-
1
-
-
84901741434
-
Hydrogen peroxide sensing, signaling and regulation of transcription factors
-
[1] Marinho, H.S., Real, C., Cyrne, L., Soares, H., Antunes, F., Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox. Biol. 2 (2014), 535–562.
-
(2014)
Redox. Biol.
, vol.2
, pp. 535-562
-
-
Marinho, H.S.1
Real, C.2
Cyrne, L.3
Soares, H.4
Antunes, F.5
-
2
-
-
84875426064
-
The role of transcription-independent damage signals in the initiation of epithelial wound healing
-
[2] Cordeiro, J.V., Jacinto, A., The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 14 (2013), 249–262.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 249-262
-
-
Cordeiro, J.V.1
Jacinto, A.2
-
3
-
-
84892727407
-
Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger?
-
[3] van der Vliet, A., Janssen-Heininger, Y.M., Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger?. J. Cell Biochem. 115 (2014), 427–435.
-
(2014)
J. Cell Biochem.
, vol.115
, pp. 427-435
-
-
van der Vliet, A.1
Janssen-Heininger, Y.M.2
-
4
-
-
84897444272
-
Role of metabolic H2O2 generation: redox signaling and oxidative stress
-
[4] Sies, H., Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289 (2014), 8735–8741.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8735-8741
-
-
Sies, H.1
-
5
-
-
33646698671
-
Hydrogen peroxide: a signaling messenger
-
[5] Stone, J.R., Yang, S., Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8 (2006), 243–270.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, pp. 243-270
-
-
Stone, J.R.1
Yang, S.2
-
7
-
-
0012017460
-
The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver
-
[7] Sies, H., Chance, B., The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 11 (1970), 172–176.
-
(1970)
FEBS Lett.
, vol.11
, pp. 172-176
-
-
Sies, H.1
Chance, B.2
-
8
-
-
85009852867
-
Oxidative stress
-
(xxx-xxx)
-
[8] Sies, H., Berndt, C., Jones, D.P., Oxidative stress. Annu. Rev. Biochem., 86, 2017 (xxx-xxx).
-
(2017)
Annu. Rev. Biochem.
, vol.86
-
-
Sies, H.1
Berndt, C.2
Jones, D.P.3
-
9
-
-
84894216212
-
Manganese superoxide dismutase regulates a redox cycle within the cell cycle
-
[9] Sarsour, E.H., Kalen, A.L., Goswami, P.C., Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid. Redox. Signal. 20 (2014), 1618–1627.
-
(2014)
Antioxid. Redox. Signal.
, vol.20
, pp. 1618-1627
-
-
Sarsour, E.H.1
Kalen, A.L.2
Goswami, P.C.3
-
10
-
-
84968914436
-
Oxidative stress and antioxidants: distress or eustress?
-
[10] Niki, E., Oxidative stress and antioxidants: distress or eustress?. Arch. Biochem. Biophys. 595 (2016), 19–24.
-
(2016)
Arch. Biochem. Biophys.
, vol.595
, pp. 19-24
-
-
Niki, E.1
-
11
-
-
84883656978
-
Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity
-
[11] Aschbacher, K., O'Donovan, A., Wolkowitz, O.M., Dhabhar, F.S., Su, Y., Epel, E., Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38 (2013), 1698–1708.
-
(2013)
Psychoneuroendocrinology
, vol.38
, pp. 1698-1708
-
-
Aschbacher, K.1
O'Donovan, A.2
Wolkowitz, O.M.3
Dhabhar, F.S.4
Su, Y.5
Epel, E.6
-
12
-
-
60849090726
-
Hormesis, allostatic buffering capacity and physiological mechanism of physical activity: a new theoretic framework
-
[12] Li, G., He, H., Hormesis, allostatic buffering capacity and physiological mechanism of physical activity: a new theoretic framework. Med. Hypotheses 72 (2009), 527–532.
-
(2009)
Med. Hypotheses
, vol.72
, pp. 527-532
-
-
Li, G.1
He, H.2
-
13
-
-
84911127372
-
Free radicals, reactive oxygen species, oxidative stress and its classification
-
[13] Lushchak, V.I., Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol. Interact. 224C (2014), 164–175.
-
(2014)
Chem Biol. Interact.
, vol.224C
, pp. 164-175
-
-
Lushchak, V.I.1
-
14
-
-
84955279653
-
Redox homeostasis: the golden mean of healthy living
-
[14] Ursini, F., Maiorino, M., Forman, H.J., Redox homeostasis: the golden mean of healthy living. Redox. Biol. 8 (2016), 205–215.
-
(2016)
Redox. Biol.
, vol.8
, pp. 205-215
-
-
Ursini, F.1
Maiorino, M.2
Forman, H.J.3
-
15
-
-
0003961932
-
Psychological stress and the coping process.
-
McGraw-Hill New York
-
[15] Lazarus, R.S., Psychological stress and the coping process. 1966, McGraw-Hill, New York.
-
(1966)
-
-
Lazarus, R.S.1
-
16
-
-
0004154162
-
Stress without distress
-
Lippincott Philadelphia
-
[16] Selye, H., Stress without distress. 1974, Lippincott, Philadelphia.
-
(1974)
-
-
Selye, H.1
-
17
-
-
10644232178
-
Primary compounds of catalase and peroxidase
-
[17] Brill, A.S., Williams, R.J., Primary compounds of catalase and peroxidase. Biochem. J. 78 (1961), 253–262.
-
(1961)
Biochem. J.
, vol.78
, pp. 253-262
-
-
Brill, A.S.1
Williams, R.J.2
-
18
-
-
8544241960
-
The nature of the primary complex of catalase
-
[18] Chance, B., Schonbaum, G.R., The nature of the primary complex of catalase. J. Biol. Chem. 237 (1962), 2391–2395.
-
(1962)
J. Biol. Chem.
, vol.237
, pp. 2391-2395
-
-
Chance, B.1
Schonbaum, G.R.2
-
19
-
-
0015550886
-
The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors
-
[19] Oshino, N., Chance, B., Sies, H., Bücher, T., The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch. Biochem. Biophys. 154 (1973), 117–131.
-
(1973)
Arch. Biochem. Biophys.
, vol.154
, pp. 117-131
-
-
Oshino, N.1
Chance, B.2
Sies, H.3
Bücher, T.4
-
20
-
-
0018083858
-
Detoxification reactions in isolated hepatocytes. Role of glutathione peroxidase, catalase, and formaldehyde dehydrogenase in reactions relating to N-demethylation by the cytochrome P-450 system
-
[20] Jones, D.P., Thor, H., Andersson, B., Orrenius, S., Detoxification reactions in isolated hepatocytes. Role of glutathione peroxidase, catalase, and formaldehyde dehydrogenase in reactions relating to N-demethylation by the cytochrome P-450 system. J. Biol. Chem. 253 (1978), 6031–6037.
-
(1978)
J. Biol. Chem.
, vol.253
, pp. 6031-6037
-
-
Jones, D.P.1
Thor, H.2
Andersson, B.3
Orrenius, S.4
-
21
-
-
0018776894
-
Hydroperoxide metabolism in mammalian organs
-
[21] Chance, B., Sies, H., Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59 (1979), 527–605.
-
(1979)
Physiol Rev.
, vol.59
, pp. 527-605
-
-
Chance, B.1
Sies, H.2
Boveris, A.3
-
22
-
-
0019407863
-
Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver
-
[22] Foerster, E.C., Fährenkemper, T., Rabe, U., Graf, P., Sies, H., Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver. Biochem. J. 196 (1981), 705–712.
-
(1981)
Biochem. J.
, vol.196
, pp. 705-712
-
-
Foerster, E.C.1
Fährenkemper, T.2
Rabe, U.3
Graf, P.4
Sies, H.5
-
23
-
-
0019763672
-
Measurement of hydrogen peroxide formation in situ
-
[23] Sies, H., Measurement of hydrogen peroxide formation in situ. Methods Enzymol. 77 (1981), 15–20.
-
(1981)
Methods Enzymol.
, vol.77
, pp. 15-20
-
-
Sies, H.1
-
24
-
-
0020352836
-
Intracellular catalase function: analysis of the catalatic activity by product formation in isolated liver cells
-
[24] Jones, D.P., Intracellular catalase function: analysis of the catalatic activity by product formation in isolated liver cells. Arch. Biochem. Biophys. 214 (1982), 806–814.
-
(1982)
Arch. Biochem. Biophys.
, vol.214
, pp. 806-814
-
-
Jones, D.P.1
-
25
-
-
33645283923
-
Genetically encoded fluorescent indicator for intracellular hydrogen peroxide
-
[25] Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3 (2006), 281–286.
-
(2006)
Nat. Methods
, vol.3
, pp. 281-286
-
-
Belousov, V.V.1
Fradkov, A.F.2
Lukyanov, K.A.3
Staroverov, D.B.4
Shakhbazov, K.S.5
-
26
-
-
84923381507
-
Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide
-
[26] Ermakova, Y.G., Bilan, D.S., Matlashov, M.E., Mishina, N.M., Markvicheva, K.N., et al. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat. Commun., 5, 2014, 5222.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5222
-
-
Ermakova, Y.G.1
Bilan, D.S.2
Matlashov, M.E.3
Mishina, N.M.4
Markvicheva, K.N.5
-
27
-
-
79251603273
-
Hydrogen peroxide probes directed to different cellular compartments
-
[27] Malinouski, M., Zhou, Y., Belousov, V.V., Hatfield, D.L., Gladyshev, V.N., Hydrogen peroxide probes directed to different cellular compartments. PLoS. One, 6, 2011, e14564.
-
(2011)
PLoS. One
, vol.6
, pp. e14564
-
-
Malinouski, M.1
Zhou, Y.2
Belousov, V.V.3
Hatfield, D.L.4
Gladyshev, V.N.5
-
28
-
-
79952412095
-
Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations
-
[28] Poburko, D., Santo-Domingo, J., Demaurex, N., Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J. Biol. Chem. 286 (2011), 11672–11684.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 11672-11684
-
-
Poburko, D.1
Santo-Domingo, J.2
Demaurex, N.3
-
29
-
-
84940937253
-
Fluorescent ratiometric pH indicator SypHer2: applications in neuroscience and regenerative biology
-
[29] Matlashov, M.E., Bogdanova, Y.A., Ermakova, G.V., Mishina, N.M., Ermakova, Y.G., et al. Fluorescent ratiometric pH indicator SypHer2: applications in neuroscience and regenerative biology. Biochim. Biophys. Acta 1850 (2015), 2318–2328.
-
(2015)
Biochim. Biophys. Acta
, vol.1850
, pp. 2318-2328
-
-
Matlashov, M.E.1
Bogdanova, Y.A.2
Ermakova, G.V.3
Mishina, N.M.4
Ermakova, Y.G.5
-
30
-
-
82955227412
-
In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis
-
[30] Albrecht, S.C., Barata, A.G., Grosshans, J., Teleman, A.A., Dick, T.P., In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14 (2011), 819–829.
-
(2011)
Cell Metab.
, vol.14
, pp. 819-829
-
-
Albrecht, S.C.1
Barata, A.G.2
Grosshans, J.3
Teleman, A.A.4
Dick, T.P.5
-
31
-
-
70450227216
-
Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases
-
[31] Gutscher, M., Sobotta, M.C., Wabnitz, G.H., Ballikaya, S., Meyer, A.J., et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284 (2009), 31532–31540.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31532-31540
-
-
Gutscher, M.1
Sobotta, M.C.2
Wabnitz, G.H.3
Ballikaya, S.4
Meyer, A.J.5
-
32
-
-
84964389843
-
Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes
-
[32] Morgan, B., Van, L.K., Owusu, T.N., Ezerina, D., Pastor-Flores, D., et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12 (2016), 437–443.
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 437-443
-
-
Morgan, B.1
Van, L.K.2
Owusu, T.N.3
Ezerina, D.4
Pastor-Flores, D.5
-
33
-
-
84930707903
-
Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins
-
[33] Brewer, T.F., Garcia, F.J., Onak, C.S., Carroll, K.S., Chang, C.J., Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84 (2015), 765–790.
-
(2015)
Annu. Rev. Biochem.
, vol.84
, pp. 765-790
-
-
Brewer, T.F.1
Garcia, F.J.2
Onak, C.S.3
Carroll, K.S.4
Chang, C.J.5
-
34
-
-
84890129552
-
Using exomarkers to assess mitochondrial reactive species in vivo
-
[34] Logan, A., Cocheme, H.M., Li Pun, P.B., Apostolova, N., Smith, R.A., et al. Using exomarkers to assess mitochondrial reactive species in vivo. Biochim. Biophys. Acta 1840 (2014), 923–930.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, pp. 923-930
-
-
Logan, A.1
Cocheme, H.M.2
Li Pun, P.B.3
Apostolova, N.4
Smith, R.A.5
-
35
-
-
84890114880
-
The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
-
[35] Winterbourn, C.C., The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840 (2014), 730–738.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, pp. 730-738
-
-
Winterbourn, C.C.1
-
36
-
-
33846794822
-
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology
-
[36] Bedard, K., Krause, K.H., The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87 (2007), 245–313.
-
(2007)
Physiol Rev.
, vol.87
, pp. 245-313
-
-
Bedard, K.1
Krause, K.H.2
-
37
-
-
84861062943
-
Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system
-
[37] Lassègue, B., San, M.A., Griendling, K.K., Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110 (2012), 1364–1390.
-
(2012)
Circ. Res.
, vol.110
, pp. 1364-1390
-
-
Lassègue, B.1
San, M.A.2
Griendling, K.K.3
-
38
-
-
84964890374
-
Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling
-
[38] Brand, M.D., Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100 (2016), 14–31.
-
(2016)
Free Radic. Biol. Med.
, vol.100
, pp. 14-31
-
-
Brand, M.D.1
-
39
-
-
84923868391
-
Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species
-
[39] Mailloux, R.J., Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox. Biol. 4 (2015), 381–398.
-
(2015)
Redox. Biol.
, vol.4
, pp. 381-398
-
-
Mailloux, R.J.1
-
40
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
[40] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
41
-
-
84929085559
-
The cysteine proteome
-
[41] Go, Y.M., Chandler, J.D., Jones, D.P., The cysteine proteome. Free Radic. Biol. Med. 84 (2015), 227–245.
-
(2015)
Free Radic. Biol. Med.
, vol.84
, pp. 227-245
-
-
Go, Y.M.1
Chandler, J.D.2
Jones, D.P.3
-
42
-
-
84880277784
-
The biological chemistry of hydrogen peroxide
-
[42] Winterbourn, C.C., The biological chemistry of hydrogen peroxide. Methods Enzymol. 528 (2013), 3–25.
-
(2013)
Methods Enzymol.
, vol.528
, pp. 3-25
-
-
Winterbourn, C.C.1
-
43
-
-
0036828726
-
Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions
-
[43] Antunes, F., Han, D., Cadenas, E., Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic. Biol. Med. 33 (2002), 1260–1267.
-
(2002)
Free Radic. Biol. Med.
, vol.33
, pp. 1260-1267
-
-
Antunes, F.1
Han, D.2
Cadenas, E.3
-
44
-
-
0019788478
-
Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2
-
[44] Jones, D.P., Eklöw, L., Thor, H., Orrenius, S., Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys. 210 (1981), 505–516.
-
(1981)
Arch. Biochem. Biophys.
, vol.210
, pp. 505-516
-
-
Jones, D.P.1
Eklöw, L.2
Thor, H.3
Orrenius, S.4
-
45
-
-
0001174171
-
Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides
-
[45] Sies, H., Gerstenecker, C., Menzel, H., Flohé, L., Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett. 27 (1972), 171–175.
-
(1972)
FEBS Lett.
, vol.27
, pp. 171-175
-
-
Sies, H.1
Gerstenecker, C.2
Menzel, H.3
Flohé, L.4
-
46
-
-
0016811224
-
Hydroperoxide-metabolizing systems in rat liver
-
[46] Sies, H., Summer, K.H., Hydroperoxide-metabolizing systems in rat liver. Eur. J. Biochem. 57 (1975), 503–512.
-
(1975)
Eur. J. Biochem.
, vol.57
, pp. 503-512
-
-
Sies, H.1
Summer, K.H.2
-
47
-
-
84878874865
-
An assay for the rate of removal of extracellular hydrogen peroxide by cells
-
[47] Wagner, B.A., Witmer, J.R., van ‘t Erve, T.J., Buettner, G.R., An assay for the rate of removal of extracellular hydrogen peroxide by cells. Redox. Biol. 1 (2013), 210–217.
-
(2013)
Redox. Biol.
, vol.1
, pp. 210-217
-
-
Wagner, B.A.1
Witmer, J.R.2
van ‘t Erve, T.J.3
Buettner, G.R.4
-
48
-
-
0034490302
-
Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels
-
[48] Henzler, T., Steudle, E., Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51 (2000), 2053–2066.
-
(2000)
J. Exp. Bot.
, vol.51
, pp. 2053-2066
-
-
Henzler, T.1
Steudle, E.2
-
49
-
-
33748564986
-
Membrane transport of hydrogen peroxide
-
[49] Bienert, G.P., Schjoerring, J.K., Jahn, T.P., Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 1758 (2006), 994–1003.
-
(2006)
Biochim. Biophys. Acta
, vol.1758
, pp. 994-1003
-
-
Bienert, G.P.1
Schjoerring, J.K.2
Jahn, T.P.3
-
50
-
-
33847753534
-
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes
-
[50] Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282 (2007), 1183–1192.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1183-1192
-
-
Bienert, G.P.1
Moller, A.L.2
Kristiansen, K.A.3
Schulz, A.4
Moller, I.M.5
-
51
-
-
0034674055
-
Estimation of H2O2 gradients across biomembranes
-
[51] Antunes, F., Cadenas, E., Estimation of H2O2 gradients across biomembranes. FEBS Lett. 475 (2000), 121–126.
-
(2000)
FEBS Lett.
, vol.475
, pp. 121-126
-
-
Antunes, F.1
Cadenas, E.2
-
52
-
-
84908664771
-
Quantifying intracellular hydrogen peroxide perturbations in terms of concentration
-
[52] Huang, B.K., Sikes, H.D., Quantifying intracellular hydrogen peroxide perturbations in terms of concentration. Redox. Biol. 2 (2014), 955–962.
-
(2014)
Redox. Biol.
, vol.2
, pp. 955-962
-
-
Huang, B.K.1
Sikes, H.D.2
-
53
-
-
84879766479
-
The cellular steady-state of H2O2: latency concepts and gradients
-
[53] Marinho, H.S., Cyrne, L., Cadenas, E., Antunes, F., The cellular steady-state of H2O2: latency concepts and gradients. Methods Enzymol. 527 (2013), 3–19.
-
(2013)
Methods Enzymol.
, vol.527
, pp. 3-19
-
-
Marinho, H.S.1
Cyrne, L.2
Cadenas, E.3
Antunes, F.4
-
54
-
-
84969142091
-
What is the concentration of hydrogen peroxide in blood and plasma?
-
[54] Forman, H.J., Bernardo, A., Davies, K.J., What is the concentration of hydrogen peroxide in blood and plasma?. Arch. Biochem. Biophys. 603 (2016), 48–53.
-
(2016)
Arch. Biochem. Biophys.
, vol.603
, pp. 48-53
-
-
Forman, H.J.1
Bernardo, A.2
Davies, K.J.3
-
55
-
-
84911476354
-
Generator-specific targets of mitochondrial reactive oxygen species
-
[55] Bleier, L., Wittig, I., Heide, H., Steger, M., Brandt, U., Dröse, S., Generator-specific targets of mitochondrial reactive oxygen species. Free Radic. Biol. Med. 78 (2015), 1–10.
-
(2015)
Free Radic. Biol. Med.
, vol.78
, pp. 1-10
-
-
Bleier, L.1
Wittig, I.2
Heide, H.3
Steger, M.4
Brandt, U.5
Dröse, S.6
-
56
-
-
84991109539
-
Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface
-
[56] Booth, D.M., Enyedi, B., Geiszt, M., Varnai, P., Hajnoczky, G., Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63 (2016), 240–248.
-
(2016)
Mol. Cell
, vol.63
, pp. 240-248
-
-
Booth, D.M.1
Enyedi, B.2
Geiszt, M.3
Varnai, P.4
Hajnoczky, G.5
-
57
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
[57] Edgar, R.S., Green, E.W., Zhao, Y., van, O.G., Olmedo, M., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485 (2012), 459–464.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
Green, E.W.2
Zhao, Y.3
van, O.G.4
Olmedo, M.5
-
58
-
-
84861964383
-
Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
[58] Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46 (2012), 584–594.
-
(2012)
Mol. Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
Lee, S.K.2
Ryu, K.W.3
Woo, H.A.4
Hu, M.C.5
-
59
-
-
84975266395
-
Reciprocal control of the circadian clock and cellular redox state - a critical appraisal
-
[59] Putker, M., O'Neill, J.S., Reciprocal control of the circadian clock and cellular redox state - a critical appraisal. Mol. Cells 39 (2016), 6–19.
-
(2016)
Mol. Cells
, vol.39
, pp. 6-19
-
-
Putker, M.1
O'Neill, J.S.2
-
60
-
-
84936960918
-
TrxR1 as a potent regulator of the Nrf2-Keap1 response system
-
[60] Cebula, M., Schmidt, E.E., Arnér, E.S., TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23 (2015), 823–853.
-
(2015)
Antioxid. Redox Signal.
, vol.23
, pp. 823-853
-
-
Cebula, M.1
Schmidt, E.E.2
Arnér, E.S.3
-
61
-
-
84938300316
-
Antioxidant responses and cellular adjustments to oxidative stress
-
[61] Espinosa-Diez, C., Miguel, V., Mennerich, D., Kietzmann, T., Sanchez-Perez, P., et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6 (2015), 183–197.
-
(2015)
Redox Biol.
, vol.6
, pp. 183-197
-
-
Espinosa-Diez, C.1
Miguel, V.2
Mennerich, D.3
Kietzmann, T.4
Sanchez-Perez, P.5
-
62
-
-
34250825393
-
Nuclear and cytoplasmic peroxiredoxin-1 differentially regulate NF-kappaB activities
-
[62] Hansen, J.M., Moriarty-Craige, S., Jones, D.P., Nuclear and cytoplasmic peroxiredoxin-1 differentially regulate NF-kappaB activities. Free Radic. Biol. Med. 43 (2007), 282–288.
-
(2007)
Free Radic. Biol. Med.
, vol.43
, pp. 282-288
-
-
Hansen, J.M.1
Moriarty-Craige, S.2
Jones, D.P.3
-
63
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling
-
[63] Lee, J., Giordano, S., Zhang, J., Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441 (2012), 523–540.
-
(2012)
Biochem. J.
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
64
-
-
78650890352
-
Regulation of autophagy by ROS: physiology and pathology
-
[64] Scherz-Shouval, R., Elazar, Z., Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36 (2011), 30–38.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
65
-
-
84867740975
-
Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner
-
[65] Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta 1823 (2012), 2297–2310.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 2297-2310
-
-
Frank, M.1
Duvezin-Caubet, S.2
Koob, S.3
Occhipinti, A.4
Jagasia, R.5
-
66
-
-
84944393503
-
Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response
-
[66] Zhang, L., Wang, K., Lei, Y., Li, Q., Nice, E.C., Huang, C., Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic. Biol. Med. 89 (2015), 452–465.
-
(2015)
Free Radic. Biol. Med.
, vol.89
, pp. 452-465
-
-
Zhang, L.1
Wang, K.2
Lei, Y.3
Li, Q.4
Nice, E.C.5
Huang, C.6
-
67
-
-
84987678831
-
NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA
-
[67] Alvarez, L.A., Kovacic, L., Rodriguez, J., Gosemann, J.H., Kubica, M., et al. NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA. Proc. Natl. Acad. Sci. U. S. A 113 (2016), 10406–10411.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A
, vol.113
, pp. 10406-10411
-
-
Alvarez, L.A.1
Kovacic, L.2
Rodriguez, J.3
Gosemann, J.H.4
Kubica, M.5
-
68
-
-
84992512222
-
High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells
-
[68] Altintas, A., Davidsen, K., Garde, C., Mortensen, U.H., Brasen, J.C., et al. High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells. Free Radic. Biol. Med. 101 (2016), 143–153.
-
(2016)
Free Radic. Biol. Med.
, vol.101
, pp. 143-153
-
-
Altintas, A.1
Davidsen, K.2
Garde, C.3
Mortensen, U.H.4
Brasen, J.C.5
-
69
-
-
84949283967
-
Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins
-
[69] Brito, P.M., Antunes, F., Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins. Front Chem., 2, 2014, 82.
-
(2014)
Front Chem.
, vol.2
, pp. 82
-
-
Brito, P.M.1
Antunes, F.2
-
70
-
-
84947983166
-
A reaction-diffusion model of cytosolic hydrogen peroxide
-
[70] Lim, J.B., Langford, T.F., Huang, B.K., Deen, W.M., Sikes, H.D., A reaction-diffusion model of cytosolic hydrogen peroxide. Free Radic. Biol. Med. 90 (2016), 85–90.
-
(2016)
Free Radic. Biol. Med.
, vol.90
, pp. 85-90
-
-
Lim, J.B.1
Langford, T.F.2
Huang, B.K.3
Deen, W.M.4
Sikes, H.D.5
-
71
-
-
84930945346
-
Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration
-
[71] Treberg, J.R., Munro, D., Banh, S., Zacharias, P., Sotiri, E., Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration. Redox Biol. 5 (2015), 216–224.
-
(2015)
Redox Biol.
, vol.5
, pp. 216-224
-
-
Treberg, J.R.1
Munro, D.2
Banh, S.3
Zacharias, P.4
Sotiri, E.5
-
72
-
-
84875143731
-
HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging
-
[72] Bilan, D.S., Pase, L., Joosen, L., Gorokhovatsky, A.Y., Ermakova, Y.G., et al. HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8 (2013), 535–542.
-
(2013)
ACS Chem. Biol.
, vol.8
, pp. 535-542
-
-
Bilan, D.S.1
Pase, L.2
Joosen, L.3
Gorokhovatsky, A.Y.4
Ermakova, Y.G.5
-
73
-
-
75749136883
-
Signaling functions of reactive oxygen species
-
[73] Forman, H.J., Maiorino, M., Ursini, F., Signaling functions of reactive oxygen species. Biochemistry 49 (2010), 835–842.
-
(2010)
Biochemistry
, vol.49
, pp. 835-842
-
-
Forman, H.J.1
Maiorino, M.2
Ursini, F.3
-
74
-
-
84945246465
-
Transcription factors that defend bacteria against reactive oxygen species
-
[74] Imlay, J.A., Transcription factors that defend bacteria against reactive oxygen species. Annu. Rev. Microbiol. 69 (2015), 93–108.
-
(2015)
Annu. Rev. Microbiol.
, vol.69
, pp. 93-108
-
-
Imlay, J.A.1
-
75
-
-
84955696380
-
The impact of thiol peroxidases on redox regulation
-
[75] Flohé, L., The impact of thiol peroxidases on redox regulation. Free Radic. Res. 50 (2016), 126–142.
-
(2016)
Free Radic. Res.
, vol.50
, pp. 126-142
-
-
Flohé, L.1
-
76
-
-
84899636261
-
Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction
-
[76] Garcia-Santamarina, S., Boronat, S., Hidalgo, E., Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction. Biochemistry 53 (2014), 2560–2580.
-
(2014)
Biochemistry
, vol.53
, pp. 2560-2580
-
-
Garcia-Santamarina, S.1
Boronat, S.2
Hidalgo, E.3
-
77
-
-
1342281240
-
Protein sulfenic acids in redox signaling
-
[77] Poole, L.B., Karplus, P.A., Claiborne, A., Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol. 44 (2004), 325–347.
-
(2004)
Annu. Rev. Pharmacol. Toxicol.
, vol.44
, pp. 325-347
-
-
Poole, L.B.1
Karplus, P.A.2
Claiborne, A.3
-
78
-
-
84923919258
-
The basics of thiols and cysteines in redox biology and chemistry
-
[78] Poole, L.B., The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80 (2015), 148–157.
-
(2015)
Free Radic. Biol. Med.
, vol.80
, pp. 148-157
-
-
Poole, L.B.1
-
79
-
-
1342308079
-
Redox regulation of PTEN and protein tyrosine phosphatases in H2O2 mediated cell signaling
-
[79] Cho, S.H., Lee, C.H., Ahn, Y., Kim, H., Kim, H., et al. Redox regulation of PTEN and protein tyrosine phosphatases in H2O2 mediated cell signaling. FEBS Lett. 560 (2004), 7–13.
-
(2004)
FEBS Lett.
, vol.560
, pp. 7-13
-
-
Cho, S.H.1
Lee, C.H.2
Ahn, Y.3
Kim, H.4
Kim, H.5
-
80
-
-
84957438803
-
Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2alpha-mediated stress signaling
-
[80] Santos, C.X., Hafstad, A.D., Beretta, M., Zhang, M., Molenaar, C., et al. Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2alpha-mediated stress signaling. EMBO J. 35 (2016), 319–334.
-
(2016)
EMBO J.
, vol.35
, pp. 319-334
-
-
Santos, C.X.1
Hafstad, A.D.2
Beretta, M.3
Zhang, M.4
Molenaar, C.5
-
81
-
-
0036249684
-
The chelatable iron pool in living cells: a methodically defined quantity
-
[81] Petrat, F., de Groot, H., Sustmann, R., Rauen, U., The chelatable iron pool in living cells: a methodically defined quantity. Biol. Chem. 383 (2002), 489–502.
-
(2002)
Biol. Chem.
, vol.383
, pp. 489-502
-
-
Petrat, F.1
de Groot, H.2
Sustmann, R.3
Rauen, U.4
-
82
-
-
84978924492
-
Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis
-
[82] Mantzaris, M.D., Bellou, S., Skiada, V., Kitsati, N., Fotsis, T., Galaris, D., Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radic. Biol. Med. 97 (2016), 454–465.
-
(2016)
Free Radic. Biol. Med.
, vol.97
, pp. 454-465
-
-
Mantzaris, M.D.1
Bellou, S.2
Skiada, V.3
Kitsati, N.4
Fotsis, T.5
Galaris, D.6
-
83
-
-
84890128687
-
Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases
-
[83] Nauseef, W.M., Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim. Biophys. Acta 1840 (2014), 757–767.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, pp. 757-767
-
-
Nauseef, W.M.1
-
85
-
-
84927939726
-
Thiol switches in mitochondria: operation and physiological relevance
-
[85] Riemer, J., Schwarzländer, M., Conrad, M., Herrmann, J.M., Thiol switches in mitochondria: operation and physiological relevance. Biol. Chem. 396 (2015), 465–482.
-
(2015)
Biol. Chem.
, vol.396
, pp. 465-482
-
-
Riemer, J.1
Schwarzländer, M.2
Conrad, M.3
Herrmann, J.M.4
-
86
-
-
84884179284
-
The redox proteome
-
[86] Go, Y.M., Jones, D.P., The redox proteome. J. Biol. Chem. 288 (2013), 26512–26520.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 26512-26520
-
-
Go, Y.M.1
Jones, D.P.2
-
87
-
-
84955506189
-
The expanding landscape of the thiol redox proteome
-
[87] Yang, J., Carroll, K.S., Liebler, D.C., The expanding landscape of the thiol redox proteome. Mol. Cell Proteom. 15 (2016), 1–11.
-
(2016)
Mol. Cell Proteom.
, vol.15
, pp. 1-11
-
-
Yang, J.1
Carroll, K.S.2
Liebler, D.C.3
-
88
-
-
79951643450
-
Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones
-
[88] Rhee, S.G., Woo, H.A., Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid. Redox Signal. 15 (2011), 781–794.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 781-794
-
-
Rhee, S.G.1
Woo, H.A.2
-
89
-
-
84924921673
-
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling
-
[89] Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., et al. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11 (2015), 64–70.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 64-70
-
-
Sobotta, M.C.1
Liou, W.2
Stocker, S.3
Talwar, D.4
Oehler, M.5
-
90
-
-
84901316606
-
Cellular mechanisms and physiological consequencesof redox-dependent signalling
-
[90] Holmström, K.M., Finkel, T., Cellular mechanisms and physiological consequencesof redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15 (2014), 411–421.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 411-421
-
-
Holmström, K.M.1
Finkel, T.2
-
91
-
-
84943625887
-
NOX4-dependent hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation
-
[91] Sanchez-Gomez, F.J., Calvo, E., Breton-Romero, R., Fierro-Fernandez, M., Anilkumar, N., et al. NOX4-dependent hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation. Free Radic. Biol. Med. 89 (2015), 419–430.
-
(2015)
Free Radic. Biol. Med.
, vol.89
, pp. 419-430
-
-
Sanchez-Gomez, F.J.1
Calvo, E.2
Breton-Romero, R.3
Fierro-Fernandez, M.4
Anilkumar, N.5
-
92
-
-
84862776938
-
Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase
-
[92] Schröder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 110 (2012), 1217–1225.
-
(2012)
Circ. Res.
, vol.110
, pp. 1217-1225
-
-
Schröder, K.1
Zhang, M.2
Benkhoff, S.3
Mieth, A.4
Pliquett, R.5
-
93
-
-
84984830251
-
Redox signaling in cardiovascular pathophysiology: a focus on hydrogen peroxide and vascular smooth muscle cells
-
[93] Byon, C.H., Heath, J.M., Chen, Y., Redox signaling in cardiovascular pathophysiology: a focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol. 9 (2016), 244–253.
-
(2016)
Redox Biol.
, vol.9
, pp. 244-253
-
-
Byon, C.H.1
Heath, J.M.2
Chen, Y.3
-
94
-
-
67649255876
-
A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish
-
[94] Niethammer, P., Grabher, C., Look, A.T., Mitchison, T.J., A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459 (2009), 996–999.
-
(2009)
Nature
, vol.459
, pp. 996-999
-
-
Niethammer, P.1
Grabher, C.2
Look, A.T.3
Mitchison, T.J.4
-
95
-
-
84873410016
-
Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
-
[95] Love, N.R., Chen, Y., Ishibashi, S., Kritsiligkou, P., Lea, R., et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 15 (2013), 222–228.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 222-228
-
-
Love, N.R.1
Chen, Y.2
Ishibashi, S.3
Kritsiligkou, P.4
Lea, R.5
-
96
-
-
84973174751
-
The early wound signals
-
[96] Niethammer, P., The early wound signals. Curr. Opin. Genet. Dev. 40 (2016), 17–22.
-
(2016)
Curr. Opin. Genet. Dev.
, vol.40
, pp. 17-22
-
-
Niethammer, P.1
-
97
-
-
84975167827
-
Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development
-
[97] Gauron, C., Meda, F., Dupont, E., Albadri, S., Quenech'Du, N., et al. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev. Biol. 414 (2016), 133–141.
-
(2016)
Dev. Biol.
, vol.414
, pp. 133-141
-
-
Gauron, C.1
Meda, F.2
Dupont, E.3
Albadri, S.4
Quenech'Du, N.5
-
98
-
-
84975832591
-
Stress regulates aquaporin-8 permeability to impact cell growth and survival
-
[98] Medrano-Fernandez, I., Bestetti, S., Bertolotti, M., Bienert, G.P., Bottino, C., et al. Stress regulates aquaporin-8 permeability to impact cell growth and survival. Antioxid. Redox Signal. 24 (2016), 1031–1044.
-
(2016)
Antioxid. Redox Signal.
, vol.24
, pp. 1031-1044
-
-
Medrano-Fernandez, I.1
Bestetti, S.2
Bertolotti, M.3
Bienert, G.P.4
Bottino, C.5
-
99
-
-
77957652745
-
Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling
-
[99] Miller, E.W., Dickinson, B.C., Chang, C.J., Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. U.S.A 107 (2010), 15681–15686.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 15681-15686
-
-
Miller, E.W.1
Dickinson, B.C.2
Chang, C.J.3
-
100
-
-
84934904648
-
Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis
-
[100] Hara-Chikuma, M., Satooka, H., Watanabe, S., Honda, T., Miyachi, Y., et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat. Commun., 6, 2015, 7454.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7454
-
-
Hara-Chikuma, M.1
Satooka, H.2
Watanabe, S.3
Honda, T.4
Miyachi, Y.5
-
101
-
-
84960084975
-
Transit of HO across the endoplasmic reticulum membrane is not sluggish
-
[101] Appenzeller-Herzog, C., Banhegyi, G., Bogeski, I., Davies, K.J., Delaunay-Moisan, A., et al. Transit of HO across the endoplasmic reticulum membrane is not sluggish. Free Radic. Biol. Med. 94 (2016), 157–160.
-
(2016)
Free Radic. Biol. Med.
, vol.94
, pp. 157-160
-
-
Appenzeller-Herzog, C.1
Banhegyi, G.2
Bogeski, I.3
Davies, K.J.4
Delaunay-Moisan, A.5
-
102
-
-
84969211795
-
Dissecting redox biology using fluorescent protein sensors
-
[102] Schwarzländer, M., Dick, T.P., Meyer, A.J., Morgan, B., Dissecting redox biology using fluorescent protein sensors. Antioxid. Redox Signal. 24 (2016), 680–712.
-
(2016)
Antioxid. Redox Signal.
, vol.24
, pp. 680-712
-
-
Schwarzländer, M.1
Dick, T.P.2
Meyer, A.J.3
Morgan, B.4
-
103
-
-
84968724574
-
HyPer family probes: state of the art
-
[103] Bilan, D.S., Belousov, V.V., HyPer family probes: state of the art. Antioxid. Redox Signal. 24 (2016), 731–751.
-
(2016)
Antioxid. Redox Signal.
, vol.24
, pp. 731-751
-
-
Bilan, D.S.1
Belousov, V.V.2
-
104
-
-
84994578327
-
Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling
-
[104] Rindler, P.M., Cacciola, A., Kinter, M., Szweda, L.I., Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling. Am. J. Physiol. Heart Circ. Physiol. 311 (2016), H1091–H1096.
-
(2016)
Am. J. Physiol. Heart Circ. Physiol.
, vol.311
, pp. H1091-H1096
-
-
Rindler, P.M.1
Cacciola, A.2
Kinter, M.3
Szweda, L.I.4
-
105
-
-
84940765647
-
Extracellular localization of catalase is associated with the transformed state of malignant cells
-
[105] Böhm, B., Heinzelmann, S., Motz, M., Bauer, G., Extracellular localization of catalase is associated with the transformed state of malignant cells. Biol. Chem. 396 (2015), 1339–1356.
-
(2015)
Biol. Chem.
, vol.396
, pp. 1339-1356
-
-
Böhm, B.1
Heinzelmann, S.2
Motz, M.3
Bauer, G.4
-
106
-
-
84894073943
-
How much H2O2 is produced by recombinant D-amino acid oxidase in mammalian cells?
-
[106] Matlashov, M.E., Belousov, V.V., Enikolopov, G., How much H2O2 is produced by recombinant D-amino acid oxidase in mammalian cells?. Antioxid. Redox Signal. 20 (2014), 1039–1044.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 1039-1044
-
-
Matlashov, M.E.1
Belousov, V.V.2
Enikolopov, G.3
-
107
-
-
84879768603
-
Imaging H2O2 microdomains in receptor tyrosine kinases signaling
-
[107] Mishina, N.M., Markvicheva, K.N., Fradkov, A.F., Zagaynova, E.V., Schultz, C., et al. Imaging H2O2 microdomains in receptor tyrosine kinases signaling. Methods Enzymol. 526 (2013), 175–187.
-
(2013)
Methods Enzymol.
, vol.526
, pp. 175-187
-
-
Mishina, N.M.1
Markvicheva, K.N.2
Fradkov, A.F.3
Zagaynova, E.V.4
Schultz, C.5
-
108
-
-
84938751663
-
Redox homeostasis and mitochondrial dynamics
-
[108] Willems, P.H., Rossignol, R., Dieteren, C.E., Murphy, M.P., Koopman, W.J., Redox homeostasis and mitochondrial dynamics. Cell Metab. 22 (2015), 207–218.
-
(2015)
Cell Metab.
, vol.22
, pp. 207-218
-
-
Willems, P.H.1
Rossignol, R.2
Dieteren, C.E.3
Murphy, M.P.4
Koopman, W.J.5
-
109
-
-
84995654375
-
Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes
-
[109] Lopez-Fabuel, I., Le, D.J., Logan, A., James, A.M., Bonvento, G., et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. U.S.A 113 (2016), 13063–13068.
-
(2016)
Proc. Natl. Acad. Sci. U.S.A
, vol.113
, pp. 13063-13068
-
-
Lopez-Fabuel, I.1
Le, D.J.2
Logan, A.3
James, A.M.4
Bonvento, G.5
-
110
-
-
84992390935
-
Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury
-
[110] Brand, M.D., Goncalves, R.L., Orr, A.L., Vargas, L., Gerencser, A.A., et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 24 (2016), 582–592.
-
(2016)
Cell Metab.
, vol.24
, pp. 582-592
-
-
Brand, M.D.1
Goncalves, R.L.2
Orr, A.L.3
Vargas, L.4
Gerencser, A.A.5
-
111
-
-
84938519460
-
The ins and outs of mitochondrial calcium
-
[111] Finkel, T., Menazza, S., Holmström, K.M., Parks, R.J., Liu, J., et al. The ins and outs of mitochondrial calcium. Circ. Res. 116 (2015), 1810–1819.
-
(2015)
Circ. Res.
, vol.116
, pp. 1810-1819
-
-
Finkel, T.1
Menazza, S.2
Holmström, K.M.3
Parks, R.J.4
Liu, J.5
-
112
-
-
84940043387
-
Calcium and ROS: a mutual interplay
-
[112] Görlach, A., Bertram, K., Hudecova, S., Krizanova, O., Calcium and ROS: a mutual interplay. Redox. Biol. 6 (2015), 260–271.
-
(2015)
Redox. Biol.
, vol.6
, pp. 260-271
-
-
Görlach, A.1
Bertram, K.2
Hudecova, S.3
Krizanova, O.4
-
113
-
-
84988915855
-
Why calcium? How calcium became the best communicator
-
[113] Carafoli, E., Krebs, J., Why calcium? How calcium became the best communicator. J. Biol. Chem. 291 (2016), 20849–20857.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 20849-20857
-
-
Carafoli, E.1
Krebs, J.2
-
114
-
-
84983315641
-
ER-Mitochondria contact sites: a new regulator of cellular calcium flux comes into play
-
[114] Krols, M., Bultynck, G., Janssens, S., ER-Mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J. Cell Biol. 214 (2016), 367–370.
-
(2016)
J. Cell Biol.
, vol.214
, pp. 367-370
-
-
Krols, M.1
Bultynck, G.2
Janssens, S.3
-
116
-
-
84942521816
-
The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells
-
[116] Bagulho, A., Vilas-Boas, F., Pena, A., Peneda, C., Santos, F.C., et al. The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells. Redox Biol. 6 (2015), 454–460.
-
(2015)
Redox Biol.
, vol.6
, pp. 454-460
-
-
Bagulho, A.1
Vilas-Boas, F.2
Pena, A.3
Peneda, C.4
Santos, F.C.5
-
117
-
-
84864225444
-
Local oxidative stress expansion through endothelial cells–a key role for gap junction intercellular communication
-
[117] Feine, I., Pinkas, I., Salomon, Y., Scherz, A., Local oxidative stress expansion through endothelial cells–a key role for gap junction intercellular communication. PLoS. One, 7, 2012, e41633.
-
(2012)
PLoS. One
, vol.7
, pp. e41633
-
-
Feine, I.1
Pinkas, I.2
Salomon, Y.3
Scherz, A.4
-
118
-
-
85009866205
-
Redox proteomics applied to the thiol secretome
-
(PMID:27139336)
-
[118] Ghezzi, P., Chan, P., Redox proteomics applied to the thiol secretome. Antioxid. Redox Signal, 2016 (PMID:27139336).
-
(2016)
Antioxid. Redox Signal
-
-
Ghezzi, P.1
Chan, P.2
-
119
-
-
84876931396
-
Beyond oxidative stress: an immunologist's guide to reactive oxygen species
-
[119] Nathan, C., Cunningham-Bussel, A., Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13 (2013), 349–361.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 349-361
-
-
Nathan, C.1
Cunningham-Bussel, A.2
-
120
-
-
85006483447
-
Modulating and measuring intracellular H2O2 using genetically encoded tools to study its toxicity to human cells
-
(PMID:27428287)
-
[120] Huang, B.K., Stein, K.T., Sikes, H.D., Modulating and measuring intracellular H2O2 using genetically encoded tools to study its toxicity to human cells. ACS Synth. Biol., 2016 (PMID:27428287).
-
(2016)
ACS Synth. Biol.
-
-
Huang, B.K.1
Stein, K.T.2
Sikes, H.D.3
|