메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 715-748

Oxidative stress

Author keywords

Antioxidants; Hydrogen peroxide; Oxidants; Oxidative damage; Redox signaling; Redox state

Indexed keywords

ANTINEOPLASTIC AGENT; ANTIOXIDANT; CARBOHYDRATE; FLUORESCENT DYE; FREE RADICAL; HYDROGEN PEROXIDE; HYDROGEN SULFIDE; I KAPPA B; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; KELCH LIKE ECH ASSOCIATED PROTEIN 1; LIPID; NITRIC OXIDE; NUCLEIC ACID; PEROXYNITRITE; PROTEIN; PROTEOME; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE; SINGLET OXYGEN; THIOREDOXIN; TRANSCRIPTION FACTOR NRF2; GLUTATHIONE; I KAPPA B KINASE ALPHA; KEAP1 PROTEIN, HUMAN; NFE2L2 PROTEIN, HUMAN; TXN PROTEIN, HUMAN;

EID: 85009852867     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-061516-045037     Document Type: Article
Times cited : (2321)

References (222)
  • 2
    • 39949085437 scopus 로고    scopus 로고
    • Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology
    • Kemp M, Go YM, Jones DP. (2008). Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic. Biol. Med. 44: 921-37
    • (2008) Free Radic. Biol. Med , vol.44 , pp. 921-937
    • Kemp, M.1    Go, Y.M.2    Jones, D.P.3
  • 3
    • 0014485598 scopus 로고
    • Steady state relaxation of enolase in vitro and metabolic throughput in vivo of red and white rabbit muscles
    • Bücher T, Sies H. (1969). Steady state relaxation of enolase in vitro and metabolic throughput in vivo of red and white rabbit muscles. Eur. J. Biochem. 8: 273-83
    • (1969) Eur. J. Biochem , vol.8 , pp. 273-283
    • Bücher, T.1    Sies, H.2
  • 4
    • 34249007019 scopus 로고
    • A syndrome produced by diverse nocuous agents
    • Selye H. (1936). A syndrome produced by diverse nocuous agents. Nature 138: 32
    • (1936) Nature , vol.138 , pp. 32
    • Selye, H.1
  • 5
    • 0017143080 scopus 로고
    • Forty years of stress research: Principal remaining problems and misconceptions
    • Selye H. (1976). Forty years of stress research: principal remaining problems and misconceptions. Can. Med. Assoc. J. 115: 53-56
    • (1976) Can. Med. Assoc. J. , vol.115 , pp. 53-56
    • Selye, H.1
  • 6
    • 84979643828 scopus 로고    scopus 로고
    • In pursuit of resilience: Stress, epigenetics, and brain plasticity
    • McEwen BS. (2016). In pursuit of resilience: stress, epigenetics, and brain plasticity. Ann. N.Y. Acad. Sci. 1373: 56-64
    • (2016) Ann. N.Y. Acad. Sci , vol.1373 , pp. 56-64
    • McEwen, B.S.1
  • 7
    • 0000310973 scopus 로고
    • Allostasis: A new paradigm to explain arousal pathology
    • ed. S Fisher, J Reason New York Wiley
    • Sterling P, Eyer J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health, ed. S Fisher, J Reason, pp. 629-49. New York: Wiley
    • (1988) Handbook of Life Stress, Cognition and Health , pp. 629-649
    • Sterling, P.1    Eyer, J.2
  • 8
    • 84964621692 scopus 로고    scopus 로고
    • Adaptive homeostasis
    • Davies KJ. (2016). Adaptive homeostasis. Mol. Asp. Med. 49: 1-7
    • (2016) Mol. Asp. Med , vol.49 , pp. 1-7
    • Davies, K.J.1
  • 9
    • 84955350253 scopus 로고
    • Oxidative stress relaxation of natural rubber vulcanized with di-tertiary-butyl peroxide
    • Ore S. (1956). Oxidative stress relaxation of natural rubber vulcanized with di-tertiary-butyl peroxide. Rubber Chem. Technol. 29: 1043-46
    • (1956) Rubber Chem. Technol , vol.29 , pp. 1043-1046
    • Ore, S.1
  • 10
    • 0014958875 scopus 로고
    • Glutathionemetabolism of the red cells effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress
    • Paniker NV, Srivastava SK, Beutler E. (1970). Glutathionemetabolism of the red cells.Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim. Biophys. Acta 215: 456-60
    • (1970) Biochim. Biophys. Acta , vol.215 , pp. 456-460
    • Paniker, N.V.1    Srivastava, S.K.2    Beutler, E.3
  • 11
    • 0022428152 scopus 로고
    • Oxidative stress: Damage to intact cells and organs
    • Sies H, Cadenas E. (1985). Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. B 311: 617-31
    • (1985) Philos. Trans. R. Soc. B , vol.311 , pp. 617-631
    • Sies, H.1    Cadenas, E.2
  • 12
    • 0004198354 scopus 로고
    • Oxidative stress: Introductory remarks
    • ed. H Sies London: Academic
    • Sies H. (1985). Oxidative stress: introductory remarks. In Oxidative Stress, ed. H Sies, pp. 1-8. London: Academic
    • (1985) Oxidative Stress , pp. 1-8
    • Sies, H.1
  • 13
    • 84985570313 scopus 로고
    • Biochemistry of oxidative stress
    • Sies H. (1986). Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl. 25: 1058-71
    • (1986) Angew. Chem. Int. Ed. Engl , vol.25 , pp. 1058-1071
    • Sies, H.1
  • 14
    • 33744962865 scopus 로고    scopus 로고
    • Redefining oxidative stress
    • Jones DP. (2006). Redefining oxidative stress. Antioxid. Redox Signal. 8: 1865-79
    • (2006) Antioxid. Redox Signal , vol.8 , pp. 1865-1879
    • Jones, D.P.1
  • 15
    • 84882816411 scopus 로고    scopus 로고
    • Oxidative stress
    • ed. G Fink Amsterdam: Elsevier. 2nd ed
    • Sies H, Jones DP. (2007). Oxidative stress. In Encyclopedia of Stress, Vol. 3, ed. G Fink, pp. 45-48. Amsterdam: Elsevier. 2nd ed
    • (2007) Encyclopedia of Stress , vol.3 , pp. 45-48
    • Sies, H.1    Jones, D.P.2
  • 16
    • 0842346333 scopus 로고    scopus 로고
    • Free radical biology-terminology and critical thinking
    • Azzi A, Davies KJ, Kelly F. (2004). Free radical biology-terminology and critical thinking. FEBS Lett. 558: 3-6
    • (2004) FEBS Lett , vol.558 , pp. 3-6
    • Azzi, A.1    Davies, K.J.2    Kelly, F.3
  • 17
    • 84898785937 scopus 로고    scopus 로고
    • Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics
    • Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. (2014). Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic. Biol. Med. 71: 196-207
    • (2014) Free Radic. Biol. Med , vol.71 , pp. 196-207
    • Levonen, A.L.1    Hill, B.G.2    Kansanen, E.3    Zhang, J.4    Darley-Usmar, V.M.5
  • 19
    • 84911127372 scopus 로고    scopus 로고
    • Free radicals, reactive oxygen species, oxidative stress and its classification
    • Lushchak VI. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224C: 164-75
    • (2014) Chem. Biol. Interact , vol.224 C , pp. 164-175
    • Lushchak, V.I.1
  • 20
    • 84892842130 scopus 로고    scopus 로고
    • Positive oxidative stress in aging and aging-related disease tolerance
    • Yan LJ. (2014). Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2C: 165-69
    • (2014) Redox Biol , vol.2 C , pp. 165-169
    • Yan, L.J.1
  • 22
    • 84955279653 scopus 로고    scopus 로고
    • Redox homeostasis: The golden mean of healthy living
    • Ursini F, Maiorino M, Forman HJ. (2016). Redox homeostasis: the golden mean of healthy living. Redox Biol. 8: 205-15
    • (2016) Redox Biol , vol.8 , pp. 205-215
    • Ursini, F.1    Maiorino, M.2    Forman, H.J.3
  • 23
    • 84920903716 scopus 로고    scopus 로고
    • Oxidative stress: A concept in redox biology and medicine
    • Sies H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4: 180-83
    • (2015) Redox Biol , vol.4 , pp. 180-183
    • Sies, H.1
  • 24
    • 84894261996 scopus 로고    scopus 로고
    • The rise of oxygen in earth's early ocean and atmosphere
    • Lyons TW, Reinhard CT, Planavsky NJ. (2014). The rise of oxygen inEarth's early ocean and atmosphere. Nature 506: 307-15
    • (2014) Nature , vol.506 , pp. 307-315
    • Lyons, T.W.1    Reinhard, C.T.2    Planavsky, N.J.3
  • 25
    • 84938144547 scopus 로고    scopus 로고
    • ROS and RNS in plant physiology: An overview
    • Del Rio LA. (2015). ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66: 2827-37
    • (2015) J. Exp. Bot , vol.66 , pp. 2827-2837
    • Del Rio, L.A.1
  • 26
    • 0035890243 scopus 로고    scopus 로고
    • Hypo thesis: The role of reactive sulfur species in oxidative stress
    • Giles GI, Tasker KM, Jacob C. (2001). Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic. Biol. Med. 31: 1279-83
    • (2001) Free Radic. Biol. Med , vol.31 , pp. 1279-1283
    • Giles, G.I.1    Tasker, K.M.2    Jacob, C.3
  • 28
    • 84923919258 scopus 로고    scopus 로고
    • The basics of thiols and cysteines in redox biology and chemistry
    • Poole LB. (2015). The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80: 148-57
    • (2015) Free Radic. Biol. Med , vol.80 , pp. 148-157
    • Poole, L.B.1
  • 29
    • 84903600136 scopus 로고    scopus 로고
    • Selenoproteins: Molecular pathways and physiological roles
    • Labunskyy VM, Hatfield DL, Gladyshev VN. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94: 739-77
    • (2014) Physiol. Rev , vol.94 , pp. 739-777
    • Labunskyy, V.M.1    Hatfield, D.L.2    Gladyshev, V.N.3
  • 30
    • 0019804120 scopus 로고
    • Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation
    • Kappus H, Sies H. (1981). Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37: 1233-41
    • (1981) Experientia , vol.37 , pp. 1233-1241
    • Kappus, H.1    Sies, H.2
  • 31
    • 84924371175 scopus 로고    scopus 로고
    • A regulatory hierarchy controls the dynamic transcriptional response to extreme oxidative stress in archaea
    • Tonner PD, Pittman AM, Gulli JG, Sharma K, Schmid AK. (2015). A regulatory hierarchy controls the dynamic transcriptional response to extreme oxidative stress in archaea. PLOS Genet. 11: e1004912
    • (2015) Plos Genet , vol.11 , pp. e1004912
    • Tonner, P.D.1    Pittman, A.M.2    Gulli, J.G.3    Sharma, K.4    Schmid, A.K.5
  • 32
    • 84864574150 scopus 로고    scopus 로고
    • Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
    • Mishra S, Imlay J. (2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525: 145-60
    • (2012) Arch. Biochem. Biophys , vol.525 , pp. 145-160
    • Mishra, S.1    Imlay, J.2
  • 33
    • 0027209389 scopus 로고
    • Strategies of antioxidant defense
    • Sies H. (1993). Strategies of antioxidant defense. Eur. J. Biochem. 215: 213-19
    • (1993) Eur. J. Biochem , vol.215 , pp. 213-219
    • Sies, H.1
  • 34
    • 84904722403 scopus 로고    scopus 로고
    • Redox regulation by glutathione needs enzymes
    • Berndt C, Lillig CH, Flohé L. (2014). Redox regulation by glutathione needs enzymes. Front. Pharmacol. 5: 168
    • (2014) Front. Pharmacol , vol.5 , pp. 168
    • Berndt, C.1    Lillig, C.H.2    Flohé, L.3
  • 35
    • 0018665496 scopus 로고
    • Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid
    • Culp BR, Titus BG, Lands WE. (1979). Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandins Med. 3: 269-78
    • (1979) Prostaglandins Med , vol.3 , pp. 269-278
    • Culp, B.R.1    Titus, B.G.2    Lands, W.E.3
  • 36
    • 55149107716 scopus 로고    scopus 로고
    • Radical-free biology of oxidative stress
    • Jones DP. (2008). Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295: C849-68
    • (2008) Am. J. Physiol. Cell Physiol , vol.295 , pp. C849-C868
    • Jones, D.P.1
  • 37
    • 0002703923 scopus 로고
    • Nicotinamide nucleotide compartmentation
    • ed. H Sies London: Academic
    • Sies H. (1982). Nicotinamide nucleotide compartmentation. In Metabolic Compartmentation, ed. H Sies, pp. 205-31. London: Academic
    • (1982) Metabolic Compartmentation , pp. 205-231
    • Sies, H.1
  • 38
    • 84857286276 scopus 로고    scopus 로고
    • NAD+ metabolism and oxidative stress: The golden nucleotide on a crown of thorns
    • Massudi H, Grant R, Guillemin GJ, Braidy N. (2012). NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep. 17: 28-46
    • (2012) Redox Rep , vol.17 , pp. 28-46
    • Massudi, H.1    Grant, R.2    Guillemin, G.J.3    Braidy, N.4
  • 39
    • 84880517634 scopus 로고    scopus 로고
    • The NAD+/sirtuin pathwaymodulates longevity through activation ofmitochondrialUPRandFOXOsignaling
    • Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, et al. (2013). The NAD+/sirtuin pathwaymodulates longevity through activation ofmitochondrialUPRandFOXOsignaling. Cell 154: 430-41
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1    Houtkooper, R.H.2    Moullan, N.3    Katsyuba, E.4    Ryu, D.5
  • 40
    • 84937522438 scopus 로고    scopus 로고
    • NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus
    • Canto C, Menzies KJ, Auwerx J. (2015). NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22: 31-53
    • (2015) Cell Metab , vol.22 , pp. 31-53
    • Canto, C.1    Menzies, K.J.2    Auwerx, J.3
  • 41
    • 84940646298 scopus 로고    scopus 로고
    • Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure
    • Nickel AG, Von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, et al. (2015). Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 22: 472-84
    • (2015) Cell Metab , vol.22 , pp. 472-484
    • Nickel, A.G.1    Von Hardenberg, A.2    Hohl, M.3    Löffler, J.R.4    Kohlhaas, M.5
  • 43
    • 84897444272 scopus 로고    scopus 로고
    • Role of metabolic H2O2 generation: Redox signaling and oxidative stress
    • Sies H. (2014). Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289: 8735-41
    • (2014) J. Biol. Chem , vol.289 , pp. 8735-8741
    • Sies, H.1
  • 44
    • 0001359488 scopus 로고
    • Wege deswasserstoffs in der lebendigen organisation [pathways of hydrogen in the living organization
    • Bücher T, Klingenberg M. (1958). Wege desWasserstoffs in der lebendigen Organisation. [Pathways of hydrogen in the living organization]. Angew. Chem. 70: 552-70
    • (1958) Angew. Chem , vol.70 , pp. 552-570
    • Bücher, T.1    Klingenberg, M.2
  • 45
    • 0015520615 scopus 로고
    • State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver
    • Bücher T, Brauser B, Conze A, Klein F, Langguth O, Sies H. (1972). State of oxidation-reduction and state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular lactate-pyruvate in hemoglobin-free perfused rat liver. Eur. J. Biochem. 27: 301-17
    • (1972) Eur. J. Biochem , vol.27 , pp. 301-317
    • Bücher, T.1    Brauser, B.2    Conze, A.3    Klein, F.4    Langguth, O.5    Sies, H.6
  • 46
    • 0014082605 scopus 로고
    • The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver
    • Williamson DH, Lund P, Krebs HA. (1967). The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103: 514-27
    • (1967) Biochem. J. , vol.103 , pp. 514-527
    • Williamson, D.H.1    Lund, P.2    Krebs, H.A.3
  • 47
    • 0012017460 scopus 로고
    • The steady state level of catalase compound i in isolated hemoglobin-free perfused rat liver
    • Sies H, Chance B. (1970). The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 11: 172-76
    • (1970) FEBS Lett , vol.11 , pp. 172-176
    • Sies, H.1    Chance, B.2
  • 49
    • 84890118914 scopus 로고    scopus 로고
    • Detection and characterisation of radicals in biological materials using EPR methodology
    • Hawkins CL, Davies MJ. (2014). Detection and characterisation of radicals in biological materials using EPR methodology. Biochim. Biophys. Acta 1840: 708-21
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 708-721
    • Hawkins, C.L.1    Davies, M.J.2
  • 51
    • 0842344106 scopus 로고    scopus 로고
    • Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators
    • Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, et al. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279: 13044-53
    • (2004) J. Biol. Chem , vol.279 , pp. 13044-13053
    • Hanson, G.T.1    Aggeler, R.2    Oglesbee, D.3    Cannon, M.4    Capaldi, R.A.5
  • 52
  • 53
    • 84964389843 scopus 로고    scopus 로고
    • Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes
    • Morgan B, Van LK, Owusu TN, Ezerina D, Pastor-Flores D, et al. (2016). Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12: 437-43
    • (2016) Nat. Chem. Biol , vol.12 , pp. 437-443
    • Morgan, B.1    Van Lk Owusu, T.N.2    Ezerina, D.3    Pastor-Flores, D.4
  • 54
    • 84979019851 scopus 로고    scopus 로고
    • Redox indicator mice stably expressing genetically encoded neuronal roGFP: Versatile tools to decipher subcellular redox dynamics in neuropathophysiology
    • Wagener KC, Kolbrink B, Dietrich K, Kizina KM, Terwitte LS, et al. (2016). Redox indicator mice stably expressing genetically encoded neuronal roGFP: versatile tools to decipher subcellular redox dynamics in neuropathophysiology. Antioxid. Redox Signal. 25: 41-58
    • (2016) Antioxid. Redox Signal , vol.25 , pp. 41-58
    • Wagener, K.C.1    Kolbrink, B.2    Dietrich, K.3    Kizina, K.M.4    Terwitte, L.S.5
  • 55
    • 84930707903 scopus 로고    scopus 로고
    • Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins
    • Brewer TF, Garcia FJ, Onak CS, Carroll KS, Chang CJ. (2015). Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84: 765-90
    • (2015) Annu. Rev. Biochem , vol.84 , pp. 765-790
    • Brewer, T.F.1    Garcia, F.J.2    Onak, C.S.3    Carroll, K.S.4    Chang, C.J.5
  • 57
    • 84890114880 scopus 로고    scopus 로고
    • The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
    • Winterbourn CC. (2014). The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840: 730-38
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 730-738
    • Winterbourn, C.C.1
  • 59
    • 84955696380 scopus 로고    scopus 로고
    • The impact of thiol peroxidases on redox regulation
    • Flohé L. (2016). The impact of thiol peroxidases on redox regulation. Free Radic. Res. 50: 126-42
    • (2016) Free Radic. Res , vol.50 , pp. 126-142
    • Flohé, L.1
  • 60
    • 0025077481 scopus 로고
    • Redox regulation of fos and jun DNA-binding activity in vitro
    • Abate C, Patel L, Rauscher FJ III, Curran T. (1990). Redox regulation of fos and jun DNA-binding activity in vitro. Science 249: 1157-61
    • (1990) Science , vol.249 , pp. 1157-1161
    • Abate, C.1    Patel, L.2    Rauscher, F.J.3    Curran, T.4
  • 62
    • 84876890840 scopus 로고    scopus 로고
    • Redox regulation of protein kinases
    • Corcoran A, Cotter TG. (2013). Redox regulation of protein kinases. FEBS J. 280: 1944-65
    • (2013) FEBS J. , vol.280 , pp. 1944-1965
    • Corcoran, A.1    Cotter, T.G.2
  • 63
    • 84975165811 scopus 로고    scopus 로고
    • Protein oxidation and peroxidation
    • Davies MJ. (2016). Protein oxidation and peroxidation. Biochem. J. 473: 805-25
    • (2016) Biochem. J. , vol.473 , pp. 805-825
    • Davies, M.J.1
  • 64
    • 84875716554 scopus 로고    scopus 로고
    • Principles in redox signaling: From chemistry to functional significance
    • Bindoli A, Rigobello MP. (2013). Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18: 1557-93
    • (2013) Antioxid. Redox Signal , vol.18 , pp. 1557-1593
    • Bindoli, A.1    Rigobello, M.P.2
  • 65
    • 34648813720 scopus 로고    scopus 로고
    • ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis
    • D'Autreaux B, Toledano MB. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8: 813-24
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 813-824
    • D'Autreaux, B.1    Toledano, M.B.2
  • 66
    • 0016284089 scopus 로고
    • Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin
    • Czech MP, Lawrence JC Jr., Lynn WS. (1974). Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. PNAS 71: 4173-77
    • (1974) PNAS , vol.71 , pp. 4173-4177
    • Czech, M.P.1    Lawrence, J.C.2    Lynn, W.S.3
  • 67
    • 20044367629 scopus 로고    scopus 로고
    • Redox regulation: A broadening horizon
    • Buchanan BB, Balmer Y. (2005). Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56: 187-220
    • (2005) Annu. Rev. Plant Biol , vol.56 , pp. 187-220
    • Buchanan, B.B.1    Balmer, Y.2
  • 68
    • 84856741245 scopus 로고    scopus 로고
    • Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on S-glutathionylation
    • Mieyal JJ, Chock PB. (2012). Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid. Redox Signal. 16: 471-75
    • (2012) Antioxid. Redox Signal , vol.16 , pp. 471-475
    • Mieyal, J.J.1    Chock, P.B.2
  • 69
    • 84876917760 scopus 로고    scopus 로고
    • Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling
    • Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19: 1539-605
    • (2013) Antioxid. Redox Signal , vol.19 , pp. 1539-1605
    • Hanschmann, E.M.1    Godoy, J.R.2    Berndt, C.3    Hudemann, C.4    Lillig, C.H.5
  • 70
    • 84855501167 scopus 로고    scopus 로고
    • Vertebrate-specific glutaredoxin is essential for brain development
    • Bräutigam L, Schutte LD, Godoy JR, Prozorovski T, Gellert M, et al. (2011). Vertebrate-specific glutaredoxin is essential for brain development. PNAS 108: 20532-37
    • (2011) PNAS , vol.108 , pp. 20532-20537
    • Bräutigam, L.1    Schutte, L.D.2    Godoy, J.R.3    Prozorovski, T.4    Gellert, M.5
  • 71
    • 84995684951 scopus 로고    scopus 로고
    • Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment
    • Ullevig SL, Kim HS, Short JD, Tavakoli S, Weintraub ST, et al. (2016). Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment. Antioxid. Redox Signal. 25: 836-51
    • (2016) Antioxid. Redox Signal , vol.25 , pp. 836-851
    • Ullevig, S.L.1    Kim, H.S.2    Short, J.D.3    Tavakoli, S.4    Weintraub, S.T.5
  • 72
    • 75749136883 scopus 로고    scopus 로고
    • Signaling functions of reactive oxygen species
    • Forman HJ, Maiorino M, Ursini F. (2010). Signaling functions of reactive oxygen species. Biochemistry 49: 835-42
    • (2010) Biochemistry , vol.49 , pp. 835-842
    • Forman, H.J.1    Maiorino, M.2    Ursini, F.3
  • 73
    • 84901741434 scopus 로고    scopus 로고
    • Hydrogen peroxide sensing, signaling and regulation of transcription factors
    • Marinho HS, Real C, Cyrne L, Soares H, Antunes F. (2014). Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2: 535-62
    • (2014) Redox Biol , vol.2 , pp. 535-562
    • Marinho, H.S.1    Real, C.2    Cyrne, L.3    Soares, H.4    Antunes, F.5
  • 74
    • 85009877414 scopus 로고    scopus 로고
    • Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress
    • Sies H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11: 613-619
    • (2017) Redox Biol , vol.11 , pp. 613-619
    • Sies, H.1
  • 75
    • 84880277784 scopus 로고    scopus 로고
    • The biological chemistry of hydrogen peroxide
    • Winterbourn CC. (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol. 528: 3-25
    • (2013) Methods Enzymol , vol.528 , pp. 3-25
    • Winterbourn, C.C.1
  • 77
  • 78
    • 84924136457 scopus 로고    scopus 로고
    • A primer on peroxiredoxin biochemistry
    • Karplus PA. (2015). A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 80: 183-90
    • (2015) Free Radic. Biol. Med , vol.80 , pp. 183-190
    • Karplus, P.A.1
  • 79
    • 84863463209 scopus 로고    scopus 로고
    • Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
    • Jeong W, Bae SH, Toledano MB, Rhee SG. (2012). Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic. Biol. Med. 53: 447-56
    • (2012) Free Radic. Biol. Med , vol.53 , pp. 447-456
    • Jeong, W.1    Bae, S.H.2    Toledano, M.B.3    Rhee, S.G.4
  • 80
    • 0018776894 scopus 로고
    • Hydroperoxide metabolism in mammalian organs
    • Chance B, Sies H, Boveris A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605
    • (1979) Physiol. Rev , vol.59 , pp. 527-605
    • Chance, B.1    Sies, H.2    Boveris, A.3
  • 81
    • 0015550886 scopus 로고
    • The role of H2O2 generation in perfused rat liver and the reaction of catalase compound i and hydrogen donors
    • Oshino N, Chance B, Sies H, Bücher T. (1973). The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch. Biochem. Biophys. 154: 117-31
    • (1973) Arch. Biochem. Biophys , vol.154 , pp. 117-131
    • Oshino, N.1    Chance, B.2    Sies, H.3    Bücher, T.4
  • 82
    • 0034490302 scopus 로고    scopus 로고
    • Transport and metabolic degradation of hydrogen peroxide in chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels
    • Henzler T, Steudle E. (2000). Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51: 2053-66
    • (2000) J. Exp. Bot , vol.51 , pp. 2053-2066
    • Henzler, T.1    Steudle, E.2
  • 83
    • 33847753534 scopus 로고    scopus 로고
    • Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes
    • Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, et al. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-92
    • (2007) J. Biol. Chem , vol.282 , pp. 1183-1192
    • Bienert, G.P.1    Moller, A.L.2    Kristiansen, K.A.3    Schulz, A.4    Moller, I.M.5
  • 84
    • 84866873131 scopus 로고    scopus 로고
    • Mitochondrial aquaporin-8 knockdown in human hepatomaHepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability
    • Marchissio MJ, Frances DE, Carnovale CE, Marinelli RA. (2012). Mitochondrial aquaporin-8 knockdown in human hepatomaHepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol. Appl. Pharmacol. 264: 246-54
    • (2012) Toxicol. Appl. Pharmacol , vol.264 , pp. 246-254
    • Marchissio, M.J.1    Frances, D.E.2    Carnovale, C.E.3    Marinelli, R.A.4
  • 86
    • 84934904648 scopus 로고    scopus 로고
    • Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis
    • Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, et al. (2015). Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat. Commun. 6: 7454
    • (2015) Nat. Commun , vol.6 , pp. 7454
    • Hara-Chikuma, M.1    Satooka, H.2    Watanabe, S.3    Honda, T.4    Miyachi, Y.5
  • 87
    • 84897112203 scopus 로고    scopus 로고
    • Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide
    • Bienert GP, Chaumont F. (2014). Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840: 1596-604
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 1596-1604
    • Bienert, G.P.1    Chaumont, F.2
  • 88
    • 0015596284 scopus 로고
    • Biological defense mechanisms the production by leukocytes of superoxide, a potential bactericidal agent
    • Babior BM, Kipnes RS, Curnutte JT. (1973). Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Investig. 52: 741-44
    • (1973) J. Clin. Investig , vol.52 , pp. 741-744
    • Babior, B.M.1    Kipnes, R.S.2    Curnutte, J.T.3
  • 89
    • 0024425516 scopus 로고
    • Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α
    • Meier B, Radeke HH, Selle S, Younes M, Sies H, et al. (1989). Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α. Biochem. J. 263: 539-45
    • (1989) Biochem. J. , vol.263 , pp. 539-545
    • Meier, B.1    Radeke, H.H.2    Selle, S.3    Younes, M.4    Sies, H.5
  • 90
    • 84890128687 scopus 로고    scopus 로고
    • Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases
    • Nauseef WM. (2014). Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim. Biophys. Acta 1840: 757-67
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 757-767
    • Nauseef, W.M.1
  • 91
    • 84861062943 scopus 로고    scopus 로고
    • Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system
    • Lassegue B, San MA, Griendling KK. (2012). Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110: 1364-90
    • (2012) Circ. Res , vol.110 , pp. 1364-1390
    • Lassegue, B.1    San, M.A.2    Griendling, K.K.3
  • 92
    • 84862776938 scopus 로고    scopus 로고
    • Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase
    • Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 110: 1217-25
    • (2012) Circ. Res , vol.110 , pp. 1217-1225
    • Schröder, K.1    Zhang, M.2    Benkhoff, S.3    Mieth, A.4    Pliquett, R.5
  • 93
    • 84957438803 scopus 로고    scopus 로고
    • Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α-mediated stress signaling
    • Santos CX, Hafstad AD, Beretta M, Zhang M, Molenaar C, et al. (2016). Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α-mediated stress signaling. EMBO J. 35: 319-34
    • (2016) EMBO J. , vol.35 , pp. 319-334
    • Santos, C.X.1    Hafstad, A.D.2    Beretta, M.3    Zhang, M.4    Molenaar, C.5
  • 96
    • 84898959572 scopus 로고    scopus 로고
    • The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies
    • Spencer NY, Engelhardt JF. (2014). The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 53: 1551-64
    • (2014) Biochemistry , vol.53 , pp. 1551-1564
    • Spencer, N.Y.1    Engelhardt, J.F.2
  • 97
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • Boveris A, Oshino N, Chance B. (1972). The cellular production of hydrogen peroxide. Biochem. J. 128: 617-30
    • (1972) Biochem. J. , vol.128 , pp. 617-630
    • Boveris, A.1    Oshino, N.2    Chance, B.3
  • 98
    • 0000466588 scopus 로고
    • Respiratory chain linked H2O2 production in pigeon heart mitochondria
    • Loschen G, Flohé L, Chance B. (1971). Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 18: 261-64
    • (1971) FEBS Lett , vol.18 , pp. 261-264
    • Loschen, G.1    Flohé, L.2    Chance, B.3
  • 100
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy MP. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417: 1-13
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 101
    • 84920520304 scopus 로고    scopus 로고
    • Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise
    • Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. (2015). Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290: 209-27
    • (2015) J. Biol. Chem , vol.290 , pp. 209-227
    • Goncalves, R.L.1    Quinlan, C.L.2    Perevoshchikova, I.V.3    Hey-Mogensen, M.4    Brand, M.D.5
  • 102
    • 4544359913 scopus 로고    scopus 로고
    • Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species
    • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, et al. (2004). Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24: 7779-88
    • (2004) J. Neurosci , vol.24 , pp. 7779-7788
    • Starkov, A.A.1    Fiskum, G.2    Chinopoulos, C.3    Lorenzo, B.J.4    Browne, S.E.5
  • 103
    • 84923868391 scopus 로고    scopus 로고
    • Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species
    • Mailloux RJ. (2015). Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 4: 381-98
    • (2015) Redox Biol , vol.4 , pp. 381-398
    • Mailloux, R.J.1
  • 105
    • 84927939726 scopus 로고    scopus 로고
    • Thiol switches inmitochondria: Operation and physiological relevance
    • Riemer J, Schwarzländer M, Conrad M, Herrmann JM. (2015). Thiol switches inmitochondria: operation and physiological relevance. Biol. Chem. 396: 465-82
    • (2015) Biol. Chem , vol.396 , pp. 465-482
    • Riemer, J.1    Schwarzländer, M.2    Conrad, M.3    Herrmann, J.M.4
  • 107
    • 84953310609 scopus 로고    scopus 로고
    • Protein S-glutathionylation links energy metabolism to redox signaling in mitochondria
    • Mailloux RJ, Treberg JR. (2015). Protein S-glutathionylation links energy metabolism to redox signaling in mitochondria. Redox Biol. 8: 110-18
    • (2015) Redox Biol , vol.8 , pp. 110-118
    • Mailloux, R.J.1    Treberg, J.R.2
  • 108
    • 84948679316 scopus 로고    scopus 로고
    • Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress
    • Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, et al. (2015). Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. PNAS 112: E6614-23
    • (2015) PNAS , vol.112 , pp. E6614-E6623
    • Picard, M.1    McManus, M.J.2    Gray, J.D.3    Nasca, C.4    Moffat, C.5
  • 109
    • 84958115349 scopus 로고    scopus 로고
    • O2 sensing, mitochondria and ros signaling: The fog is lifting
    • Waypa GB, Smith KA, Schumacker PT. (2016). O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol. Aspects Med. 47-48: 76-89
    • (2016) Mol. Aspects Med , vol.47-48 , pp. 76-89
    • Waypa, G.B.1    Smith, K.A.2    Schumacker, P.T.3
  • 110
    • 0029082812 scopus 로고
    • Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymaticmechanism
    • Guidot DM, Repine JE, Kitlowski AD, Flores SC, Nelson SK, et al. (1995). Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymaticmechanism. J. Clin. Investig. 96: 1131-36
    • (1995) J. Clin. Investig , vol.96 , pp. 1131-1136
    • Guidot, D.M.1    Repine, J.E.2    Kitlowski, A.D.3    Flores, S.C.4    Nelson, S.K.5
  • 111
    • 84971426673 scopus 로고    scopus 로고
    • Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes
    • Dey S, Sidor A, O'Rourke B. (2016). Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J. Biol. Chem. 291: 11185-97
    • (2016) J. Biol. Chem , vol.291 , pp. 11185-11197
    • Dey, S.1    Sidor, A.2    O'Rourke, B.3
  • 112
    • 84924119180 scopus 로고    scopus 로고
    • Are free radicals involved in thiol-based redox signaling?
    • Winterbourn CC. (2015). Are free radicals involved in thiol-based redox signaling? Free Radic. Biol. Med. 80: 164-70
    • (2015) Free Radic. Biol. Med , vol.80 , pp. 164-170
    • Winterbourn, C.C.1
  • 113
    • 84955479140 scopus 로고    scopus 로고
    • One-and two-electron oxidation of thiols: Mechanisms, kinetics and biological fates
    • Trujillo M, Alvarez B, Radi R. (2016). One-and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic. Res. 50: 150-71
    • (2016) Free Radic. Res , vol.50 , pp. 150-171
    • Trujillo, M.1    Alvarez, B.2    Radi, R.3
  • 115
    • 84934905709 scopus 로고    scopus 로고
    • Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways
    • Mishanina TV, Libiad M, Banerjee R. (2015). Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 11: 457-64
    • (2015) Nat. Chem. Biol , vol.11 , pp. 457-464
    • Mishanina, T.V.1    Libiad, M.2    Banerjee, R.3
  • 116
    • 0025189864 scopus 로고
    • Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide
    • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. PNAS 87: 1620-24
    • (1990) PNAS , vol.87 , pp. 1620-1624
    • Beckman, J.S.1    Beckman, T.W.2    Chen, J.3    Marshall, P.A.4    Freeman, B.A.5
  • 117
    • 0042314356 scopus 로고    scopus 로고
    • Sulfur and selenium: The role of oxidation state in protein structure and function
    • Jacob C, Giles GI, Giles NM, Sies H. (2003). Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. Engl. 42: 4742-58
    • (2003) Angew. Chem. Int. Ed. Engl , vol.42 , pp. 4742-4758
    • Jacob, C.1    Giles, G.I.2    Giles, N.M.3    Sies, H.4
  • 118
    • 84884197445 scopus 로고    scopus 로고
    • Oxidant sensing by reversible disulfide bond formation
    • Cremers CM, Jakob U. (2013). Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 288: 26489-96
    • (2013) J. Biol. Chem , vol.288 , pp. 26489-26496
    • Cremers, C.M.1    Jakob, U.2
  • 119
    • 84884179284 scopus 로고    scopus 로고
    • The redox proteome
    • Go YM, Jones DP. (2013). The redox proteome. J. Biol. Chem. 288: 26512-20
    • (2013) J. Biol. Chem , vol.288 , pp. 26512-26520
    • Go, Y.M.1    Jones, D.P.2
  • 120
    • 84902287070 scopus 로고    scopus 로고
    • The physiological role of reversible methionine oxidation
    • Drazic A, Winter J. (2014). The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta 1844: 1367-82
    • (2014) Biochim. Biophys. Acta , vol.1844 , pp. 1367-1382
    • Drazic, A.1    Winter, J.2
  • 121
    • 84942771935 scopus 로고    scopus 로고
    • Regulation of protein function by reversiblemethionine oxidation and the role of selenoprotein MsrB1
    • Kaya A, Lee BC, Gladyshev VN. (2015). Regulation of protein function by reversiblemethionine oxidation and the role of selenoprotein MsrB1. Antioxid. Redox Signal. 23: 814-22
    • (2015) Antioxid. Redox Signal , vol.23 , pp. 814-822
    • Kaya, A.1    Lee, B.C.2    Gladyshev, V.N.3
  • 122
    • 0031577292 scopus 로고    scopus 로고
    • An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
    • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-22
    • (1997) Biochem. Biophys. Res. Commun , vol.236 , pp. 313-322
    • Itoh, K.1    Chiba, T.2    Takahashi, S.3    Ishii, T.4    Igarashi, K.5
  • 123
    • 84864348569 scopus 로고    scopus 로고
    • NRF2 and cancer: The good, the bad and the importance of context
    • Sporn MB, Liby KT. (2012). NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12: 564-71
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 564-571
    • Sporn, M.B.1    Liby, K.T.2
  • 124
    • 84936960918 scopus 로고    scopus 로고
    • TrxR1 as a potent regulator of the Nrf2-Keap1 response system
    • Cebula M, Schmidt EE, Arner ES. (2015). TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23: 823-53
    • (2015) Antioxid. Redox Signal , vol.23 , pp. 823-853
    • Cebula, M.1    Schmidt, E.E.2    Arner, E.S.3
  • 125
    • 84940395498 scopus 로고    scopus 로고
    • Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response
    • Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, et al. (2015). Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response. Antioxid. Redox Signal. 23: 613-29
    • (2015) Antioxid. Redox Signal , vol.23 , pp. 613-629
    • Xue, M.1    Momiji, H.2    Rabbani, N.3    Barker, G.4    Bretschneider, T.5
  • 126
    • 84959490134 scopus 로고    scopus 로고
    • TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis
    • Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N, et al. (2016). TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol. Cell 61: 720-33
    • (2016) Mol. Cell , vol.61 , pp. 720-733
    • Pan, J.A.1    Sun, Y.2    Jiang, Y.P.3    Bott, A.J.4    Jaber, N.5
  • 127
    • 84971529257 scopus 로고    scopus 로고
    • Repression of the antioxidant NRF2 pathway in premature aging
    • Kubben N, Zhang W, Wang L, Voss TC, Yang J, et al. (2016). Repression of the antioxidant NRF2 pathway in premature aging. Cell 165: 1361-74
    • (2016) Cell , vol.165 , pp. 1361-1374
    • Kubben, N.1    Zhang, W.2    Wang, L.3    Voss, T.C.4    Yang, J.5
  • 128
    • 0025739254 scopus 로고
    • Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1
    • Schreck R, Rieber P, Baeuerle PA. (1991). Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10: 2247-58
    • (1991) EMBO J. , vol.10 , pp. 2247-2258
    • Schreck, R.1    Rieber, P.2    Baeuerle, P.A.3
  • 129
    • 0025852479 scopus 로고
    • Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro
    • Toledano MB, Leonard WJ. (1991). Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro. PNAS 88: 4328-32
    • (1991) PNAS , vol.88 , pp. 4328-4332
    • Toledano, M.B.1    Leonard, W.J.2
  • 130
    • 0033600744 scopus 로고    scopus 로고
    • Distinct roles of thioredoxin in the cytoplasm and in the nucleus a two-step mechanism of redox regulation of transcription factor NF-κB
    • Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, et al. (1999). Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-κB. J. Biol. Chem. 274: 27891-97
    • (1999) J. Biol. Chem , vol.274 , pp. 27891-27897
    • Hirota, K.1    Murata, M.2    Sachi, Y.3    Nakamura, H.4    Takeuchi, J.5
  • 132
    • 84961263103 scopus 로고    scopus 로고
    • NF-κB oscillations translate into functionally related patterns of gene expression
    • PMID26765569
    • Zambrano S, De Toma I, Piffer A, Bianchi ME, Agresti A. (2016). NF-κB oscillations translate into functionally related patterns of gene expression. eLife 5: PMID26765569
    • (2016) ELife , vol.5
    • Zambrano, S.1    De Toma, I.2    Piffer, A.3    Bianchi, M.E.4    Agresti, A.5
  • 133
    • 84955352219 scopus 로고    scopus 로고
    • Photobiological origins of the field of genomic maintenance
    • Ganesan A, Hanawalt P. (2016). Photobiological origins of the field of genomic maintenance. Photochem. Photobiol. 92: 52-60
    • (2016) Photochem. Photobiol , vol.92 , pp. 52-60
    • Ganesan, A.1    Hanawalt, P.2
  • 134
    • 84896689903 scopus 로고    scopus 로고
    • Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms
    • Schmitt FJ, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, et al. (2014). Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta 1837: 835-48
    • (2014) Biochim. Biophys. Acta , vol.1837 , pp. 835-848
    • Schmitt, F.J.1    Renger, G.2    Friedrich, T.3    Kreslavski, V.D.4    Zharmukhamedov, S.K.5
  • 135
    • 0033016467 scopus 로고    scopus 로고
    • Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion
    • Berneburg M, Grether-Beck S, Kurten V, Ruzicka T, Briviba K, et al. (1999). Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J. Biol. Chem. 274: 15345-49
    • (1999) J. Biol. Chem , vol.274 , pp. 15345-15349
    • Berneburg, M.1    Grether-Beck, S.2    Kurten, V.3    Ruzicka, T.4    Briviba, K.5
  • 136
    • 3142718787 scopus 로고    scopus 로고
    • Nutritional protection against skin damage from sunlight
    • Sies H, Stahl W. (2004). Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr. 24: 173-200
    • (2004) Annu. Rev. Nutr , vol.24 , pp. 173-200
    • Sies, H.1    Stahl, W.2
  • 137
    • 0024464691 scopus 로고
    • Lycopene as the most efficient biological carotenoid singlet oxygen quencher
    • Di Mascio P, Kaiser S, Sies H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532-38
    • (1989) Arch. Biochem. Biophys , vol.274 , pp. 532-538
    • Di Mascio, P.1    Kaiser, S.2    Sies, H.3
  • 138
    • 84923274370 scopus 로고    scopus 로고
    • Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure
    • Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, et al. (2015). Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347: 842-47
    • (2015) Science , vol.347 , pp. 842-847
    • Premi, S.1    Wallisch, S.2    Mano, C.M.3    Weiner, A.B.4    Bacchiocchi, A.5
  • 140
    • 0023487170 scopus 로고
    • Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium
    • Storz G, Christman MF, Sies H, Ames BN. (1987). Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. PNAS 84: 8917-21
    • (1987) PNAS , vol.84 , pp. 8917-8921
    • Storz, G.1    Christman, M.F.2    Sies, H.3    Ames, B.N.4
  • 141
    • 84925461150 scopus 로고    scopus 로고
    • Uncovering the polymeraseinduced cytotoxicity of an oxidized nucleotide
    • Freudenthal BD, Beard WA, Perera L, Shock DD, Kim T, et al. (2015). Uncovering the polymeraseinduced cytotoxicity of an oxidized nucleotide. Nature 517: 635-39
    • (2015) Nature , vol.517 , pp. 635-639
    • Freudenthal, B.D.1    Beard, W.A.2    Perera, L.3    Shock, D.D.4    Kim, T.5
  • 142
    • 84858115501 scopus 로고    scopus 로고
    • Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids
    • Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, et al. (2012). Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic. Res. 46: 367-81
    • (2012) Free Radic. Res , vol.46 , pp. 367-381
    • Cadet, J.1    Loft, S.2    Olinski, R.3    Evans, M.D.4    Bialkowski, K.5
  • 143
    • 84959419639 scopus 로고    scopus 로고
    • 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions
    • Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. (2016). 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci. Rep. 6: 22086
    • (2016) Sci. Rep , vol.6 , pp. 22086
    • Leon, J.1    Sakumi, K.2    Castillo, E.3    Sheng, Z.4    Oka, S.5    Nakabeppu, Y.6
  • 144
    • 84970974408 scopus 로고    scopus 로고
    • Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition
    • Bräutigam L, Pudelko L, Jemth AS, Gad H, Narwal M, et al. (2016). Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition. Cancer Res. 76: 2366-75
    • (2016) Cancer Res , vol.76 , pp. 2366-2375
    • Bräutigam, L.1    Pudelko, L.2    Jemth, A.S.3    Gad, H.4    Narwal, M.5
  • 146
    • 84885185272 scopus 로고    scopus 로고
    • Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis
    • Cheng X, Ku CH, Siow RC. (2013). Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic. Biol. Med. 64: 4-11
    • (2013) Free Radic. Biol. Med , vol.64 , pp. 4-11
    • Cheng, X.1    Ku, C.H.2    Siow, R.C.3
  • 147
    • 84937162158 scopus 로고    scopus 로고
    • Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w
    • Wang JX, Gao J, Ding SL, Wang K, Jiao JQ, et al. (2015). Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol. Cell 59: 50-61
    • (2015) Mol. Cell , vol.59 , pp. 50-61
    • Wang, J.X.1    Gao, J.2    Ding, S.L.3    Wang, K.4    Jiao, J.Q.5
  • 148
    • 84969703233 scopus 로고    scopus 로고
    • MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4
    • Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, et al. (2016). MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging 8: 484-505
    • (2016) Aging , vol.8 , pp. 484-505
    • Lang, A.1    Grether-Beck, S.2    Singh, M.3    Kuck, F.4    Jakob, S.5
  • 150
    • 84923081832 scopus 로고    scopus 로고
    • ROSics: Chemistry and proteomics of cysteine modifications in redox biology
    • Kim HJ, Ha S, Lee HY, Lee KJ. (2015). ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom. Rev. 34: 184-208
    • (2015) Mass Spectrom. Rev , vol.34 , pp. 184-208
    • Kim, H.J.1    Ha, S.2    Lee, H.Y.3    Lee, K.J.4
  • 151
    • 84880613321 scopus 로고    scopus 로고
    • Forming disulfides in the endoplasmic reticulum
    • Oka OB, Bulleid NJ. (2013). Forming disulfides in the endoplasmic reticulum. Biochim. Biophys. Acta 1833: 2425-29
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2425-2429
    • Oka, O.B.1    Bulleid, N.J.2
  • 153
    • 84964852324 scopus 로고    scopus 로고
    • NPGPx (GPx7): A novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis
    • Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. (2016). NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am. J. Transl. Res. 8: 1626-40
    • (2016) Am. J. Transl. Res , vol.8 , pp. 1626-1640
    • Chen, Y.I.1    Wei, P.C.2    Hsu, J.L.3    Su, F.Y.4    Lee, W.H.5
  • 155
    • 84941731816 scopus 로고    scopus 로고
    • Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments
    • Kirstein J, Morito D, Kakihana T, Sugihara M, Minnen A, et al. (2015). Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments. EMBO J. 34: 2334-49
    • (2015) EMBO J. , vol.34 , pp. 2334-2349
    • Kirstein, J.1    Morito, D.2    Kakihana, T.3    Sugihara, M.4    Minnen, A.5
  • 156
    • 79960652801 scopus 로고    scopus 로고
    • Molecular chaperones in protein folding and proteostasis
    • Hartl FU, Bracher A, Hayer-Hartl M. (2011). Molecular chaperones in protein folding and proteostasis. Nature 475: 324-32
    • (2011) Nature , vol.475 , pp. 324-332
    • Hartl, F.U.1    Bracher, A.2    Hayer-Hartl, M.3
  • 158
    • 84893853030 scopus 로고    scopus 로고
    • Molecular chaperones and proteostasis regulation during redox imbalance
    • Niforou K, Cheimonidou C, Trougakos IP. (2014). Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2: 323-32
    • (2014) Redox Biol , vol.2 , pp. 323-332
    • Niforou, K.1    Cheimonidou, C.2    Trougakos, I.P.3
  • 159
    • 84890125992 scopus 로고    scopus 로고
    • Biomarkers of lipid peroxidation in clinical material
    • Niki E. (2014). Biomarkers of lipid peroxidation in clinical material. Biochim. Biophys. Acta 1840: 809-17
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 809-817
    • Niki, E.1
  • 160
    • 84930677412 scopus 로고    scopus 로고
    • Oxidative lipidomics coming of age: Advances in analysis of oxidized phospholipids in physiology and pathology
    • Spickett CM, Pitt AR. (2015). Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox. Signal. 22: 1646-66
    • (2015) Antioxid. Redox. Signal , vol.22 , pp. 1646-1666
    • Spickett, C.M.1    Pitt, A.R.2
  • 161
    • 0035844217 scopus 로고    scopus 로고
    • Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor γligands and agonists
    • Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC, et al. (2001). Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor γligands and agonists. J. Biol. Chem. 276: 16015-23
    • (2001) J. Biol. Chem , vol.276 , pp. 16015-16023
    • Davies, S.S.1    Pontsler, A.V.2    Marathe, G.K.3    Harrison, K.A.4    Murphy, R.C.5
  • 162
    • 5644248079 scopus 로고    scopus 로고
    • Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes
    • Robertson RP. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 279: 42351-54
    • (2004) J. Biol. Chem , vol.279 , pp. 42351-42354
    • Robertson, R.P.1
  • 163
    • 0019475899 scopus 로고
    • Nonenzymatic browning in vivo: Possible process for aging of long-lived proteins
    • Monnier VM, Cerami A. (1981). Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211: 491-93
    • (1981) Science , vol.211 , pp. 491-493
    • Monnier, V.M.1    Cerami, A.2
  • 164
    • 33745272509 scopus 로고    scopus 로고
    • Cell signaling, the essential role of O-GlcNAc
    • Zachara NE, Hart GW. (2006). Cell signaling, the essential role of O-GlcNAc Biochim. Biophys. Acta 1761: 599-617
    • (2006) Biochim. Biophys. Acta , vol.1761 , pp. 599-617
    • Zachara, N.E.1    Hart, G.W.2
  • 165
    • 84955477662 scopus 로고    scopus 로고
    • Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions
    • Kizuka Y, Nakano M, Kitazume S, Saito T, Saido TC, Taniguchi N. (2016). Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem. J. 473: 21-30
    • (2016) Biochem. J. , vol.473 , pp. 21-30
    • Kizuka, Y.1    Nakano, M.2    Kitazume, S.3    Saito, T.4    Saido, T.C.5    Taniguchi, N.6
  • 166
    • 84899977907 scopus 로고    scopus 로고
    • O-GlcNAcylation as a novel ammonia-induced posttranslational protein modification in cultured rat astrocytes
    • Karababa A, Görg B, Schliess F, Häussinger D. (2014). O-GlcNAcylation as a novel ammonia-induced posttranslational protein modification in cultured rat astrocytes. Metab. Brain Dis. 29: 975-82
    • (2014) Metab. Brain Dis , vol.29 , pp. 975-982
    • Karababa, A.1    Görg, B.2    Schliess, F.3    Häussinger, D.4
  • 169
    • 84961967663 scopus 로고    scopus 로고
    • Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models
    • Van't Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE, et al. (2016). Reinterpreting the best biomarker of oxidative stress: the 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic. Biol. Med. 95: 65-73
    • (2016) Free Radic. Biol. Med , vol.95 , pp. 65-73
    • Van't Erve, T.J.1    Lih, F.B.2    Jelsema, C.3    Deterding, L.J.4    Eling, T.E.5
  • 170
    • 0036629255 scopus 로고    scopus 로고
    • Oxidative stress shortens telomeres
    • Von Zglinicki T. (2002). Oxidative stress shortens telomeres. Trends Biochem. Sci. 27: 339-44
    • (2002) Trends Biochem. Sci , vol.27 , pp. 339-344
    • Von Zglinicki, T.1
  • 171
    • 84890121702 scopus 로고    scopus 로고
    • Measuring oxidative damage to DNA and its repair with the comet assay
    • Collins AR. (2014). Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta 1840: 794-800
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 794-800
    • Collins, A.R.1
  • 172
    • 84950157741 scopus 로고    scopus 로고
    • Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease
    • Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S, et al. (2016). Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133: 361-69
    • (2016) Circulation , vol.133 , pp. 361-369
    • Patel, R.S.1    Ghasemzadeh, N.2    Eapen, D.J.3    Sher, S.4    Arshad, S.5
  • 173
    • 84919346965 scopus 로고    scopus 로고
    • Complexity of danger: The diverse nature of damage-associated molecular patterns
    • Schaefer L. (2014). Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289: 35237-45
    • (2014) J. Biol. Chem , vol.289 , pp. 35237-35245
    • Schaefer, L.1
  • 174
    • 0031725610 scopus 로고    scopus 로고
    • Thinking about bacterial populations as multicellular organisms
    • Shapiro JA. (1998). Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52: 81-104
    • (1998) Annu. Rev. Microbiol , vol.52 , pp. 81-104
    • Shapiro, J.A.1
  • 175
    • 84958962581 scopus 로고    scopus 로고
    • Mini-review: Biofilm responses to oxidative stress
    • Gambino M, Cappitelli F. (2016). Mini-review: biofilm responses to oxidative stress. Biofouling 32: 167-78
    • (2016) Biofouling , vol.32 , pp. 167-178
    • Gambino, M.1    Cappitelli, F.2
  • 176
    • 84867761453 scopus 로고    scopus 로고
    • Β-Carotene and other carotenoids in protection from sunlight
    • Stahl W, Sies H. (2012). β-Carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 96: 1179S-84S
    • (2012) Am. J. Clin. Nutr , vol.96 , pp. 1179S-1184S
    • Stahl, W.1    Sies, H.2
  • 178
    • 84950153936 scopus 로고    scopus 로고
    • Paradoxical roles of antioxidant enzymes: Basic mechanisms and health implications
    • Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, et al. (2016). Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol. Rev. 96: 307-64
    • (2016) Physiol. Rev , vol.96 , pp. 307-364
    • Lei, X.G.1    Zhu, J.H.2    Cheng, W.H.3    Bao, Y.4    Ho, Y.S.5
  • 179
    • 79958203720 scopus 로고    scopus 로고
    • The peroxide dilemma: Opposing and mediating insulin action
    • Szypowska AA, Burgering BM. (2011). The peroxide dilemma: opposing and mediating insulin action. Antioxid. Redox Signal. 15: 219-32
    • (2011) Antioxid. Redox Signal , vol.15 , pp. 219-232
    • Szypowska, A.A.1    Burgering, B.M.2
  • 181
    • 84876931396 scopus 로고    scopus 로고
    • Beyond oxidative stress: An immunologist's guide to reactive oxygen species
    • Nathan C, Cunningham-Bussel A. (2013). Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13: 349-61
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 349-361
    • Nathan, C.1    Cunningham-Bussel, A.2
  • 182
    • 4644310560 scopus 로고    scopus 로고
    • Role of oxidative modifications in atherosclerosis
    • Stocker R, Keaney JF Jr. (2004). Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84: 1381-478
    • (2004) Physiol. Rev , vol.84 , pp. 1381-1478
    • Stocker, R.1    Keaney, J.F.2
  • 183
    • 42649089790 scopus 로고    scopus 로고
    • Resolving inflammation: Dual anti-inflammatory and proresolution lipid mediators
    • Serhan CN, Chiang N, Van Dyke TE. (2008). Resolving inflammation: dual anti-inflammatory and proresolution lipid mediators. Nat. Rev. Immunol. 8: 349-61
    • (2008) Nat. Rev. Immunol , vol.8 , pp. 349-361
    • Serhan, C.N.1    Chiang, N.2    Van Dyke, T.E.3
  • 184
    • 77954162846 scopus 로고    scopus 로고
    • Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells
    • Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9: 3256-76
    • (2010) Cell Cycle , vol.9 , pp. 3256-3276
    • Martinez-Outschoorn, U.E.1    Balliet, R.M.2    Rivadeneira, D.B.3    Chiavarina, B.4    Pavlides, S.5
  • 185
    • 84947732762 scopus 로고    scopus 로고
    • Reactive oxygen-related diseases: Therapeutic targets and emerging clinical indications
    • Casas AI, Dao VT, Daiber A, Maghzal GJ, Di LF, et al. (2015). Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid. Redox Signal. 23: 1171-85
    • (2015) Antioxid. Redox Signal , vol.23 , pp. 1171-1185
    • Casas, A.I.1    Dao, V.T.2    Daiber, A.3    Maghzal, G.J.4    Di, L.F.5
  • 187
    • 60749131956 scopus 로고    scopus 로고
    • Radiation chemistry comes before radiation biology
    • O'Neill P, Wardman P. (2009). Radiation chemistry comes before radiation biology. Int. J. Radiat. Biol. 85: 9-25
    • (2009) Int. J. Radiat. Biol , vol.85 , pp. 9-25
    • O'Neill, P.1    Wardman, P.2
  • 188
    • 13444257678 scopus 로고    scopus 로고
    • Bleomycins: Towards better therapeutics
    • Chen J, Stubbe J. (2005). Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5: 102-12
    • (2005) Nat. Rev. Cancer , vol.5 , pp. 102-112
    • Chen, J.1    Stubbe, J.2
  • 189
    • 84949678855 scopus 로고    scopus 로고
    • Cancer revisiting Vitamin C and cancer
    • Reczek CR, Chandel NS. (2015). Cancer. Revisiting vitamin C and cancer. Science 350: 1317-18
    • (2015) Science , vol.350 , pp. 1317-1318
    • Reczek, C.R.1    Chandel, N.S.2
  • 192
    • 84875426064 scopus 로고    scopus 로고
    • The role of transcription-independent damage signals in the initiation of epithelial wound healing
    • Cordeiro JV, Jacinto A. (2013). The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 14: 249-62
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 249-262
    • Cordeiro, J.V.1    Jacinto, A.2
  • 193
    • 84959509745 scopus 로고    scopus 로고
    • The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy
    • Toyokuni S. (2016). The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int. 66: 245-59
    • (2016) Pathol. Int , vol.66 , pp. 245-259
    • Toyokuni, S.1
  • 194
    • 77954018408 scopus 로고    scopus 로고
    • A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients
    • Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, et al. (2010). A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Brit. J. Dermatol. 163: 78-82
    • (2010) Brit. J. Dermatol , vol.163 , pp. 78-82
    • Isbary, G.1    Morfill, G.2    Schmidt, H.U.3    Georgi, M.4    Ramrath, K.5
  • 195
    • 84922783167 scopus 로고    scopus 로고
    • Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression
    • Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, et al. (2015). Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27: 211-22
    • (2015) Cancer Cell , vol.27 , pp. 211-222
    • Harris, I.S.1    Treloar, A.E.2    Inoue, S.3    Sasaki, M.4    Gorrini, C.5
  • 196
    • 84947087706 scopus 로고    scopus 로고
    • Differences in redox regulatory systems in human lung and liver tumors suggest different avenues for therapy
    • Tobe R, Carlson BA, Tsuji PA, Lee BJ, Gladyshev VN, Hatfield DL. (2015). Differences in redox regulatory systems in human lung and liver tumors suggest different avenues for therapy. Cancers 7: 2262-76
    • (2015) Cancers , vol.7 , pp. 2262-2276
    • Tobe, R.1    Carlson, B.A.2    Tsuji, P.A.3    Lee, B.J.4    Gladyshev, V.N.5    Hatfield, D.L.6
  • 197
    • 84903202557 scopus 로고    scopus 로고
    • Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals
    • Chun KS, Kundu J, Kundu JK, Surh YJ. (2014). Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Toxicol. Lett. 229: 73-84
    • (2014) Toxicol. Lett , vol.229 , pp. 73-84
    • Chun, K.S.1    Kundu, J.2    Kundu, J.K.3    Surh, Y.J.4
  • 198
    • 84952636599 scopus 로고    scopus 로고
    • Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases
    • Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, Leon R. (2016). Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 157: 84-104
    • (2016) Pharmacol. Ther , vol.157 , pp. 84-104
    • Buendia, I.1    Michalska, P.2    Navarro, E.3    Gameiro, I.4    Egea, J.5    Leon, R.6
  • 199
    • 84964922374 scopus 로고    scopus 로고
    • Nrf2 activation in the treatment of neurodegenerative diseases: A focus on its role in mitochondrial bioenergetics and function
    • Esteras N, Dinkova-Kostova AT, Abramov AY. (2016). Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol. Chem. 397: 383-400
    • (2016) Biol. Chem , vol.397 , pp. 383-400
    • Esteras, N.1    Dinkova-Kostova, A.T.2    Abramov, A.Y.3
  • 200
    • 84975883336 scopus 로고    scopus 로고
    • Pharmacodynamics of dimethyl fumarate are tissue specific and involve NRF2-dependent and -independent mechanisms
    • Brennan MS, Patel H, Allaire N, Thai A, Cullen P, et al. (2016). Pharmacodynamics of dimethyl fumarate are tissue specific and involve NRF2-dependent and -independent mechanisms. Antioxid. Redox Signal. 24: 1058-71
    • (2016) Antioxid. Redox Signal , vol.24 , pp. 1058-1071
    • Brennan, M.S.1    Patel, H.2    Allaire, N.3    Thai, A.4    Cullen, P.5
  • 202
    • 84952862051 scopus 로고    scopus 로고
    • Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis
    • Kaur SJ, McKeown SR, Rashid S. (2016). Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577: 109-18
    • (2016) Gene , vol.577 , pp. 109-118
    • Kaur, S.J.1    McKeown, S.R.2    Rashid, S.3
  • 203
    • 84929208603 scopus 로고    scopus 로고
    • Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1
    • Freitas-Andrade M, Naus CC. (2016). Astrocytes in neuroprotection and neurodegeneration: the role of connexin43 and pannexin1. Neuroscience 323: 207-21
    • (2016) Neuroscience , vol.323 , pp. 207-221
    • Freitas-Andrade, M.1    Naus, C.C.2
  • 204
    • 84884800246 scopus 로고    scopus 로고
    • Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy
    • Görg B, Schliess F, Häussinger D. (2013). Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch. Biochem. Biophys. 536: 158-63
    • (2013) Arch. Biochem. Biophys , vol.536 , pp. 158-163
    • Görg, B.1    Schliess, F.2    Häussinger, D.3
  • 205
    • 0018716904 scopus 로고
    • The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes
    • May JM, de Haen C. (1979). The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J. Biol. Chem. 254: 9017-21
    • (1979) J. Biol. Chem , vol.254 , pp. 9017-9021
    • May, J.M.1    De Haen, C.2
  • 206
    • 70349512259 scopus 로고    scopus 로고
    • Reactive oxygen species enhance insulin sensitivity
    • Loh K, Deng H, Fukushima A, Cai X, Boivin B, et al. (2009). Reactive oxygen species enhance insulin sensitivity. Cell Metab. 10: 260-72
    • (2009) Cell Metab , vol.10 , pp. 260-272
    • Loh, K.1    Deng, H.2    Fukushima, A.3    Cai, X.4    Boivin, B.5
  • 207
    • 18344385579 scopus 로고    scopus 로고
    • Nutritional, dietary and postprandial oxidative stress
    • Sies H, Stahl W, Sevanian A. (2005). Nutritional, dietary and postprandial oxidative stress. J. Nutr. 135: 969-72
    • (2005) J. Nutr , vol.135 , pp. 969-972
    • Sies, H.1    Stahl, W.2    Sevanian, A.3
  • 208
    • 84896822092 scopus 로고    scopus 로고
    • Type 2 diabetes as a redox disease
    • Watson JD. (2014). Type 2 diabetes as a redox disease. Lancet 383: 841-43
    • (2014) Lancet , vol.383 , pp. 841-843
    • Watson, J.D.1
  • 209
    • 85007574154 scopus 로고    scopus 로고
    • New tools for redox biology: From imaging to manipulation
    • In press
    • Bilan DS, Belousov VV. (2017). New tools for redox biology: from imaging to manipulation. Free Radic. Biol. Med. In press. doi: 10.1016/j.freeradbiomed.2016.12.004
    • (2017) Free Radic. Biol. Med
    • Bilan, D.S.1    Belousov, V.V.2
  • 211
    • 0033627608 scopus 로고    scopus 로고
    • Paracelsus: Herald of modern toxicology
    • Borzelleca JF. (2000). Paracelsus: herald of modern toxicology. Toxicol. Sci. 53: 2-4
    • (2000) Toxicol. Sci , vol.53 , pp. 2-4
    • Borzelleca, J.F.1
  • 212
    • 0022527908 scopus 로고
    • Claude Bernard, the milieu intérieur, and regulatory physiology
    • Holmes FL. (1986). Claude Bernard, the milieu intérieur, and regulatory physiology. Hist. Phil. Life Sci. 8: 3-25
    • (1986) Hist. Phil. Life Sci , vol.8 , pp. 3-25
    • Holmes, F.L.1
  • 214
    • 84940703780 scopus 로고    scopus 로고
    • Update on hormesis and its relation to homeopathy
    • Oberbaum M, Gropp C. (2015). Update on hormesis and its relation to homeopathy. Homeopathy 105: 227-33
    • (2015) Homeopathy , vol.105 , pp. 227-233
    • Oberbaum, M.1    Gropp, C.2
  • 215
    • 0000000661 scopus 로고
    • Effects of extracts of western red-cedar heartwood on certain wooddecaying fungi in culture
    • Southam CM, Ehrlich J. (1943). Effects of extracts of western red-cedar heartwood on certain wooddecaying fungi in culture. Phytopathology 33: 517-24
    • (1943) Phytopathology , vol.33 , pp. 517-524
    • Southam, C.M.1    Ehrlich, J.2
  • 216
    • 34250844410 scopus 로고    scopus 로고
    • Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework
    • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, et al. (2007). Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol. 222: 122-28
    • (2007) Toxicol. Appl. Pharmacol , vol.222 , pp. 122-128
    • Calabrese, E.J.1    Bachmann, K.A.2    Bailer, A.J.3    Bolger, P.M.4    Borak, J.5
  • 217
    • 34250561475 scopus 로고
    • A new puffing pattern introduced by temperature shock and DNP in Drosophila
    • Ritossa F. (1962). A new puffing pattern introduced by temperature shock and DNP in Drosophila. Experientia 18: 571-73
    • (1962) Experientia , vol.18 , pp. 571-573
    • Ritossa, F.1
  • 218
    • 0021930684 scopus 로고
    • Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in salmonella typhimurium
    • Christman MF, Morgan RW, Jacobson FS, Ames BN. (1985). Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753-62
    • (1985) Cell , vol.41 , pp. 753-762
    • Christman, M.F.1    Morgan, R.W.2    Jacobson, F.S.3    Ames, B.N.4
  • 219
    • 0023852783 scopus 로고
    • The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins
    • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. (1988). The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462-64
    • (1988) Nature , vol.332 , pp. 462-464
    • Kozutsumi, Y.1    Segal, M.2    Normington, K.3    Gething, M.J.4    Sambrook, J.5
  • 220
    • 0026468180 scopus 로고
    • A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation
    • Semenza GL, Wang GL. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12: 5447-54
    • (1992) Mol. Cell. Biol , vol.12 , pp. 5447-5454
    • Semenza, G.L.1    Wang, G.L.2
  • 221
    • 70449107252 scopus 로고    scopus 로고
    • Redox-directed cancer therapeutics: Molecular mechanisms and opportunities
    • Wondrak GT. (2009). Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid. Redox Signal. 11: 3013-69
    • (2009) Antioxid. Redox Signal , vol.11 , pp. 3013-3069
    • Wondrak, G.T.1
  • 222
    • 85012038698 scopus 로고    scopus 로고
    • Clinically evaluated cancer drugs inhibiting redox signaling
    • Kirkpatrick DL, Powis G. (2017). Clinically evaluated cancer drugs inhibiting redox signaling. Antioxid. Redox Signal. 26: 262-73
    • (2017) Antioxid. Redox Signal , vol.26 , pp. 262-273
    • Kirkpatrick, D.L.1    Powis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.