-
1
-
-
84882973107
-
Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy
-
Nogueira V., Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clinical Cancer Research 2013, 19(16):4309-4314. http://www.ncbi.nlm.nih.gov/pubmed/23719265, 10.1158/1078-0432.CCR-12-1424.
-
(2013)
Clinical Cancer Research
, vol.19
, Issue.16
, pp. 4309-4314
-
-
Nogueira, V.1
Hay, N.2
-
2
-
-
0033583242
-
Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species
-
Lee A.C., et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. Journal of Biological Chemistry 1999, 274(12):7936-7940. http://www.ncbi.nlm.nih.gov/pubmed/10075689, 10.1074/jbc.274.12.7936.
-
(1999)
Journal of Biological Chemistry
, vol.274
, Issue.12
, pp. 7936-7940
-
-
Lee, A.C.1
-
3
-
-
70350572180
-
FoxM1, a critical regulator of oxidative stress during oncogenesis
-
Park H.J., et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO Journal 2009, 28(19):2908-2918. http://www.ncbi.nlm.nih.gov/pubmed/19696738, 10.1038/emboj.2009.239.
-
(2009)
EMBO Journal
, vol.28
, Issue.19
, pp. 2908-2918
-
-
Park, H.J.1
-
4
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochemical Journal 2009, 417(1):1-13. http://www.ncbi.nlm.nih.gov/pubmed/19061483, 10.1042/BJ20081386.
-
(2009)
Biochemical Journal
, vol.417
, Issue.1
, pp. 1-13
-
-
Murphy, M.P.1
-
5
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
Quinlan C.L., et al. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology 2013, 1(1):304-312. http://www.ncbi.nlm.nih.gov/pubmed/24024165, 10.1016/j.redox.2013.04.005.
-
(2013)
Redox Biology
, vol.1
, Issue.1
, pp. 304-312
-
-
Quinlan, C.L.1
-
6
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
Brand M.D. The sites and topology of mitochondrial superoxide production. Experimental Gerontology 2010, 45(7-8):466-472. http://www.ncbi.nlm.nih.gov/pubmed/20064600, 10.1016/j.exger.2010.01.003.
-
(2010)
Experimental Gerontology
, vol.45
, Issue.7-8
, pp. 466-472
-
-
Brand, M.D.1
-
7
-
-
33646698671
-
Hydrogen peroxide: a signaling messenger
-
Stone J.R., Yang S. Hydrogen peroxide: a signaling messenger. Antioxidants and Redox Signaling 2006, 8(3-4):243-270. http://www.ncbi.nlm.nih.gov/pubmed/16677071, 10.1089/ars.2006.8.243.
-
(2006)
Antioxidants and Redox Signaling
, vol.8
, Issue.3-4
, pp. 243-270
-
-
Stone, J.R.1
Yang, S.2
-
8
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. Journal of Cell Biology 2011, 194(1):7-15. http://www.ncbi.nlm.nih.gov/pubmed/21746850, 10.1083/jcb.201102095.
-
(2011)
Journal of Cell Biology
, vol.194
, Issue.1
, pp. 7-15
-
-
Finkel, T.1
-
9
-
-
67650079177
-
Redox potential and peroxide reactivity of human peroxiredoxin 3
-
Cox A.G., et al. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 2009, 48(27):6495-6501. http://www.ncbi.nlm.nih.gov/pubmed/19462976, 10.1021/bi900558g.
-
(2009)
Biochemistry
, vol.48
, Issue.27
, pp. 6495-6501
-
-
Cox, A.G.1
-
10
-
-
84889241342
-
The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin
-
Perkins A., et al. The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 2013, 52(48):8708-8721. http://www.ncbi.nlm.nih.gov/pubmed/24175952, 10.1021/bi4011573.
-
(2013)
Biochemistry
, vol.52
, Issue.48
, pp. 8708-8721
-
-
Perkins, A.1
-
11
-
-
84876917760
-
Thioredoxins, glutaredoxins, and peroxiredoxins -molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling
-
Hanschmann E.M., et al. Thioredoxins, glutaredoxins, and peroxiredoxins -molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxidants and Redox Signaling 2013, 19(13):1539-1605. http://www.ncbi.nlm.nih.gov/pubmed/23397885, 10.1089/ars.2012.4599.
-
(2013)
Antioxidants and Redox Signaling
, vol.19
, Issue.13
, pp. 1539-1605
-
-
Hanschmann, E.M.1
-
12
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
Wood Z.A., Poole L.B., Karplus P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300(5619):650-653. http://www.ncbi.nlm.nih.gov/pubmed/12714747, 10.1126/science.1080405.
-
(2003)
Science
, vol.300
, Issue.5619
, pp. 650-653
-
-
Wood, Z.A.1
Poole, L.B.2
Karplus, P.A.3
-
13
-
-
0242416188
-
ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
-
Biteau B., Labarre J., Toledano M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425(6961):980-984. http://www.ncbi.nlm.nih.gov/pubmed/14586471, 10.1038/nature02075.
-
(2003)
Nature
, vol.425
, Issue.6961
, pp. 980-984
-
-
Biteau, B.1
Labarre, J.2
Toledano, M.B.3
-
14
-
-
10944237769
-
Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
-
Chang T.S., et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. Journal of Biological Chemistry 2004, 279(49):50994-51001. http://www.ncbi.nlm.nih.gov/pubmed/15448164, 10.1074/jbc.M409482200.
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.49
, pp. 50994-51001
-
-
Chang, T.S.1
-
15
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes L.C., Di Benedetto G., Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology 2011, 13(5):589-598. http://www.ncbi.nlm.nih.gov/pubmed/21478857, 10.1038/ncb2220.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.5
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
16
-
-
67749089562
-
A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
-
Mitra K., et al. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences of the United States ofAmerica 2009, 106(29):11960-11965. http://www.ncbi.nlm.nih.gov/pubmed/19617534, 10.1073/pnas.0904875106.
-
(2009)
Proceedings of the National Academy of Sciences of the United States ofAmerica
, vol.106
, Issue.29
, pp. 11960-11965
-
-
Mitra, K.1
-
17
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. Journal of Biological Chemistry 2007, 282(15):11521-11529. http://www.ncbi.nlm.nih.gov/pubmed/17301055, 10.1074/jbc.M607279200.
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.15
, pp. 11521-11529
-
-
Taguchi, N.1
-
18
-
-
80052462067
-
Coupling mitochondrial and cell division
-
Yamano K., Youle R.J. Coupling mitochondrial and cell division. Nature Cell Biology 2011, 13(9):1026-1027. http://www.ncbi.nlm.nih.gov/pubmed/21892144, 10.1038/ncb2334.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.9
, pp. 1026-1027
-
-
Yamano, K.1
Youle, R.J.2
-
19
-
-
84874694989
-
Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress
-
Qian W., et al. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. Journal of Cell Science 2012, 125(23):5745-5757. http://www.ncbi.nlm.nih.gov/pubmed/23015593, 10.1242/jcs.109769.
-
(2012)
Journal of Cell Science
, vol.125
, Issue.23
, pp. 5745-5757
-
-
Qian, W.1
-
20
-
-
84867659145
-
The influence of reactive oxygen species on cell cycle progression in mammalian cells
-
Verbon E.H., Post J.A., Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012, 511(1):1-6. http://www.ncbi.nlm.nih.gov/pubmed/22981713, 10.1016/j.gene.2012.08.038.
-
(2012)
Gene
, vol.511
, Issue.1
, pp. 1-6
-
-
Verbon, E.H.1
Post, J.A.2
Boonstra, J.3
-
21
-
-
42449148790
-
The reactive oxygen-driven tumor: relevance to melanoma
-
Fried L., Arbiser J.L. The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell & Melanoma Research 2008, 21(2):117-122. http://www.ncbi.nlm.nih.gov/pubmed/18384505, 10.1111/j.1755-148X.2008.00451.x.
-
(2008)
Pigment Cell & Melanoma Research
, vol.21
, Issue.2
, pp. 117-122
-
-
Fried, L.1
Arbiser, J.L.2
-
22
-
-
73849144014
-
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
-
Cox A.G., Winterbourn C.C., Hampton M.B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochemical Journal 2010, 425(2):313-325. http://www.ncbi.nlm.nih.gov/pubmed/20025614, 10.1042/BJ20091541.
-
(2010)
Biochemical Journal
, vol.425
, Issue.2
, pp. 313-325
-
-
Cox, A.G.1
Winterbourn, C.C.2
Hampton, M.B.3
-
23
-
-
84865427488
-
Mitochondria as sensors and regulators of calcium signalling
-
Rizzuto R., et al. Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology 2012, 13(9):566-578. http://www.ncbi.nlm.nih.gov/pubmed/22850819, 10.1038/nrm3412.
-
(2012)
Nature Reviews Molecular Cell Biology
, vol.13
, Issue.9
, pp. 566-578
-
-
Rizzuto, R.1
-
24
-
-
73349091842
-
The role of mitochondria in apoptosis*
-
Wang C., Youle R.J. The role of mitochondria in apoptosis*. Annual Review of Genetics 2009, 43:95-118. http://www.ncbi.nlm.nih.gov/pubmed/19659442, 10.1146/annurev-genet-102108-134850.
-
(2009)
Annual Review of Genetics
, vol.43
, pp. 95-118
-
-
Wang, C.1
Youle, R.J.2
-
25
-
-
78650895891
-
High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission
-
Yu T., Jhun B.S., Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxidants and Redox Signaling 2011, 14(3):425-437. http://www.ncbi.nlm.nih.gov/pubmed/20518702, 10.1089/ars.2010.3284.
-
(2011)
Antioxidants and Redox Signaling
, vol.14
, Issue.3
, pp. 425-437
-
-
Yu, T.1
Jhun, B.S.2
Yoon, Y.3
-
26
-
-
46749156297
-
Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species
-
Yu T., et al. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research 2008, 79(2):341-351. http://www.ncbi.nlm.nih.gov/pubmed/18440987, 10.1093/cvr/cvn104.
-
(2008)
Cardiovascular Research
, vol.79
, Issue.2
, pp. 341-351
-
-
Yu, T.1
-
27
-
-
33745738979
-
2+ signaling
-
2+ signaling. Biochimica et Biophysica Acta 2006, 1763(5-6):442-449. http://www.ncbi.nlm.nih.gov/pubmed/16750865, 10.1016/j.bbamcr.2006.04.002.
-
(2006)
Biochimica et Biophysica Acta
, vol.1763
, Issue.5-6
, pp. 442-449
-
-
Szabadkai, G.1
-
28
-
-
84885181954
-
Mitochondrial dynamics regulates migration and invasion of breast cancer cells
-
Zhao J., et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013, 32(40):4814-4824. http://www.ncbi.nlm.nih.gov/pubmed/23128392, 10.1038/onc.2012.494.
-
(2013)
Oncogene
, vol.32
, Issue.40
, pp. 4814-4824
-
-
Zhao, J.1
-
29
-
-
84860914473
-
Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer
-
Rehman J., et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB Journal 2012, 26(5):2175-2186. http://www.ncbi.nlm.nih.gov/pubmed/22321727, 10.1096/fj.11-196543.
-
(2012)
FASEB Journal
, vol.26
, Issue.5
, pp. 2175-2186
-
-
Rehman, J.1
-
30
-
-
34547611925
-
Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
-
Chang C.R., Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. Journal of Biological Chemistry 2007, 282(30):21583-21587. http://www.ncbi.nlm.nih.gov/pubmed/17553808, 10.1074/jbc.C700083200.
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.30
, pp. 21583-21587
-
-
Chang, C.R.1
Blackstone, C.2
-
31
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences of the United States ofAmerica 2011, 108(25):10190-10195. http://www.ncbi.nlm.nih.gov/pubmed/21646527, 10.1073/pnas.1107402108.
-
(2011)
Proceedings of the National Academy of Sciences of the United States ofAmerica
, vol.108
, Issue.25
, pp. 10190-10195
-
-
Rambold, A.S.1
-
32
-
-
80052514798
-
RALA and RALBP1 regulate mitochondrial fission at mitosis
-
Kashatus D.F., et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nature Cell Biology 2011, 13(9):1108-1115. http://www.ncbi.nlm.nih.gov/pubmed/21822277, 10.1038/ncb2310.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.9
, pp. 1108-1115
-
-
Kashatus, D.F.1
-
33
-
-
79955625925
-
Mitochondria unite to survive
-
Blackstone C., Chang C.R. Mitochondria unite to survive. Nature Cell Biology 2011, 13(5):521-522. http://www.ncbi.nlm.nih.gov/pubmed/21540850, 10.1038/ncb0511-521.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.5
, pp. 521-522
-
-
Blackstone, C.1
Chang, C.R.2
-
34
-
-
84866133072
-
Reactive oxygen species in health and disease
-
Alfadda A.A., Sallam R.M. Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology 2012, 2012:936486. http://www.ncbi.nlm.nih.gov/pubmed/22927725, 10.1155/2012/936486.
-
(2012)
Journal of Biomedicine and Biotechnology
, vol.2012
, pp. 936486
-
-
Alfadda, A.A.1
Sallam, R.M.2
-
35
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States ofAmerica 2010, 107(19):8788-8793. http://www.ncbi.nlm.nih.gov/pubmed/20421486, 10.1073/pnas.1003428107.
-
(2010)
Proceedings of the National Academy of Sciences of the United States ofAmerica
, vol.107
, Issue.19
, pp. 8788-8793
-
-
Weinberg, F.1
-
36
-
-
79251517382
-
Regulation of cancer cell metabolism
-
Cairns R.A., Harris I.S., Mak T.W. Regulation of cancer cell metabolism. Nature Reviews Cancer 2011, 11(2):85-95. http://www.ncbi.nlm.nih.gov/pubmed/21258394, 10.1038/nrc2981.
-
(2011)
Nature Reviews Cancer
, vol.11
, Issue.2
, pp. 85-95
-
-
Cairns, R.A.1
Harris, I.S.2
Mak, T.W.3
-
37
-
-
70349799010
-
The cell cycle is a redox cycle: linking phase-specific targets to cell fate
-
Burhans W.C., Heintz N.H. The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radical Biology and Medicine 2009, 47(9):1282-1293. http://www.ncbi.nlm.nih.gov/pubmed/19486941, 10.1016/j.freeradbiomed.2009.05.026.
-
(2009)
Free Radical Biology and Medicine
, vol.47
, Issue.9
, pp. 1282-1293
-
-
Burhans, W.C.1
Heintz, N.H.2
-
38
-
-
70449133798
-
Redox control of the cell cycle in health and disease
-
Sarsour E.H., et al. Redox control of the cell cycle in health and disease. Antioxidants and Redox Signaling 2009, 11(12):2985-3011. http://www.ncbi.nlm.nih.gov/pubmed/19505186, 10.1089/ARS.2009.2513.
-
(2009)
Antioxidants and Redox Signaling
, vol.11
, Issue.12
, pp. 2985-3011
-
-
Sarsour, E.H.1
-
40
-
-
33847185842
-
A redox cycle within the cell cycle: ring in the old with the new
-
Menon S.G., Goswami P.C. A redox cycle within the cell cycle: ring in the old with the new. Oncogene 2007, 26(8):1101-1109. http://www.ncbi.nlm.nih.gov/pubmed/16924237, 10.1038/sj.onc.1209895.
-
(2007)
Oncogene
, vol.26
, Issue.8
, pp. 1101-1109
-
-
Menon, S.G.1
Goswami, P.C.2
-
41
-
-
39749104169
-
Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint
-
Owusu-Ansah E., et al. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nature Genetics 2008, 40(3):356-361. http://www.ncbi.nlm.nih.gov/pubmed/18246068, 10.1038/ng.2007.50.
-
(2008)
Nature Genetics
, vol.40
, Issue.3
, pp. 356-361
-
-
Owusu-Ansah, E.1
-
42
-
-
43449104237
-
Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth
-
Sarsour E.H., et al. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008, 7(3):405-417. http://www.ncbi.nlm.nih.gov/pubmed/18331617, 10.1111/j.1474-9726.2008.00384.x.
-
(2008)
Aging Cell
, vol.7
, Issue.3
, pp. 405-417
-
-
Sarsour, E.H.1
-
43
-
-
84871680714
-
Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells
-
Cunniff B., et al. Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells. Journal of Cellular Physiology 2013, 228(4):835-845. http://www.ncbi.nlm.nih.gov/pubmed/23018647, 10.1002/jcp.24232.
-
(2013)
Journal of Cellular Physiology
, vol.228
, Issue.4
, pp. 835-845
-
-
Cunniff, B.1
-
44
-
-
33845303974
-
Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery
-
Phalen T.J., et al. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. Journal of Cell Biology 2006, 175(5):779-789. http://www.ncbi.nlm.nih.gov/pubmed/17145963, 10.1083/jcb.200606005.
-
(2006)
Journal of Cell Biology
, vol.175
, Issue.5
, pp. 779-789
-
-
Phalen, T.J.1
-
45
-
-
53049102297
-
Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H(2)O(2)
-
Smith-Pearson P.S., et al. Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H(2)O(2). Free Radical Biology and Medicine 2008, 45(8):1178-1189. http://www.ncbi.nlm.nih.gov/pubmed/18718523, 10.1016/j.freeradbiomed.2008.07.015.
-
(2008)
Free Radical Biology and Medicine
, vol.45
, Issue.8
, pp. 1178-1189
-
-
Smith-Pearson, P.S.1
-
46
-
-
0037067763
-
Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation
-
Chang T.S., et al. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. Journal of Biological Chemistry 2002, 277(28):25370-25376. http://www.ncbi.nlm.nih.gov/pubmed/11986303, 10.1074/jbc.M110432200.
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.28
, pp. 25370-25376
-
-
Chang, T.S.1
-
47
-
-
4844228500
-
A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression
-
Conour J.E., Graham W.V., Gaskins H.R. A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiological Genomics 2004, 18(2):196-205. http://www.ncbi.nlm.nih.gov/pubmed/15138307, 10.1152/physiolgenomics.00058.2004.
-
(2004)
Physiological Genomics
, vol.18
, Issue.2
, pp. 196-205
-
-
Conour, J.E.1
Graham, W.V.2
Gaskins, H.R.3
-
48
-
-
84877105774
-
Mitochondrial morphology transitions and functions: implications for retrograde signaling?
-
Picard M., et al. Mitochondrial morphology transitions and functions: implications for retrograde signaling?. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2013, 304(6):R393-R406. http://www.ncbi.nlm.nih.gov/pubmed/23364527, 10.1152/ajpregu.00584.2012.
-
(2013)
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
, vol.304
, Issue.6
, pp. R393-R406
-
-
Picard, M.1
-
49
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
-
Chouchani E.T., et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Medicine 2013, 19(6):753-759. http://www.ncbi.nlm.nih.gov/pubmed/23708290, 10.1038/nm.3212.
-
(2013)
Nature Medicine
, vol.19
, Issue.6
, pp. 753-759
-
-
Chouchani, E.T.1
-
50
-
-
67650085650
-
The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells
-
Shi D.Y., et al. The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells. Molecular Cancer 2009, 8:32. http://www.ncbi.nlm.nih.gov/pubmed/19497135, 10.1186/1476-4598-8-32.
-
(2009)
Molecular Cancer
, vol.8
, pp. 32
-
-
Shi, D.Y.1
-
51
-
-
84867032955
-
The intracellular redox state is a core determinant of mitochondrial fusion
-
Shutt T., et al. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Reports 2012, 13(10):909-915. http://www.ncbi.nlm.nih.gov/pubmed/22945481, 10.1038/embor.2012.128.
-
(2012)
EMBO Reports
, vol.13
, Issue.10
, pp. 909-915
-
-
Shutt, T.1
-
52
-
-
84883792140
-
Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita +/Ins2-derived B-cells
-
Mitchell T., Johnson M.S., Ouyang X., Chacko B.K., Mitra K., Lei X., Gai Y., Moore R., Barnes S., Zhang J., Koizumi A., Ramanadham S., Darley-Usmar V.M. Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita +/Ins2-derived B-cells. American Journal of Physiology: Endocrinology and Metabolism 2014, 305(5):E585-E599.
-
(2014)
American Journal of Physiology: Endocrinology and Metabolism
, vol.305
, Issue.5
, pp. E585-E599
-
-
Mitchell, T.1
Johnson, M.S.2
Ouyang, X.3
Chacko, B.K.4
Mitra, K.5
Lei, X.6
Gai, Y.7
Moore, R.8
Barnes, S.9
Zhang, J.10
Koizumi, A.11
Ramanadham, S.12
Darley-Usmar, V.M.13
-
53
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO Journal 2007, 26(7):1749-1760. http://www.ncbi.nlm.nih.gov/pubmed/17347651, 10.1038/sj.emboj.7601623.
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
-
54
-
-
84862645519
-
Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells
-
Newick K., et al. Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells. PLoS ONE 2012, 7(6):e39404. http://www.ncbi.nlm.nih.gov/pubmed/22761781, 10.1371/journal.pone.0039404.
-
(2012)
PLoS ONE
, vol.7
, Issue.6
, pp. e39404
-
-
Newick, K.1
-
55
-
-
19644398798
-
. -mediated mitochondrial outgrowth
-
. -mediated mitochondrial outgrowth. American Journal of Physiology: Cell Physiology 2005, 288(6):C1440-C1450. http://www.ncbi.nlm.nih.gov/pubmed/15647387, 10.1152/ajpcell.00607.2004.
-
(2005)
American Journal of Physiology: Cell Physiology
, vol.288
, Issue.6
, pp. C1440-C1450
-
-
Koopman, W.J.1
|