-
2
-
-
84958551663
-
Hypoxia-inducible factor 3 biology: complexities and emerging themes
-
2 Duan, C., Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am. J. Physiol. Cell Physiol. 310 (2016), C260–C269.
-
(2016)
Am. J. Physiol. Cell Physiol.
, vol.310
, pp. C260-C269
-
-
Duan, C.1
-
3
-
-
76349095132
-
Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics
-
3 Semenza, G.L., Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29 (2010), 625–634.
-
(2010)
Oncogene
, vol.29
, pp. 625-634
-
-
Semenza, G.L.1
-
4
-
-
79954591044
-
Hypoxia-inducible factor-1α protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia
-
4 Deeb, G., et al. Hypoxia-inducible factor-1α protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia. Leuk. Res. 35 (2011), 579–584.
-
(2011)
Leuk. Res.
, vol.35
, pp. 579-584
-
-
Deeb, G.1
-
5
-
-
84864548513
-
Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment
-
5 Frolova, O., et al. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol. Ther. 13 (2012), 858–870.
-
(2012)
Cancer Biol. Ther.
, vol.13
, pp. 858-870
-
-
Frolova, O.1
-
6
-
-
83355163510
-
Hypoxia inducible factor expression in intrahepatic cholangiocarcinoma
-
6 Morine, Y., et al. Hypoxia inducible factor expression in intrahepatic cholangiocarcinoma. Hepatogastroenterology 58 (2011), 1439–1444.
-
(2011)
Hepatogastroenterology
, vol.58
, pp. 1439-1444
-
-
Morine, Y.1
-
7
-
-
84879057163
-
Prognostic significance of HIF-1α expression in hepatocellular carcinoma: a meta-analysis
-
7 Zheng, S-S., et al. Prognostic significance of HIF-1α expression in hepatocellular carcinoma: a meta-analysis. PLoS One, 8, 2013, e65753.
-
(2013)
PLoS One
, vol.8
, pp. e65753
-
-
Zheng, S.-S.1
-
8
-
-
77951698149
-
Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling
-
8 Rey, S., Semenza, G.L., Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 86 (2010), 236–242.
-
(2010)
Cardiovasc. Res.
, vol.86
, pp. 236-242
-
-
Rey, S.1
Semenza, G.L.2
-
9
-
-
39849102836
-
HIF-1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion
-
9 Du, R., et al. HIF-1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13 (2008), 206–220.
-
(2008)
Cancer Cell
, vol.13
, pp. 206-220
-
-
Du, R.1
-
10
-
-
60549092506
-
Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells
-
10 Lee, K., et al. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 2353–2358.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 2353-2358
-
-
Lee, K.1
-
11
-
-
70449580319
-
Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization
-
11 Lee, K., et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 17910–17915.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 17910-17915
-
-
Lee, K.1
-
12
-
-
79957894276
-
Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases
-
12 Carmeliet, P., Jain, R.K., Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10 (2011), 417–427.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 417-427
-
-
Carmeliet, P.1
Jain, R.K.2
-
13
-
-
84863422466
-
Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia
-
13 Rapisarda, A., Melillo, G., Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat. Rev. Clin. Oncol. 9 (2012), 378–390.
-
(2012)
Nat. Rev. Clin. Oncol.
, vol.9
, pp. 378-390
-
-
Rapisarda, A.1
Melillo, G.2
-
14
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
14 Semenza, G.L., HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123 (2013), 3664–3671.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
15
-
-
79957567239
-
Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
-
15 Luo, W., et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145 (2011), 732–744.
-
(2011)
Cell
, vol.145
, pp. 732-744
-
-
Luo, W.1
-
16
-
-
77950523330
-
Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1
-
16 Pescador, N., et al. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLoSOne, 5, 2010, e9644.
-
(2010)
PLoSOne
, vol.5
, pp. e9644
-
-
Pescador, N.1
-
17
-
-
84870507227
-
Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells
-
17 Favaro, E., et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. 16 (2012), 751–764.
-
(2012)
Cell Metab.
, vol.16
, pp. 751-764
-
-
Favaro, E.1
-
18
-
-
77953935500
-
Tumor hypoxia induces a metabolic shift causing acidosis: a common feature in cancer
-
18 Chiche, J., et al. Tumor hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med. 14 (2010), 771–794.
-
(2010)
J. Cell. Mol. Med.
, vol.14
, pp. 771-794
-
-
Chiche, J.1
-
19
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
19 Sonveaux, P., et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118 (2008), 3930–3942.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
-
20
-
-
84958115349
-
2 sensing, mitochondria and ROS signaling: the fog is lifting
-
2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol. Aspects Med. 47–48 (2016), 76–89.
-
(2016)
Mol. Aspects Med.
, vol.47-48
, pp. 76-89
-
-
Waypa, G.B.1
-
21
-
-
82955237531
-
Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity
-
21 Tello, D., et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 14 (2011), 768–779.
-
(2011)
Cell Metab.
, vol.14
, pp. 768-779
-
-
Tello, D.1
-
22
-
-
70349478990
-
MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2
-
22 Chan, S.Y., et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 10 (2009), 273–284.
-
(2009)
Cell Metab.
, vol.10
, pp. 273-284
-
-
Chan, S.Y.1
-
23
-
-
77956402239
-
MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU
-
23 Favaro, E., et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One, 5, 2010, e10345.
-
(2010)
PLoS One
, vol.5
, pp. e10345
-
-
Favaro, E.1
-
24
-
-
84907410130
-
HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation Is critical for cancer progression
-
24 Huang, D., et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation Is critical for cancer progression. Cell Rep. 8 (2014), 1930–1942.
-
(2014)
Cell Rep.
, vol.8
, pp. 1930-1942
-
-
Huang, D.1
-
25
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
25 Metallo, C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481 (2012), 380–384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
-
26
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability
-
26 Wise, D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 19611–19616.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
-
27
-
-
84875354450
-
In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation
-
27 Gameiro, P.A., et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17 (2013), 372–385.
-
(2013)
Cell Metab.
, vol.17
, pp. 372-385
-
-
Gameiro, P.A.1
-
28
-
-
84893465244
-
Hypoxic regulation of glutamine metabolism through HIF-1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
-
28 Sun, R.C., Denko, N.C., Hypoxic regulation of glutamine metabolism through HIF-1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 19 (2014), 285–292.
-
(2014)
Cell Metab.
, vol.19
, pp. 285-292
-
-
Sun, R.C.1
Denko, N.C.2
-
29
-
-
84938568011
-
Hypoxia induces production of L-2-hydroxyglutarate
-
29 Intlekofer, A.M., et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22 (2015), 304–311.
-
(2015)
Cell Metab.
, vol.22
, pp. 304-311
-
-
Intlekofer, A.M.1
-
30
-
-
84862776918
-
Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation
-
30 Koivunen, P., et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483 (2012), 484–488.
-
(2012)
Nature
, vol.483
, pp. 484-488
-
-
Koivunen, P.1
-
31
-
-
84908012698
-
Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation
-
31 Bensaad, K., et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9 (2014), 349–365.
-
(2014)
Cell Rep.
, vol.9
, pp. 349-365
-
-
Bensaad, K.1
-
32
-
-
84915746768
-
Serine catabolism regulates mitochondrial redox control during hypoxia
-
32 Ye, J., et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4 (2014), 1406–1417.
-
(2014)
Cancer Discov.
, vol.4
, pp. 1406-1417
-
-
Ye, J.1
-
33
-
-
84982710922
-
PHGDH is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance and lung metastasis
-
33 Samanta, D., et al. PHGDH is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance and lung metastasis. Cancer Res. 76 (2016), 4430–4442.
-
(2016)
Cancer Res.
, vol.76
, pp. 4430-4442
-
-
Samanta, D.1
-
34
-
-
84860389759
-
HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs
-
34 Zhang, H., et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31 (2012), 1757–1770.
-
(2012)
Oncogene
, vol.31
, pp. 1757-1770
-
-
Zhang, H.1
-
35
-
-
84867087464
-
Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells
-
35 Schito, L., et al. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), E2707–E2716.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. E2707-E2716
-
-
Schito, L.1
-
36
-
-
84865149277
-
Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis
-
36 Wong, C.C-L., et al. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med. (Berl.) 90 (2012), 803–815.
-
(2012)
J. Mol. Med. (Berl.)
, vol.90
, pp. 803-815
-
-
Wong, C.C.-L.1
-
37
-
-
84894593599
-
Molecular mechanisms of epithelial-mesenchymal transition
-
37 Lamouille, S., et al. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15 (2014), 178–196.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 178-196
-
-
Lamouille, S.1
-
38
-
-
84887314092
-
Role of hypoxia-inducible factors in breast cancer metastasis
-
38 Gilkes, D.M., Semenza, G.L., Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol. 9 (2013), 1623–1636.
-
(2013)
Future Oncol.
, vol.9
, pp. 1623-1636
-
-
Gilkes, D.M.1
Semenza, G.L.2
-
39
-
-
84892930021
-
Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells
-
39 Gilkes, D.M., et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E384–E393.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. E384-E393
-
-
Gilkes, D.M.1
-
40
-
-
84907192193
-
Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET
-
40 Rankin, E.B., et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 13373–13378.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 13373-13378
-
-
Rankin, E.B.1
-
41
-
-
84928410301
-
A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial-mesenchymal transition in cancer cells
-
41 Chou, C-C., et al. A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial-mesenchymal transition in cancer cells. Oncotarget 6 (2015), 8271–8285.
-
(2015)
Oncotarget
, vol.6
, pp. 8271-8285
-
-
Chou, C.-C.1
-
42
-
-
84963619577
-
Hypoxic control of metastasis
-
42 Rankin, E.B., Giaccia, A.J., Hypoxic control of metastasis. Science 352 (2016), 175–180.
-
(2016)
Science
, vol.352
, pp. 175-180
-
-
Rankin, E.B.1
Giaccia, A.J.2
-
43
-
-
84876250357
-
Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts
-
43 Gilkes, D.M., et al. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288 (2013), 10819–10829.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 10819-10829
-
-
Gilkes, D.M.1
-
44
-
-
84877899680
-
Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis
-
44 Gilkes, D.M., et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11 (2013), 456–466.
-
(2013)
Mol. Cancer Res.
, vol.11
, pp. 456-466
-
-
Gilkes, D.M.1
-
45
-
-
84878619137
-
Collagen prolyl hydroxylases are essential for breast cancer metastasis
-
45 Gilkes, D.M., et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 73 (2013), 3285–3296.
-
(2013)
Cancer Res.
, vol.73
, pp. 3285-3296
-
-
Gilkes, D.M.1
-
46
-
-
80053645045
-
Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation
-
46 Wong, C.C-L., et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 16369–16374.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 16369-16374
-
-
Wong, C.C.-L.1
-
47
-
-
84865285500
-
New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation
-
47 Jin, F., et al. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol. Cancer Res. 10 (2012), 1021–1031.
-
(2012)
Mol. Cancer Res.
, vol.10
, pp. 1021-1031
-
-
Jin, F.1
-
48
-
-
84978695867
-
The ever-expanding role of HIF in tumour and stromal biology
-
48 LaGory, E.L., Giaccia, A.J., The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol. 18 (2016), 356–365.
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 356-365
-
-
LaGory, E.L.1
Giaccia, A.J.2
-
49
-
-
57749105319
-
Hypoxia-inducible factor 1α mediates anoikis resistance via suppression of α5 integrin
-
49 Rohwer, N., et al. Hypoxia-inducible factor 1α mediates anoikis resistance via suppression of α5 integrin. Cancer Res. 68 (2008), 10113–10120.
-
(2008)
Cancer Res.
, vol.68
, pp. 10113-10120
-
-
Rohwer, N.1
-
50
-
-
63049121364
-
The metastatic niche: adapting the foreign soil
-
50 Psaila, B., Lyden, D., The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9 (2009), 285–293.
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 285-293
-
-
Psaila, B.1
Lyden, D.2
-
51
-
-
57849100048
-
Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche
-
51 Erler, J.T., et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15 (2009), 35–44.
-
(2009)
Cancer Cell
, vol.15
, pp. 35-44
-
-
Erler, J.T.1
-
52
-
-
84930634266
-
The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase
-
52 Cox, T.R., et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522 (2015), 106–110.
-
(2015)
Nature
, vol.522
, pp. 106-110
-
-
Cox, T.R.1
-
53
-
-
84896113460
-
Metastatic stem cells: sources, niches, and vital pathways
-
53 Oskarsson, T., et al. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14 (2014), 306–321.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 306-321
-
-
Oskarsson, T.1
-
54
-
-
84934974754
-
Hypoxia-inducible factors in cancer stem cells and inflammation
-
54 Peng, G., Liu, Y., Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol. Sci. 36 (2015), 374–383.
-
(2015)
Trends Pharmacol. Sci.
, vol.36
, pp. 374-383
-
-
Peng, G.1
Liu, Y.2
-
55
-
-
79959908506
-
HIF induces human embryonic stem cell markers in cancer cells
-
55 Mathieu, J., et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 71 (2011), 4640–4652.
-
(2011)
Cancer Res.
, vol.71
, pp. 4640-4652
-
-
Mathieu, J.1
-
56
-
-
84857407549
-
Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia
-
56 Conley, S.J., et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 2784–2789.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 2784-2789
-
-
Conley, S.J.1
-
57
-
-
84855436875
-
Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer
-
57 Schwab, L.P., et al. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res., 14, 2012, R6.
-
(2012)
Breast Cancer Res.
, vol.14
, pp. R6
-
-
Schwab, L.P.1
-
58
-
-
84921374070
-
Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype
-
58 Xiang, L., et al. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget 5 (2014), 12509–12527.
-
(2014)
Oncotarget
, vol.5
, pp. 12509-12527
-
-
Xiang, L.1
-
59
-
-
81055140859
-
The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells
-
59 Cordenonsi, M., et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147 (2011), 759–772.
-
(2011)
Cell
, vol.147
, pp. 759-772
-
-
Cordenonsi, M.1
-
60
-
-
84931298020
-
HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells
-
60 Xiang, L., et al. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget 6 (2015), 11768–11778.
-
(2015)
Oncotarget
, vol.6
, pp. 11768-11778
-
-
Xiang, L.1
-
61
-
-
84879298347
-
Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WW domain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer
-
61 Bendinelli, P., et al. Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WW domain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer. Eur. J. Cancer Oxf. Engl. 1990 49 (2013), 2608–2618.
-
(2013)
Eur. J. Cancer Oxf. Engl. 1990
, vol.49
, pp. 2608-2618
-
-
Bendinelli, P.1
-
62
-
-
84926137241
-
Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase
-
62 Ma, B., et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17 (2015), 95–103.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 95-103
-
-
Ma, B.1
-
63
-
-
84962632914
-
Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA
-
63 Zhang, C., et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E2047–E2056.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E2047-E2056
-
-
Zhang, C.1
-
64
-
-
84918530536
-
Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells
-
64 Samanta, D., et al. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E5429–E5438.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. E5429-E5438
-
-
Samanta, D.1
-
65
-
-
84939811814
-
Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype
-
65 Lu, H., et al. Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), E4600–E4609.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E4600-E4609
-
-
Lu, H.1
-
66
-
-
84946751807
-
HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells
-
66 Zhang, H., et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), E6215–E6223.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. E6215-E6223
-
-
Zhang, H.1
-
67
-
-
78149330949
-
HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment
-
67 Corzo, C.A., et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207 (2010), 2439–2453.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 2439-2453
-
-
Corzo, C.A.1
-
68
-
-
84901046659
-
Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment
-
68 Chaturvedi, P., et al. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E2120–E2129.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. E2120-E2129
-
-
Chaturvedi, P.1
-
69
-
-
79960393113
-
Tumor hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
-
69 Facciabene, A., et al. Tumor hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475 (2011), 226–230.
-
(2011)
Nature
, vol.475
, pp. 226-230
-
-
Facciabene, A.1
-
70
-
-
84867381718
-
Hypoxia-inducible factor-1α-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa
-
70 Clambey, E.T., et al. Hypoxia-inducible factor-1α-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), E2784–E2793.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. E2784-E2793
-
-
Clambey, E.T.1
-
71
-
-
77957350018
-
Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression
-
71 Doedens, A.L., et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 70 (2010), 7465–7475.
-
(2010)
Cancer Res.
, vol.70
, pp. 7465-7475
-
-
Doedens, A.L.1
-
72
-
-
84914113076
-
Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection
-
72 Hatfield, S.M., et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. Berl. Ger. 92 (2014), 1283–1292.
-
(2014)
J. Mol. Med. Berl. Ger.
, vol.92
, pp. 1283-1292
-
-
Hatfield, S.M.1
-
73
-
-
84928062583
-
Immune checkpoint blockade: a common denominator approach to cancer therapy
-
73 Topalian, S.L., et al. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27 (2015), 450–461.
-
(2015)
Cancer Cell
, vol.27
, pp. 450-461
-
-
Topalian, S.L.1
-
74
-
-
84893872087
-
A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells
-
74 Barsoum, I.B., et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74 (2014), 665–674.
-
(2014)
Cancer Res.
, vol.74
, pp. 665-674
-
-
Barsoum, I.B.1
-
75
-
-
84899753178
-
PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation
-
75 Noman, M.Z., et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211 (2014), 781–790.
-
(2014)
J. Exp. Med.
, vol.211
, pp. 781-790
-
-
Noman, M.Z.1
-
76
-
-
84946074699
-
Hypoxia: a key player in antitumor immune response
-
76 Noman, M.Z., et al. Hypoxia: a key player in antitumor immune response. Am. J. Physiol. Cell Physiol. 309 (2015), C569–C579.
-
(2015)
Am. J. Physiol. Cell Physiol.
, vol.309
, pp. C569-C579
-
-
Noman, M.Z.1
-
77
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
77 Chang, C-H., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162 (2015), 1229–1241.
-
(2015)
Cell
, vol.162
, pp. 1229-1241
-
-
Chang, C.-H.1
-
78
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
-
78 Ho, P-C., et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162 (2015), 1217–1228.
-
(2015)
Cell
, vol.162
, pp. 1217-1228
-
-
Ho, P.-C.1
-
79
-
-
84931406084
-
HIF-1α regulates the response of primary sarcomas to radiation therapy through a cell autonomous mechanism
-
79 Zhang, M., et al. HIF-1α regulates the response of primary sarcomas to radiation therapy through a cell autonomous mechanism. Radiat. Res. 183 (2015), 594–609.
-
(2015)
Radiat. Res.
, vol.183
, pp. 594-609
-
-
Zhang, M.1
-
80
-
-
79958191830
-
Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways
-
80 Rohwer, N., Cramer, T., Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist. Updat. 14 (2011), 191–201.
-
(2011)
Drug Resist. Updat.
, vol.14
, pp. 191-201
-
-
Rohwer, N.1
Cramer, T.2
-
81
-
-
79953244361
-
Antiangiogenic therapy: impact on invasion, disease progression, and metastasis
-
81 Ebos, J.M.L., Kerbel, R.S., Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8 (2011), 210–221.
-
(2011)
Nat. Rev. Clin. Oncol.
, vol.8
, pp. 210-221
-
-
Ebos, J.M.L.1
Kerbel, R.S.2
-
82
-
-
84926205960
-
CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer
-
82 Conley, S.J., et al. CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer. Breast Cancer Res. Treat. 150 (2015), 559–567.
-
(2015)
Breast Cancer Res. Treat.
, vol.150
, pp. 559-567
-
-
Conley, S.J.1
-
83
-
-
84923128048
-
Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer
-
83 Pham, E., et al. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res. 21 (2015), 808–818.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 808-818
-
-
Pham, E.1
-
84
-
-
84923061042
-
Inhibition of HIF-1α by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma
-
84 Zhao, T., et al. Inhibition of HIF-1α by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget 6 (2015), 2250–2262.
-
(2015)
Oncotarget
, vol.6
, pp. 2250-2262
-
-
Zhao, T.1
-
85
-
-
84873091765
-
The VHL/HIF axis in clear cell renal carcinoma
-
85 Shen, C., Kaelin, W.G., The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23 (2013), 18–25.
-
(2013)
Semin. Cancer Biol.
, vol.23
, pp. 18-25
-
-
Shen, C.1
Kaelin, W.G.2
-
86
-
-
84984977897
-
Efficacy of the nanoparticle–drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I–IIa clinical trial
-
86 Keefe, S.M., et al. Efficacy of the nanoparticle–drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I–IIa clinical trial. Ann. Oncol. 27 (2016), 1579–1585.
-
(2016)
Ann. Oncol.
, vol.27
, pp. 1579-1585
-
-
Keefe, S.M.1
-
87
-
-
85004085493
-
Cerulean announces results from phase 2 clinical trial of CRLX101 and avastin combination in relapsed renal cell carcinoma
-
87 Cerulean Pharma, Cerulean announces results from phase 2 clinical trial of CRLX101 and avastin combination in relapsed renal cell carcinoma. 2016.
-
(2016)
-
-
Cerulean Pharma1
-
88
-
-
58149374576
-
Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth
-
88 Zhang, H., et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 19579–19586.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 19579-19586
-
-
Zhang, H.1
-
89
-
-
84994669316
-
Targeting renal cell carcinoma with a HIF-2 antagonist
-
89 Chen, W., et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539 (2016), 112–117.
-
(2016)
Nature
, vol.539
, pp. 112-117
-
-
Chen, W.1
-
90
-
-
84994626953
-
On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models
-
90 Cho, H., et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539 (2016), 107–111.
-
(2016)
Nature
, vol.539
, pp. 107-111
-
-
Cho, H.1
|