howe, B.M. Wittmann, A.M. Brunner, I. Cushman, Q. Wang, M. Brown, A.R. Means, and D.P. Mcdonnell. 2011. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Research 71: 528-537.
-
(2011)
Cancer Research
, vol.71
, pp. 528-537
-
-
Frigo, D.E.1
Howe, M.K.2
Wittmann, B.M.3
Brunner, A.M.4
Cushman, I.5
Wang, Q.6
Brown, M.7
Means, A.R.8
McDonnell, D.P.9
-
25
-
-
41449109334
-
Induction of autophagy during extracellular matrix detachment promotes cell survival
-
1:CAS:528:DC%2BD1cXlslemsr8%3D 18094039
-
Fung, C., R. Lock, S. Gao, E. Salas, and J. Debnath. 2008. Induction of autophagy during extracellular matrix detachment promotes cell survival. Molecular Biology of the Cell 19: 797-806.
-
(2008)
Molecular Biology of the Cell
, vol.19
, pp. 797-806
-
-
Fung, C.1
Lock, R.2
Gao, S.3
Salas, E.4
Debnath, J.5
-
26
-
-
77649259296
-
MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells
-
1:CAS:528:DC%2BC3cXlt1KrsL4%3D 20227367
-
Godlewski, J., M.O. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. Van Brocklyn, M.C. Ostrowski, E.A. Chiocca, and S.E. Lawler. 2010. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Molecular Cell 37: 620-632.
-
(2010)
Molecular Cell
, vol.37
, pp. 620-632
-
-
Godlewski, J.1
Nowicki, M.O.2
Bronisz, A.3
Nuovo, G.4
Palatini, J.5
De Lay, M.6
Van Brocklyn, J.7
Ostrowski, M.C.8
Chiocca, E.A.9
Lawler, S.E.10
-
27
-
-
84905568827
-
An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential
-
1:CAS:528:DC%2BC2cXhtFyjtL7I 25042806
-
Goodwin, J.M., R.U. Svensson, H.J. Lou, M.M. Winslow, B.E. Turk, and R.J. Shaw. 2014. An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential. Molecular Cell 55: 436-450.
-
(2014)
Molecular Cell
, vol.55
, pp. 436-450
-
-
Goodwin, J.M.1
Svensson, R.U.2
Lou, H.J.3
Winslow, M.M.4
Turk, B.E.5
Shaw, R.J.6
-
28
-
-
84885168009
-
AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
-
1:CAS:528:DC%2BC3sXhsFGnsLjO 24093679
-
Gowans, G.J., S.A. Hawley, F.A. Ross, and D.G. Hardie. 2013. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metabolism 18: 556-566.
-
(2013)
Cell Metabolism
, vol.18
, pp. 556-566
-
-
Gowans, G.J.1
Hawley, S.A.2
Ross, F.A.3
Hardie, D.G.4
-
30
-
-
84876320551
-
LKB1 and AMPK and the cancer-metabolism link - Ten years after
-
Hardie, D.G., and D.R. Alessi. 2013. LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biology 11: 36.
-
(2013)
BMC Biology
, vol.11
, pp. 36
-
-
Hardie, D.G.1
Alessi, D.R.2
-
31
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
1:CAS:528:DC%2BC38XksVenu7w%3D 22436748
-
Hardie, D.G., F.A. Ross, and S.A. Hawley. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology 13: 251-262.
-
(2012)
Nature Reviews Molecular Cell Biology
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
32
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley, S.A., J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Makela, D.R. Alessi, and D.G. Hardie. 2003. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of biology 2: 28.
-
(2003)
Journal of Biology
, vol.2
, pp. 28
-
-
Hawley, S.A.1
Boudeau, J.2
Reid, J.L.3
Mustard, K.J.4
Udd, L.5
Makela, T.P.6
Alessi, D.R.7
Hardie, D.G.8
-
33
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
-
1:CAS:528:DC%2BD2MXntlCruro%3D 16054095
-
Hawley, S.A., D.A. Pan, K.J. Mustard, L. Ross, J. Bain, A.M. Edelman, B.G. Frenguelli, and D.G. Hardie. 2005. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism 2: 9-19.
-
(2005)
Cell Metabolism
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
Ross, L.4
Bain, J.5
Edelman, A.M.6
Frenguelli, B.G.7
Hardie, D.G.8
-
34
-
-
77956410464
-
Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation
-
1:CAS:528:DC%2BC3cXnsFyit7w%3D 20519126
-
Hawley, S.A., F.A. Ross, C. Chevtzoff, K.A. Green, A. Evans, S. Fogarty, M.C. Towler, L.J. Brown, O.A. Ogunbayo, A.M. Evans, and D.G. Hardie. 2010. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metabolism 11: 554-565.
-
(2010)
Cell Metabolism
, vol.11
, pp. 554-565
-
-
Hawley, S.A.1
Ross, F.A.2
Chevtzoff, C.3
Green, K.A.4
Evans, A.5
Fogarty, S.6
Towler, M.C.7
Brown, L.J.8
Ogunbayo, O.A.9
Evans, A.M.10
Hardie, D.G.11
-
35
-
-
0032495530
-
A serine/threonine kinase gene defective in Peutz-Jeghers syndrome
-
1:CAS:528:DyaK1cXmt1Kjtw%3D%3D 9428765
-
Hemminki, A., D. Markie, I. Tomlinson, E. Avizienyte, S. Roth, A. Loukola, G. Bignell, W. Warren, M. Aminoff, P. Hoglund, H. Jarvinen, P. Kristo, K. Pelin, M. Ridanpaa, R. Salovaara, T. Toro, W. Bodmer, S. Olschwang, A.S. Olsen, M.R. Stratton, A. De La Chapelle, and L.A. Aaltonen. 1998. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184-187.
-
(1998)
Nature
, vol.391
, pp. 184-187
-
-
Hemminki, A.1
Markie, D.2
Tomlinson, I.3
Avizienyte, E.4
Roth, S.5
Loukola, A.6
Bignell, G.7
Warren, W.8
Aminoff, M.9
Hoglund, P.10
Jarvinen, H.11
Kristo, P.12
Pelin, K.13
Ridanpaa, M.14
Salovaara, R.15
Toro, T.16
Bodmer, W.17
Olschwang, S.18
Olsen, A.S.19
Stratton, M.R.20
De La Chapelle, A.21
Aaltonen, L.A.22
more..
-
36
-
-
84906828142
-
Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells
-
Hindupur, S.K., S.A. Balaji, M. Saxena, S. Pandey, G. Sravan, N. Heda, M. Kumar, G. Mukherjee, D. Dey, and A. Rangarajan. 2014. Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast cancer research: BCR 16: 420.
-
(2014)
Breast Cancer Research: BCR
, vol.16
, pp. 420
-
-
Hindupur, S.K.1
Balaji, S.A.2
Saxena, M.3
Pandey, S.4
Sravan, G.5
Heda, N.6
Kumar, M.7
Mukherjee, G.8
Dey, D.9
Rangarajan, A.10
-
37
-
-
70350236538
-
Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission
-
1:CAS:528:DC%2BD1MXht1Skt7rN 19752085
-
Hirsch, H.A., D. Iliopoulos, P.N. Tsichlis, and K. Struhl. 2009. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Research 69: 7507-7511.
-
(2009)
Cancer Research
, vol.69
, pp. 7507-7511
-
-
Hirsch, H.A.1
Iliopoulos, D.2
Tsichlis, P.N.3
Struhl, K.4
-
38
-
-
84902602073
-
Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer
-
4091970 1:CAS:528:DC%2BC2cXhsVShsb7K 24859412
-
Honjo, S., J.A. Ajani, A.W. Scott, Q. Chen, H.D. Skinner, J. Stroehlein, R.L. Johnson, and S. Song. 2014. Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. International Journal of Oncology 45: 567-574.
-
(2014)
International Journal of Oncology
, vol.45
, pp. 567-574
-
-
Honjo, S.1
Ajani, J.A.2
Scott, A.W.3
Chen, Q.4
Skinner, H.D.5
Stroehlein, J.6
Johnson, R.L.7
Song, S.8
-
39
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
1:CAS:528:DC%2BD3sXps1OhtL0%3D 14651849
-
Inoki, K., T. Zhu, and K.L. Guan. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
40
-
-
79952465715
-
5′-AMP-activated protein kinase activity is elevated early during primary brain tumor development in the rat
-
1:CAS:528:DC%2BC3MXivVGgsbs%3D 20635388
-
Jang, T., J.M. Calaoagan, E. Kwon, S. Samuelsson, L. Recht, and K.R. Laderoute. 2011. 5′-AMP-activated protein kinase activity is elevated early during primary brain tumor development in the rat. International journal of cancer. Journal international du cancer 128: 2230-2239.
-
(2011)
International Journal of Cancer. Journal International du Cancer
, vol.128
, pp. 2230-2239
-
-
Jang, T.1
Calaoagan, J.M.2
Kwon, E.3
Samuelsson, S.4
Recht, L.5
Laderoute, K.R.6
-
41
-
-
84904686912
-
Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells
-
1:CAS:528:DC%2BC2cXhtFCnsrjF 25002509
-
Janzer, A., N.J. German, K.N. Gonzalez-Herrera, J.M. Asara, M.C. Haigis, and K. Struhl. 2014. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America 111: 10574-10579.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, pp. 10574-10579
-
-
Janzer, A.1
German, N.J.2
Gonzalez-Herrera, K.N.3
Asara, J.M.4
Haigis, M.C.5
Struhl, K.6
-
42
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
1:CAS:528:DC%2BC38XnvVykt7k%3D 22660331
-
Jeon, S.M., N.S. Chandel, and N. Hay. 2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485: 661-665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
Chandel, N.S.2
Hay, N.3
-
43
-
-
84893455835
-
The dark face of AMPK as an essential tumor promoter
-
Jeon, S.M., and N. Hay. 2012. The dark face of AMPK as an essential tumor promoter. Cellular logistics 2: 197-202.
-
(2012)
Cellular Logistics
, vol.2
, pp. 197-202
-
-
Jeon, S.M.1
Hay, N.2
-
44
-
-
34547926839
-
LKB1 modulates lung cancer differentiation and metastasis
-
1:CAS:528:DC%2BD2sXptVGrs7g%3D 17676035
-
Ji, H., M.R. Ramsey, D.N. Hayes, C. Fan, K. Mcnamara, P. Kozlowski, C. Torrice, M.C. Wu, T. Shimamura, S.A. Perera, M.C. Liang, D. Cai, G.N. Naumov, L. Bao, C.M. Contreras, D. Li, L. Chen, J. Krishnamurthy, J. Koivunen, L.R. Chirieac, R.F. Padera, R.T. Bronson, N.I. Lindeman, D.C. Christiani, X. Lin, G.I. Shapiro, P.A. Janne, B.E. Johnson, M. Meyerson, D.J. Kwiatkowski, D.H. Castrillon, N. Bardeesy, N.E. Sharpless, and K.K. Wong. 2007. LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807-810.
-
(2007)
Nature
, vol.448
, pp. 807-810
-
-
Ji, H.1
Ramsey, M.R.2
Hayes, D.N.3
Fan, C.4
McNamara, K.5
Kozlowski, P.6
Torrice, C.7
Wu, M.C.8
Shimamura, T.9
Perera, S.A.10
Liang, M.C.11
Cai, D.12
Naumov, G.N.13
Bao, L.14
Contreras, C.M.15
Li, D.16
Chen, L.17
Krishnamurthy, J.18
Koivunen, J.19
Chirieac, L.R.20
Padera, R.F.21
Bronson, R.T.22
Lindeman, N.I.23
Christiani, D.C.24
Lin, X.25
Shapiro, G.I.26
Janne, P.A.27
Johnson, B.E.28
Meyerson, M.29
Kwiatkowski, D.J.30
Castrillon, D.H.31
Bardeesy, N.32
Sharpless, N.E.33
Wong, K.K.34
more..
-
45
-
-
0037026608
-
Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation
-
1:CAS:528:DC%2BD38XmsFGqsrc%3D 12203120
-
Kato, K., T. Ogura, A. Kishimoto, Y. Minegishi, N. Nakajima, M. Miyazaki, and H. Esumi. 2002. Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21: 6082-6090.
-
(2002)
Oncogene
, vol.21
, pp. 6082-6090
-
-
Kato, K.1
Ogura, T.2
Kishimoto, A.3
Minegishi, Y.4
Nakajima, N.5
Miyazaki, M.6
Esumi, H.7
-
46
-
-
84887020540
-
Targeting the AMP-activated protein kinase for cancer prevention and therapy
-
3711071 23875169
-
Kim, I., and Y.Y. He. 2013. Targeting the AMP-activated protein kinase for cancer prevention and therapy. Frontiers in oncology 3: 175.
-
(2013)
Frontiers in Oncology
, vol.3
, pp. 175
-
-
Kim, I.1
He, Y.Y.2
-
47
-
-
33745840203
-
5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
-
1:CAS:528:DC%2BD28XmvFyht78%3D 16809770
-
Laderoute, K.R., K. Amin, J.M. Calaoagan, M. Knapp, T. Le, J. Orduna, M. Foretz, and B. Viollet. 2006. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Molecular and Cellular Biology 26: 5336-5347.
-
(2006)
Molecular and Cellular Biology
, vol.26
, pp. 5336-5347
-
-
Laderoute, K.R.1
Amin, K.2
Calaoagan, J.M.3
Knapp, M.4
Le, T.5
Orduna, J.6
Foretz, M.7
Viollet, B.8
-
48
-
-
84905962247
-
5′-AMP-activated protein kinase (AMPK) supports the growth of aggressive experimental human breast cancer tumors
-
1:CAS:528:DC%2BC2cXhtlGmtbrJ 24993821
-
Laderoute, K.R., J.M. Calaoagan, W.R. Chao, D. Dinh, N. Denko, S. Duellman, J. Kalra, X. Liu, I. Papandreou, L. Sambucetti, and L.G. Boros. 2014. 5′-AMP-activated protein kinase (AMPK) supports the growth of aggressive experimental human breast cancer tumors. The Journal of biological chemistry 289: 22850-22864.
-
(2014)
The Journal of Biological Chemistry
, vol.289
, pp. 22850-22864
-
-
Laderoute, K.R.1
Calaoagan, J.M.2
Chao, W.R.3
Dinh, D.4
Denko, N.5
Duellman, S.6
Kalra, J.7
Liu, X.8
Papandreou, I.9
Sambucetti, L.10
Boros, L.G.11
-
49
-
-
77954421886
-
SU11248 (sunitinib) directly inhibits the activity of mammalian 5′-AMP-activated protein kinase (AMPK)
-
1:CAS:528:DC%2BC3cXhsVegsLrK
-
Laderoute, K.R., J.M. Calaoagan, P.B. Madrid, A.E. Klon, and P.J. Ehrlich. 2010. SU11248 (sunitinib) directly inhibits the activity of mammalian 5′-AMP-activated protein kinase (AMPK). Cancer Biology & Therapy 10: 68-76.
-
(2010)
Cancer Biology & Therapy
, vol.10
, pp. 68-76
-
-
Laderoute, K.R.1
Calaoagan, J.M.2
Madrid, P.B.3
Klon, A.E.4
Ehrlich, P.J.5
-
50
-
-
84877851087
-
AMPK: A contextual oncogene or tumor suppressor?
-
1:CAS:528:DC%2BC3sXnsFejs70%3D 23644529
-
Liang, J., and G.B. Mills. 2013. AMPK: a contextual oncogene or tumor suppressor? Cancer Research 73: 2929-2935.
-
(2013)
Cancer Research
, vol.73
, pp. 2929-2935
-
-
Liang, J.1
Mills, G.B.2
-
51
-
-
84859167179
-
Deregulated MYC expression induces dependence upon AMPK-related kinase 5
-
1:CAS:528:DC%2BC38XmtVertbk%3D 22460906
-
Liu, L., J. Ulbrich, J. Muller, T. Wustefeld, L. Aeberhard, T.R. Kress, N. Muthalagu, L. Rycak, R. Rudalska, R. Moll, S. Kempa, L. Zender, M. Eilers, and D.J. Murphy. 2012. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 483: 608-612.
-
(2012)
Nature
, vol.483
, pp. 608-612
-
-
Liu, L.1
Ulbrich, J.2
Muller, J.3
Wustefeld, T.4
Aeberhard, L.5
Kress, T.R.6
Muthalagu, N.7
Rycak, L.8
Rudalska, R.9
Moll, R.10
Kempa, S.11
Zender, L.12
Eilers, M.13
Murphy, D.J.14
-
52
-
-
84893361058
-
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
-
1:CAS:528:DC%2BC2cXhsF2qtbo%3D 24474794
-
Liu, X., R.R. Chhipa, S. Pooya, M. Wortman, S. Yachyshin, L.M. Chow, A. Kumar, X. Zhou, Y. Sun, B. Quinn, C. Mcpherson, R.E. Warnick, A. Kendler, S. Giri, J. Poels, K. Norga, B. Viollet, G.A. Grabowski, and B. Dasgupta. 2014. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proceedings of the National Academy of Sciences of the United States of America 111: E435-E444.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, pp. 435-E444
-
-
Liu, X.1
Chhipa, R.R.2
Pooya, S.3
Wortman, M.4
Yachyshin, S.5
Chow, L.M.6
Kumar, A.7
Zhou, X.8
Sun, Y.9
Quinn, B.10
McPherson, C.11
Warnick, R.E.12
Kendler, A.13
Giri, S.14
Poels, J.15
Norga, K.16
Viollet, B.17
Grabowski, G.A.18
Dasgupta, B.19
-
53
-
-
84885742331
-
Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells
-
1:CAS:528:DC%2BC3sXhs1ymsLzO 24204632
-
Lonardo, E., M. Cioffi, P. Sancho, Y. Sanchez-Ripoll, S.M. Trabulo, J. Dorado, A. Balic, M. Hidalgo, and C. Heeschen. 2013. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS ONE 8: e76518.
-
(2013)
PLoS ONE
, vol.8
, pp. 76518
-
-
Lonardo, E.1
Cioffi, M.2
Sancho, P.3
Sanchez-Ripoll, Y.4
Trabulo, S.M.5
Dorado, J.6
Balic, A.7
Hidalgo, M.8
Heeschen, C.9
-
54
-
-
79960071366
-
The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
-
1:CAS:528:DC%2BC3MXmtlemtb4%3D 21602788
-
Massie, C.E., A. Lynch, A. Ramos-Montoya, J. Boren, R. Stark, L. Fazli, A. Warren, H. Scott, B. Madhu, N. Sharma, H. Bon, V. Zecchini, D.M. Smith, G.M. Denicola, N. Mathews, M. Osborne, J. Hadfield, S. Macarthur, B. Adryan, S.K. Lyons, K.M. Brindle, J. Griffiths, M.E. Gleave, P.S. Rennie, D.E. Neal, and I.G. Mills. 2011. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. The EMBO journal 30: 2719-2733.
-
(2011)
The EMBO Journal
, vol.30
, pp. 2719-2733
-
-
Massie, C.E.1
Lynch, A.2
Ramos-Montoya, A.3
Boren, J.4
Stark, R.5
Fazli, L.6
Warren, A.7
Scott, H.8
Madhu, B.9
Sharma, N.10
Bon, H.11
Zecchini, V.12
Smith, D.M.13
Denicola, G.M.14
Mathews, N.15
Osborne, M.16
Hadfield, J.17
Macarthur, S.18
Adryan, B.19
Lyons, S.K.20
Brindle, K.M.21
Griffiths, J.22
Gleave, M.E.23
Rennie, P.S.24
Neal, D.E.25
Mills, I.G.26
more..
-
55
-
-
79955419135
-
Up-regulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation
-
1:CAS:528:DC%2BC3MXltVSqurY%3D 21245141
-
Mizrachy-Schwartz, S., N. Cohen, S. Klein, N. Kravchenko-Balasha, and A. Levitzki. 2011. Up-regulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation. The Journal of biological chemistry 286: 15268-15277.
-
(2011)
The Journal of Biological Chemistry
, vol.286
, pp. 15268-15277
-
-
Mizrachy-Schwartz, S.1
Cohen, N.2
Klein, S.3
Kravchenko-Balasha, N.4
Levitzki, A.5
-
56
-
-
84891345748
-
A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway
-
1:CAS:528:DC%2BC3sXhvFOls7zI 24362629
-
Mohseni, M., J. Sun, A. Lau, S. Curtis, J. Goldsmith, V.L. Fox, C. Wei, M. Frazier, O. Samson, K.K. Wong, C. Kim, and F.D. Camargo. 2014. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nature Cell Biology 16: 108-117.
-
(2014)
Nature Cell Biology
, vol.16
, pp. 108-117
-
-
Mohseni, M.1
Sun, J.2
Lau, A.3
Curtis, S.4
Goldsmith, J.5
Fox, V.L.6
Wei, C.7
Frazier, M.8
Samson, O.9
Wong, K.K.10
Kim, C.11
Camargo, F.D.12
-
57
-
-
80052317552
-
Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels
-
1:CAS:528:DC%2BC3MXhtV2gtb%2FE 21670147
-
Mungai, P.T., G.B. Waypa, A. Jairaman, M. Prakriya, D. Dokic, M.K. Ball, and P.T. Schumacker. 2011. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Molecular and Cellular Biology 31: 3531-3545.
-
(2011)
Molecular and Cellular Biology
, vol.31
, pp. 3531-3545
-
-
Mungai, P.T.1
Waypa, G.B.2
Jairaman, A.3
Prakriya, M.4
Dokic, D.5
Ball, M.K.6
Schumacker, P.T.7
-
58
-
-
84907495391
-
Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: Role of specificity protein (Sp) transcription factors
-
1:CAS:528:DC%2BC2cXhs1Knt7zF 25143389
-
Nair, V., S. Sreevalsan, R. Basha, M. Abdelrahim, A. Abudayyeh, Hoffman.A. Rodrigues, and S. Safe. 2014. Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. The Journal of biological chemistry 289: 27692-27701.
-
(2014)
The Journal of Biological Chemistry
, vol.289
, pp. 27692-27701
-
-
Nair, V.1
Sreevalsan, S.2
Basha, R.3
Abdelrahim, M.4
Abudayyeh, A.5
Rodrigues, H.6
Safe, S.7
-
59
-
-
84857043185
-
The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis
-
1:CAS:528:DC%2BC38XitlGqur4%3D 21941369
-
Ng, T.L., G. Leprivier, M.D. Robertson, C. Chow, M.J. Martin, K.R. Laderoute, E. Davicioni, T.J. Triche, and P.H. Sorensen. 2012. The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death and Differentiation 19: 501-510.
-
(2012)
Cell Death and Differentiation
, vol.19
, pp. 501-510
-
-
Ng, T.L.1
Leprivier, G.2
Robertson, M.D.3
Chow, C.4
Martin, M.J.5
Laderoute, K.R.6
Davicioni, E.7
Triche, T.J.8
Sorensen, P.H.9
-
60
-
-
84868636853
-
AMPKalpha2 suppresses murine embryonic fibroblast transformation and tumorigenesis
-
Phoenix, K.N., C.V. Devarakonda, M.M. Fox, L.E. Stevens, and K.P. Claffey. 2012. AMPKalpha2 suppresses murine embryonic fibroblast transformation and tumorigenesis. Genes and cancer 3: 51-62.
-
(2012)
Genes and Cancer
, vol.3
, pp. 51-62
-
-
Phoenix, K.N.1
Devarakonda, C.V.2
Fox, M.M.3
Stevens, L.E.4
Claffey, K.P.5
-
61
-
-
84883542202
-
Potential applications for biguanides in oncology
-
1:CAS:528:DC%2BC3sXhsVenu7bF 23999444
-
Pollak, M. 2013. Potential applications for biguanides in oncology. The Journal of Clinical Investigation 123: 3693-3700.
-
(2013)
The Journal of Clinical Investigation
, vol.123
, pp. 3693-3700
-
-
Pollak, M.1
-
62
-
-
84901305990
-
Folliculin regulates ampk-dependent autophagy and metabolic stress survival
-
Possik, E., Z. Jalali, Y. Nouet, M. Yan, M.C. Gingras, K. Schmeisser, L. Panaite, F. Dupuy, D. Kharitidi, L. Chotard, R.G. Jones, D.H. Hall, and A. Pause. 2014. Folliculin regulates ampk-dependent autophagy and metabolic stress survival. PLoS Genetics 10: e1004273.
-
(2014)
PLoS Genetics
, vol.10
, pp. 1004273
-
-
Possik, E.1
Jalali, Z.2
Nouet, Y.3
Yan, M.4
Gingras, M.C.5
Schmeisser, K.6
Panaite, L.7
Dupuy, F.8
Kharitidi, D.9
Chotard, L.10
Jones, R.G.11
Hall, D.H.12
Pause, A.13
-
63
-
-
84876936567
-
AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors
-
1:CAS:528:DC%2BC3sXlvFOrurk%3D 23370326
-
Rios, M., M. Foretz, B. Viollet, A. Prieto, M. Fraga, J.A. Costoya, and R. Senaris. 2013. AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors. Cancer Research 73: 2628-2638.
-
(2013)
Cancer Research
, vol.73
, pp. 2628-2638
-
-
Rios, M.1
Foretz, M.2
Viollet, B.3
Prieto, A.4
Fraga, M.5
Costoya, J.A.6
Senaris, R.7
-
64
-
-
84864767268
-
Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival
-
1:CAS:528:DC%2BC38XlsFSrtr0%3D 22576210
-
Ros, S., C.R. Santos, S. Moco, F. Baenke, G. Kelly, M. Howell, N. Zamboni, and A. Schulze. 2012. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer discovery 2: 328-343.
-
(2012)
Cancer Discovery
, vol.2
, pp. 328-343
-
-
Ros, S.1
Santos, C.R.2
Moco, S.3
Baenke, F.4
Kelly, G.5
Howell, M.6
Zamboni, N.7
Schulze, A.8
-
65
-
-
84878998037
-
The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells
-
1:CAS:528:DC%2BC3sXnslCnu74%3D 23612073
-
Rosilio, C., N. Lounnas, M. Nebout, V. Imbert, T. Hagenbeek, H. Spits, V. Asnafi, R. Pontier-Bres, J. Reverso, J.F. Michiels, I.B. Sahra, F. Bost, and J.F. Peyron. 2013. The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Letters 336: 114-126.
-
(2013)
Cancer Letters
, vol.336
, pp. 114-126
-
-
Rosilio, C.1
Lounnas, N.2
Nebout, M.3
Imbert, V.4
Hagenbeek, T.5
Spits, H.6
Asnafi, V.7
Pontier-Bres, R.8
Reverso, J.9
Michiels, J.F.10
Sahra, I.B.11
Bost, F.12
Peyron, J.F.13
-
66
-
-
79959764729
-
Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
-
Sahra, I.B., C. Regazzetti, G. Robert, K. Laurent, Y. Le Marchand-Brustel, P. Auberger, J.F. Tanti, S. Giorgetti-Peraldi, and F. Bost. 2011. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Research 71(13): 4366-4372.
-
(2011)
Cancer Research
, vol.71
, Issue.13
, pp. 4366-4372
-
-
Sahra, I.B.1
Regazzetti, C.2
Robert, G.3
Laurent, K.4
Le Marchand-Brustel, Y.5
Auberger, P.6
Tanti, J.F.7
Giorgetti-Peraldi, S.8
Bost, F.9
-
67
-
-
69949101473
-
Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
-
1:CAS:528:DC%2BD1MXhtVWhsbjK 19693011
-
Schafer, Z.T., A.R. Grassian, L. Song, Z. Jiang, Z. Gerhart-Hines, H.Y. Irie, S. Gao, P. Puigserver, and J.S. Brugge. 2009. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461: 109-113.
-
(2009)
Nature
, vol.461
, pp. 109-113
-
-
Schafer, Z.T.1
Grassian, A.R.2
Song, L.3
Jiang, Z.4
Gerhart-Hines, Z.5
Irie, H.Y.6
Gao, S.7
Puigserver, P.8
Brugge, J.S.9
-
68
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
-
1:CAS:528:DC%2BC3sXhsFGitro%3D 23352126
-
Shackelford, D.B., E. Abt, L. Gerken, D.S. Vasquez, A. Seki, M. Leblanc, L. Wei, M.C. Fishbein, J. Czernin, P.S. Mischel, and R.J. Shaw. 2013. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23: 143-158.
-
(2013)
Cancer Cell
, vol.23
, pp. 143-158
-
-
Shackelford, D.B.1
Abt, E.2
Gerken, L.3
Vasquez, D.S.4
Seki, A.5
Leblanc, M.6
Wei, L.7
Fishbein, M.C.8
Czernin, J.9
Mischel, P.S.10
Shaw, R.J.11
-
69
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
1:CAS:528:DC%2BD1MXovFyltL0%3D 19629071
-
Shackelford, D.B., and R.J. Shaw. 2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer 9: 563-575.
-
(2009)
Nature Reviews Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
70
-
-
84867405520
-
Metformin targets ovarian cancer stem cells in vitro and in vivo
-
1:CAS:528:DC%2BC38XhtF2it7zN 22864111
-
Shank, J.J., K. Yang, J. Ghannam, L. Cabrera, C.J. Johnston, R.K. Reynolds, and R.J. Buckanovich. 2012. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecologic Oncology 127: 390-397.
-
(2012)
Gynecologic Oncology
, vol.127
, pp. 390-397
-
-
Shank, J.J.1
Yang, K.2
Ghannam, J.3
Cabrera, L.4
Johnston, C.J.5
Reynolds, R.K.6
Buckanovich, R.J.7
-
71
-
-
84886076523
-
Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: New implications for osteonecrosis treatment?
-
1:CAS:528:DC%2BC3sXhvVagtr7L 24080159
-
She, C., L.Q. Zhu, Y.F. Zhen, X.D. Wang, and Q.R. Dong. 2014. Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: new implications for osteonecrosis treatment? Cellular Signalling 26: 1-8.
-
(2014)
Cellular Signalling
, vol.26
, pp. 1-8
-
-
She, C.1
Zhu, L.Q.2
Zhen, Y.F.3
Wang, X.D.4
Dong, Q.R.5
-
72
-
-
84898902372
-
Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators
-
1:CAS:528:DC%2BC2cXkt1Wjs7o%3D
-
Sinnett, S.E., and J.E. Brenman. 2014. Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators. Pharmacology & Therapeutics 143: 111-118.
-
(2014)
Pharmacology & Therapeutics
, vol.143
, pp. 111-118
-
-
Sinnett, S.E.1
Brenman, J.E.2
-
73
-
-
84860196738
-
Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells
-
3324825 22500211
-
Song, C.W., H. Lee, R.P. Dings, B. Williams, J. Powers, T.D. Santos, B.H. Choi, and H.J. Park. 2012. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Scientific reports 2: 362.
-
(2012)
Scientific Reports
, vol.2
, pp. 362
-
-
Song, C.W.1
Lee, H.2
Dings, R.P.3
Williams, B.4
Powers, J.5
Santos, T.D.6
Choi, B.H.7
Park, H.J.8
-
74
-
-
67650914230
-
AMPK in health and disease
-
1:CAS:528:DC%2BD1MXpslyjsb4%3D 19584320
-
Steinberg, G.R., and B.E. Kemp. 2009. AMPK in health and disease. Physiological Reviews 89: 1025-1078.
-
(2009)
Physiological Reviews
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
75
-
-
85027952132
-
Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch
-
Tennakoon, J.B., Y. Shi, J.J. Han, E. Tsouko, M.A. White, A.R. Burns, A. Zhang, X. Xia, O.R. Ilkayeva, L. Xin, M.M. Ittmann, F.G. Rick, A.V. Schally, and D.E. Frigo. 2013. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene. 33(45): 5251-5261.
-
(2013)
Oncogene.
, vol.33
, Issue.45
, pp. 5251-5261
-
-
Tennakoon, J.B.1
Shi, Y.2
Han, J.J.3
Tsouko, E.4
White, M.A.5
Burns, A.R.6
Zhang, A.7
Xia, X.8
Ilkayeva, O.R.9
Xin, L.10
Ittmann, M.M.11
Rick, F.G.12
Schally, A.V.13
Frigo, D.E.14
-
76
-
-
79954460690
-
The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells
-
1:CAS:528:DC%2BC3MXjtFSrsb0%3D 20458531
-
Vazquez-Martin, A., C. Oliveras-Ferraros, S. Del Barco, B. Martin-Castillo, and J.A. Menendez. 2011. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Research and Treatment 126: 355-364.
-
(2011)
Breast Cancer Research and Treatment
, vol.126
, pp. 355-364
-
-
Vazquez-Martin, A.1
Oliveras-Ferraros, C.2
Del Barco, S.3
Martin-Castillo, B.4
Menendez, J.A.5
-
77
-
-
84911861458
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
1:CAS:528:DC%2BC2cXhtlGnt7vO 25119024
-
Viale, A., P. Pettazzoni, C.A. Lyssiotis, H. Ying, N. Sanchez, M. Marchesini, A. Carugo, T. Green, S. Seth, V. Giuliani, M. Kost-Alimova, F. Muller, S. Colla, L. Nezi, G. Genovese, A.K. Deem, A. Kapoor, W. Yao, E. Brunetto, Y. Kang, M. Yuan, J.M. Asara, Y.A. Wang, T.P. Heffernan, A.C. Kimmelman, H. Wang, J.B. Fleming, L.C. Cantley, R.A. Depinho, and G.F. Draetta. 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514(7524): 628-632.
-
(2014)
Nature
, vol.514
, Issue.7524
, pp. 628-632
-
-
Viale, A.1
Pettazzoni, P.2
Lyssiotis, C.A.3
Ying, H.4
Sanchez, N.5
Marchesini, M.6
Carugo, A.7
Green, T.8
Seth, S.9
Giuliani, V.10
Kost-Alimova, M.11
Muller, F.12
Colla, S.13
Nezi, L.14
Genovese, G.15
Deem, A.K.16
Kapoor, A.17
Yao, W.18
Brunetto, E.19
Kang, Y.20
Yuan, M.21
Asara, J.M.22
Wang, Y.A.23
Heffernan, T.P.24
Kimmelman, A.C.25
Wang, H.26
Fleming, J.B.27
Cantley, L.C.28
Depinho, R.A.29
Draetta, G.F.30
more..
-
78
-
-
84942588417
-
Differential effects of AMPK agonists on cell growth and metabolism
-
doi: 10.1038/onc.2014.301
-
Vincent, E. E., P.P. Coelho, J. Blagih, T. Griss, B. Viollet, and R.G. Jones, 2014. Differential effects of AMPK agonists on cell growth and metabolism. Oncogene. doi: 10.1038/onc.2014.301.
-
(2014)
Oncogene
-
-
Vincent, E.E.1
Coelho, P.P.2
Blagih, J.3
Griss, T.4
Viollet, B.5
Jones, R.G.6
-
79
-
-
23044437445
-
Ca2 +/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
-
1:CAS:528:DC%2BD2MXntlCrurs%3D 16054096
-
Woods, A., K. Dickerson, R. Heath, S.P. Hong, M. Momcilovic, S.R. Johnstone, M. Carlson, and D. Carling. 2005. Ca2 +/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism 2: 21-33.
-
(2005)
Cell Metabolism
, vol.2
, pp. 21-33
-
-
Woods, A.1
Dickerson, K.2
Heath, R.3
Hong, S.P.4
Momcilovic, M.5
Johnstone, S.R.6
Carlson, M.7
Carling, D.8
-
80
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
1:CAS:528:DC%2BD3sXptVeru7g%3D 14614828
-
Woods, A., S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, and D. Carling. 2003. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Current biology: CB 13: 2004-2008.
-
(2003)
Current Biology: CB
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.5
Neumann, D.6
Schlattner, U.7
Wallimann, T.8
Carlson, M.9
Carling, D.10
-
81
-
-
84900393562
-
Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression
-
1:CAS:528:DC%2BC2cXntl2murc%3D 24794706
-
Xu, C., C.M. Fillmore, S. Koyama, H. Wu, Y. Zhao, Z. Chen, G.S. Herter-Sprie, E.A. Akbay, J.H. Tchaicha, A. Altabef, J.B. Reibel, Z. Walton, H. Ji, H. Watanabe, P.A. Janne, D.H. Castrillon, A.K. Rustgi, A.J. Bass, G.J. Freeman, R.F. Padera, G. Dranoff, P.S. Hammerman, C.F. Kim, and K.K. Wong. 2014. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25: 590-604.
-
(2014)
Cancer Cell
, vol.25
, pp. 590-604
-
-
Xu, C.1
Fillmore, C.M.2
Koyama, S.3
Wu, H.4
Zhao, Y.5
Chen, Z.6
Herter-Sprie, G.S.7
Akbay, E.A.8
Tchaicha, J.H.9
Altabef, A.10
Reibel, J.B.11
Walton, Z.12
Ji, H.13
Watanabe, H.14
Janne, P.A.15
Castrillon, D.H.16
Rustgi, A.K.17
Bass, A.J.18
Freeman, G.J.19
Padera, R.F.20
Dranoff, G.21
Hammerman, P.S.22
Kim, C.F.23
Wong, K.K.24
more..
-
82
-
-
84902201289
-
The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation
-
1:CAS:528:DC%2BC2cXpvFahsrk%3D 24762438
-
Yan, M., M.C. Gingras, E.A. Dunlop, Y. Nouet, F. Dupuy, Z. Jalali, E. Possik, B.J. Coull, D. Kharitidi, A.B. Dydensborg, B. Faubert, M. Kamps, S. Sabourin, R.S. Preston, D.M. Davies, T. Roughead, L. Chotard, M.A. Van Steensel, R. Jones, A.R. Tee, and A. Pause. 2014. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. The Journal of Clinical Investigation 124: 2640-2650.
-
(2014)
The Journal of Clinical Investigation
, vol.124
, pp. 2640-2650
-
-
Yan, M.1
Gingras, M.C.2
Dunlop, E.A.3
Nouet, Y.4
Dupuy, F.5
Jalali, Z.6
Possik, E.7
Coull, B.J.8
Kharitidi, D.9
Dydensborg, A.B.10
Faubert, B.11
Kamps, M.12
Sabourin, S.13
Preston, R.S.14
Davies, D.M.15
Roughead, T.16
Chotard, L.17
Van Steensel, M.A.18
Jones, R.19
Tee, A.R.20
Pause, A.21
more..
-
83
-
-
84885142437
-
AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
-
1:CAS:528:DC%2BC3sXhsFGnsrrI 24093678
-
Zhang, Y.L., H. Guo, C.S. Zhang, S.Y. Lin, Z. Yin, Y. Peng, H. Luo, Y. Shi, G. Lian, C. Zhang, M. Li, Z. Ye, J. Ye, J. Han, P. Li, J.W. Wu, and S.C. Lin. 2013. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metabolism 18: 546-555.
-
(2013)
Cell Metabolism
, vol.18
, pp. 546-555
-
-
Zhang, Y.L.1
Guo, H.2
Zhang, C.S.3
Lin, S.Y.4
Yin, Z.5
Peng, Y.6
Luo, H.7
Shi, Y.8
Lian, G.9
Zhang, C.10
Li, M.11
Ye, Z.12
Ye, J.13
Han, J.14
Li, P.15
Wu, J.W.16
Lin, S.C.17
-
84
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
1:CAS:528:DC%2BD3MXns1ChsL4%3D 11602624
-
Zhou, G., R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, and D.E. Moller. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation 108: 1167-1174.
-
(2001)
The Journal of Clinical Investigation
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
Musi, N.11
Hirshman, M.F.12
Goodyear, L.J.13
Moller, D.E.14
-
85
-
-
77958501463
-
Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
-
1:CAS:528:DC%2BC3cXht12nu7vL 20729205
-
Zmijewski, J.W., S. Banerjee, H. Bae, A. Friggeri, E.R. Lazarowski, and E. Abraham. 2010. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. The Journal of biological chemistry 285: 33154-33164.
-
(2010)
The Journal of Biological Chemistry
, vol.285
, pp. 33154-33164
-
-
Zmijewski, J.W.1
Banerjee, S.2
Bae, H.3
Friggeri, A.4
Lazarowski, E.R.5
Abraham, E.6
|