메뉴 건너뛰기




Volumn 3, Issue , 2014, Pages 79-87

Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells

Author keywords

Cell cycle; Mitochondrial structure; Oxidative stress; Peroxiredoxin 3

Indexed keywords

ADENOSINE TRIPHOSPHATE; CATALASE; PEROXIREDOXIN 3; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; OXIDIZING AGENT;

EID: 84911891833     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2014.11.003     Document Type: Article
Times cited : (36)

References (55)
  • 1
    • 84882973107 scopus 로고    scopus 로고
    • Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy
    • Nogueira V., Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clinical Cancer Research 2013, 19(16):4309-4314. http://www.ncbi.nlm.nih.gov/pubmed/23719265, 10.1158/1078-0432.CCR-12-1424.
    • (2013) Clinical Cancer Research , vol.19 , Issue.16 , pp. 4309-4314
    • Nogueira, V.1    Hay, N.2
  • 2
    • 0033583242 scopus 로고    scopus 로고
    • Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species
    • Lee A.C., et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. Journal of Biological Chemistry 1999, 274(12):7936-7940. http://www.ncbi.nlm.nih.gov/pubmed/10075689, 10.1074/jbc.274.12.7936.
    • (1999) Journal of Biological Chemistry , vol.274 , Issue.12 , pp. 7936-7940
    • Lee, A.C.1
  • 3
    • 70350572180 scopus 로고    scopus 로고
    • FoxM1, a critical regulator of oxidative stress during oncogenesis
    • Park H.J., et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO Journal 2009, 28(19):2908-2918. http://www.ncbi.nlm.nih.gov/pubmed/19696738, 10.1038/emboj.2009.239.
    • (2009) EMBO Journal , vol.28 , Issue.19 , pp. 2908-2918
    • Park, H.J.1
  • 4
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochemical Journal 2009, 417(1):1-13. http://www.ncbi.nlm.nih.gov/pubmed/19061483, 10.1042/BJ20081386.
    • (2009) Biochemical Journal , vol.417 , Issue.1 , pp. 1-13
    • Murphy, M.P.1
  • 5
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • Quinlan C.L., et al. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology 2013, 1(1):304-312. http://www.ncbi.nlm.nih.gov/pubmed/24024165, 10.1016/j.redox.2013.04.005.
    • (2013) Redox Biology , vol.1 , Issue.1 , pp. 304-312
    • Quinlan, C.L.1
  • 6
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand M.D. The sites and topology of mitochondrial superoxide production. Experimental Gerontology 2010, 45(7-8):466-472. http://www.ncbi.nlm.nih.gov/pubmed/20064600, 10.1016/j.exger.2010.01.003.
    • (2010) Experimental Gerontology , vol.45 , Issue.7-8 , pp. 466-472
    • Brand, M.D.1
  • 7
    • 33646698671 scopus 로고    scopus 로고
    • Hydrogen peroxide: a signaling messenger
    • Stone J.R., Yang S. Hydrogen peroxide: a signaling messenger. Antioxidants and Redox Signaling 2006, 8(3-4):243-270. http://www.ncbi.nlm.nih.gov/pubmed/16677071, 10.1089/ars.2006.8.243.
    • (2006) Antioxidants and Redox Signaling , vol.8 , Issue.3-4 , pp. 243-270
    • Stone, J.R.1    Yang, S.2
  • 8
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. Journal of Cell Biology 2011, 194(1):7-15. http://www.ncbi.nlm.nih.gov/pubmed/21746850, 10.1083/jcb.201102095.
    • (2011) Journal of Cell Biology , vol.194 , Issue.1 , pp. 7-15
    • Finkel, T.1
  • 9
    • 67650079177 scopus 로고    scopus 로고
    • Redox potential and peroxide reactivity of human peroxiredoxin 3
    • Cox A.G., et al. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 2009, 48(27):6495-6501. http://www.ncbi.nlm.nih.gov/pubmed/19462976, 10.1021/bi900558g.
    • (2009) Biochemistry , vol.48 , Issue.27 , pp. 6495-6501
    • Cox, A.G.1
  • 10
    • 84889241342 scopus 로고    scopus 로고
    • The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin
    • Perkins A., et al. The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 2013, 52(48):8708-8721. http://www.ncbi.nlm.nih.gov/pubmed/24175952, 10.1021/bi4011573.
    • (2013) Biochemistry , vol.52 , Issue.48 , pp. 8708-8721
    • Perkins, A.1
  • 11
    • 84876917760 scopus 로고    scopus 로고
    • Thioredoxins, glutaredoxins, and peroxiredoxins -molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling
    • Hanschmann E.M., et al. Thioredoxins, glutaredoxins, and peroxiredoxins -molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxidants and Redox Signaling 2013, 19(13):1539-1605. http://www.ncbi.nlm.nih.gov/pubmed/23397885, 10.1089/ars.2012.4599.
    • (2013) Antioxidants and Redox Signaling , vol.19 , Issue.13 , pp. 1539-1605
    • Hanschmann, E.M.1
  • 12
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Wood Z.A., Poole L.B., Karplus P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300(5619):650-653. http://www.ncbi.nlm.nih.gov/pubmed/12714747, 10.1126/science.1080405.
    • (2003) Science , vol.300 , Issue.5619 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 13
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
    • Biteau B., Labarre J., Toledano M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425(6961):980-984. http://www.ncbi.nlm.nih.gov/pubmed/14586471, 10.1038/nature02075.
    • (2003) Nature , vol.425 , Issue.6961 , pp. 980-984
    • Biteau, B.1    Labarre, J.2    Toledano, M.B.3
  • 14
    • 10944237769 scopus 로고    scopus 로고
    • Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
    • Chang T.S., et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. Journal of Biological Chemistry 2004, 279(49):50994-51001. http://www.ncbi.nlm.nih.gov/pubmed/15448164, 10.1074/jbc.M409482200.
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.49 , pp. 50994-51001
    • Chang, T.S.1
  • 15
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes L.C., Di Benedetto G., Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology 2011, 13(5):589-598. http://www.ncbi.nlm.nih.gov/pubmed/21478857, 10.1038/ncb2220.
    • (2011) Nature Cell Biology , vol.13 , Issue.5 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 16
    • 67749089562 scopus 로고    scopus 로고
    • A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
    • Mitra K., et al. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences of the United States ofAmerica 2009, 106(29):11960-11965. http://www.ncbi.nlm.nih.gov/pubmed/19617534, 10.1073/pnas.0904875106.
    • (2009) Proceedings of the National Academy of Sciences of the United States ofAmerica , vol.106 , Issue.29 , pp. 11960-11965
    • Mitra, K.1
  • 17
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • Taguchi N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. Journal of Biological Chemistry 2007, 282(15):11521-11529. http://www.ncbi.nlm.nih.gov/pubmed/17301055, 10.1074/jbc.M607279200.
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.15 , pp. 11521-11529
    • Taguchi, N.1
  • 18
    • 80052462067 scopus 로고    scopus 로고
    • Coupling mitochondrial and cell division
    • Yamano K., Youle R.J. Coupling mitochondrial and cell division. Nature Cell Biology 2011, 13(9):1026-1027. http://www.ncbi.nlm.nih.gov/pubmed/21892144, 10.1038/ncb2334.
    • (2011) Nature Cell Biology , vol.13 , Issue.9 , pp. 1026-1027
    • Yamano, K.1    Youle, R.J.2
  • 19
    • 84874694989 scopus 로고    scopus 로고
    • Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress
    • Qian W., et al. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. Journal of Cell Science 2012, 125(23):5745-5757. http://www.ncbi.nlm.nih.gov/pubmed/23015593, 10.1242/jcs.109769.
    • (2012) Journal of Cell Science , vol.125 , Issue.23 , pp. 5745-5757
    • Qian, W.1
  • 20
    • 84867659145 scopus 로고    scopus 로고
    • The influence of reactive oxygen species on cell cycle progression in mammalian cells
    • Verbon E.H., Post J.A., Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012, 511(1):1-6. http://www.ncbi.nlm.nih.gov/pubmed/22981713, 10.1016/j.gene.2012.08.038.
    • (2012) Gene , vol.511 , Issue.1 , pp. 1-6
    • Verbon, E.H.1    Post, J.A.2    Boonstra, J.3
  • 21
    • 42449148790 scopus 로고    scopus 로고
    • The reactive oxygen-driven tumor: relevance to melanoma
    • Fried L., Arbiser J.L. The reactive oxygen-driven tumor: relevance to melanoma. Pigment Cell & Melanoma Research 2008, 21(2):117-122. http://www.ncbi.nlm.nih.gov/pubmed/18384505, 10.1111/j.1755-148X.2008.00451.x.
    • (2008) Pigment Cell & Melanoma Research , vol.21 , Issue.2 , pp. 117-122
    • Fried, L.1    Arbiser, J.L.2
  • 22
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • Cox A.G., Winterbourn C.C., Hampton M.B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochemical Journal 2010, 425(2):313-325. http://www.ncbi.nlm.nih.gov/pubmed/20025614, 10.1042/BJ20091541.
    • (2010) Biochemical Journal , vol.425 , Issue.2 , pp. 313-325
    • Cox, A.G.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 23
    • 84865427488 scopus 로고    scopus 로고
    • Mitochondria as sensors and regulators of calcium signalling
    • Rizzuto R., et al. Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology 2012, 13(9):566-578. http://www.ncbi.nlm.nih.gov/pubmed/22850819, 10.1038/nrm3412.
    • (2012) Nature Reviews Molecular Cell Biology , vol.13 , Issue.9 , pp. 566-578
    • Rizzuto, R.1
  • 24
    • 73349091842 scopus 로고    scopus 로고
    • The role of mitochondria in apoptosis*
    • Wang C., Youle R.J. The role of mitochondria in apoptosis*. Annual Review of Genetics 2009, 43:95-118. http://www.ncbi.nlm.nih.gov/pubmed/19659442, 10.1146/annurev-genet-102108-134850.
    • (2009) Annual Review of Genetics , vol.43 , pp. 95-118
    • Wang, C.1    Youle, R.J.2
  • 25
    • 78650895891 scopus 로고    scopus 로고
    • High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission
    • Yu T., Jhun B.S., Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxidants and Redox Signaling 2011, 14(3):425-437. http://www.ncbi.nlm.nih.gov/pubmed/20518702, 10.1089/ars.2010.3284.
    • (2011) Antioxidants and Redox Signaling , vol.14 , Issue.3 , pp. 425-437
    • Yu, T.1    Jhun, B.S.2    Yoon, Y.3
  • 26
    • 46749156297 scopus 로고    scopus 로고
    • Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species
    • Yu T., et al. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research 2008, 79(2):341-351. http://www.ncbi.nlm.nih.gov/pubmed/18440987, 10.1093/cvr/cvn104.
    • (2008) Cardiovascular Research , vol.79 , Issue.2 , pp. 341-351
    • Yu, T.1
  • 27
    • 33745738979 scopus 로고    scopus 로고
    • 2+ signaling
    • 2+ signaling. Biochimica et Biophysica Acta 2006, 1763(5-6):442-449. http://www.ncbi.nlm.nih.gov/pubmed/16750865, 10.1016/j.bbamcr.2006.04.002.
    • (2006) Biochimica et Biophysica Acta , vol.1763 , Issue.5-6 , pp. 442-449
    • Szabadkai, G.1
  • 28
    • 84885181954 scopus 로고    scopus 로고
    • Mitochondrial dynamics regulates migration and invasion of breast cancer cells
    • Zhao J., et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013, 32(40):4814-4824. http://www.ncbi.nlm.nih.gov/pubmed/23128392, 10.1038/onc.2012.494.
    • (2013) Oncogene , vol.32 , Issue.40 , pp. 4814-4824
    • Zhao, J.1
  • 29
    • 84860914473 scopus 로고    scopus 로고
    • Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer
    • Rehman J., et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB Journal 2012, 26(5):2175-2186. http://www.ncbi.nlm.nih.gov/pubmed/22321727, 10.1096/fj.11-196543.
    • (2012) FASEB Journal , vol.26 , Issue.5 , pp. 2175-2186
    • Rehman, J.1
  • 30
    • 34547611925 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
    • Chang C.R., Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. Journal of Biological Chemistry 2007, 282(30):21583-21587. http://www.ncbi.nlm.nih.gov/pubmed/17553808, 10.1074/jbc.C700083200.
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.30 , pp. 21583-21587
    • Chang, C.R.1    Blackstone, C.2
  • 31
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences of the United States ofAmerica 2011, 108(25):10190-10195. http://www.ncbi.nlm.nih.gov/pubmed/21646527, 10.1073/pnas.1107402108.
    • (2011) Proceedings of the National Academy of Sciences of the United States ofAmerica , vol.108 , Issue.25 , pp. 10190-10195
    • Rambold, A.S.1
  • 32
    • 80052514798 scopus 로고    scopus 로고
    • RALA and RALBP1 regulate mitochondrial fission at mitosis
    • Kashatus D.F., et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nature Cell Biology 2011, 13(9):1108-1115. http://www.ncbi.nlm.nih.gov/pubmed/21822277, 10.1038/ncb2310.
    • (2011) Nature Cell Biology , vol.13 , Issue.9 , pp. 1108-1115
    • Kashatus, D.F.1
  • 33
    • 79955625925 scopus 로고    scopus 로고
    • Mitochondria unite to survive
    • Blackstone C., Chang C.R. Mitochondria unite to survive. Nature Cell Biology 2011, 13(5):521-522. http://www.ncbi.nlm.nih.gov/pubmed/21540850, 10.1038/ncb0511-521.
    • (2011) Nature Cell Biology , vol.13 , Issue.5 , pp. 521-522
    • Blackstone, C.1    Chang, C.R.2
  • 34
    • 84866133072 scopus 로고    scopus 로고
    • Reactive oxygen species in health and disease
    • Alfadda A.A., Sallam R.M. Reactive oxygen species in health and disease. Journal of Biomedicine and Biotechnology 2012, 2012:936486. http://www.ncbi.nlm.nih.gov/pubmed/22927725, 10.1155/2012/936486.
    • (2012) Journal of Biomedicine and Biotechnology , vol.2012 , pp. 936486
    • Alfadda, A.A.1    Sallam, R.M.2
  • 35
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States ofAmerica 2010, 107(19):8788-8793. http://www.ncbi.nlm.nih.gov/pubmed/20421486, 10.1073/pnas.1003428107.
    • (2010) Proceedings of the National Academy of Sciences of the United States ofAmerica , vol.107 , Issue.19 , pp. 8788-8793
    • Weinberg, F.1
  • 36
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • Cairns R.A., Harris I.S., Mak T.W. Regulation of cancer cell metabolism. Nature Reviews Cancer 2011, 11(2):85-95. http://www.ncbi.nlm.nih.gov/pubmed/21258394, 10.1038/nrc2981.
    • (2011) Nature Reviews Cancer , vol.11 , Issue.2 , pp. 85-95
    • Cairns, R.A.1    Harris, I.S.2    Mak, T.W.3
  • 37
    • 70349799010 scopus 로고    scopus 로고
    • The cell cycle is a redox cycle: linking phase-specific targets to cell fate
    • Burhans W.C., Heintz N.H. The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radical Biology and Medicine 2009, 47(9):1282-1293. http://www.ncbi.nlm.nih.gov/pubmed/19486941, 10.1016/j.freeradbiomed.2009.05.026.
    • (2009) Free Radical Biology and Medicine , vol.47 , Issue.9 , pp. 1282-1293
    • Burhans, W.C.1    Heintz, N.H.2
  • 38
    • 70449133798 scopus 로고    scopus 로고
    • Redox control of the cell cycle in health and disease
    • Sarsour E.H., et al. Redox control of the cell cycle in health and disease. Antioxidants and Redox Signaling 2009, 11(12):2985-3011. http://www.ncbi.nlm.nih.gov/pubmed/19505186, 10.1089/ARS.2009.2513.
    • (2009) Antioxidants and Redox Signaling , vol.11 , Issue.12 , pp. 2985-3011
    • Sarsour, E.H.1
  • 40
    • 33847185842 scopus 로고    scopus 로고
    • A redox cycle within the cell cycle: ring in the old with the new
    • Menon S.G., Goswami P.C. A redox cycle within the cell cycle: ring in the old with the new. Oncogene 2007, 26(8):1101-1109. http://www.ncbi.nlm.nih.gov/pubmed/16924237, 10.1038/sj.onc.1209895.
    • (2007) Oncogene , vol.26 , Issue.8 , pp. 1101-1109
    • Menon, S.G.1    Goswami, P.C.2
  • 41
    • 39749104169 scopus 로고    scopus 로고
    • Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint
    • Owusu-Ansah E., et al. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nature Genetics 2008, 40(3):356-361. http://www.ncbi.nlm.nih.gov/pubmed/18246068, 10.1038/ng.2007.50.
    • (2008) Nature Genetics , vol.40 , Issue.3 , pp. 356-361
    • Owusu-Ansah, E.1
  • 42
    • 43449104237 scopus 로고    scopus 로고
    • Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth
    • Sarsour E.H., et al. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008, 7(3):405-417. http://www.ncbi.nlm.nih.gov/pubmed/18331617, 10.1111/j.1474-9726.2008.00384.x.
    • (2008) Aging Cell , vol.7 , Issue.3 , pp. 405-417
    • Sarsour, E.H.1
  • 43
    • 84871680714 scopus 로고    scopus 로고
    • Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells
    • Cunniff B., et al. Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells. Journal of Cellular Physiology 2013, 228(4):835-845. http://www.ncbi.nlm.nih.gov/pubmed/23018647, 10.1002/jcp.24232.
    • (2013) Journal of Cellular Physiology , vol.228 , Issue.4 , pp. 835-845
    • Cunniff, B.1
  • 44
    • 33845303974 scopus 로고    scopus 로고
    • Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery
    • Phalen T.J., et al. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. Journal of Cell Biology 2006, 175(5):779-789. http://www.ncbi.nlm.nih.gov/pubmed/17145963, 10.1083/jcb.200606005.
    • (2006) Journal of Cell Biology , vol.175 , Issue.5 , pp. 779-789
    • Phalen, T.J.1
  • 45
    • 53049102297 scopus 로고    scopus 로고
    • Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H(2)O(2)
    • Smith-Pearson P.S., et al. Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H(2)O(2). Free Radical Biology and Medicine 2008, 45(8):1178-1189. http://www.ncbi.nlm.nih.gov/pubmed/18718523, 10.1016/j.freeradbiomed.2008.07.015.
    • (2008) Free Radical Biology and Medicine , vol.45 , Issue.8 , pp. 1178-1189
    • Smith-Pearson, P.S.1
  • 46
    • 0037067763 scopus 로고    scopus 로고
    • Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation
    • Chang T.S., et al. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. Journal of Biological Chemistry 2002, 277(28):25370-25376. http://www.ncbi.nlm.nih.gov/pubmed/11986303, 10.1074/jbc.M110432200.
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.28 , pp. 25370-25376
    • Chang, T.S.1
  • 47
    • 4844228500 scopus 로고    scopus 로고
    • A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression
    • Conour J.E., Graham W.V., Gaskins H.R. A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiological Genomics 2004, 18(2):196-205. http://www.ncbi.nlm.nih.gov/pubmed/15138307, 10.1152/physiolgenomics.00058.2004.
    • (2004) Physiological Genomics , vol.18 , Issue.2 , pp. 196-205
    • Conour, J.E.1    Graham, W.V.2    Gaskins, H.R.3
  • 48
    • 84877105774 scopus 로고    scopus 로고
    • Mitochondrial morphology transitions and functions: implications for retrograde signaling?
    • Picard M., et al. Mitochondrial morphology transitions and functions: implications for retrograde signaling?. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2013, 304(6):R393-R406. http://www.ncbi.nlm.nih.gov/pubmed/23364527, 10.1152/ajpregu.00584.2012.
    • (2013) American Journal of Physiology. Regulatory, Integrative and Comparative Physiology , vol.304 , Issue.6 , pp. R393-R406
    • Picard, M.1
  • 49
    • 84880253528 scopus 로고    scopus 로고
    • Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
    • Chouchani E.T., et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nature Medicine 2013, 19(6):753-759. http://www.ncbi.nlm.nih.gov/pubmed/23708290, 10.1038/nm.3212.
    • (2013) Nature Medicine , vol.19 , Issue.6 , pp. 753-759
    • Chouchani, E.T.1
  • 50
    • 67650085650 scopus 로고    scopus 로고
    • The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells
    • Shi D.Y., et al. The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells. Molecular Cancer 2009, 8:32. http://www.ncbi.nlm.nih.gov/pubmed/19497135, 10.1186/1476-4598-8-32.
    • (2009) Molecular Cancer , vol.8 , pp. 32
    • Shi, D.Y.1
  • 51
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt T., et al. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Reports 2012, 13(10):909-915. http://www.ncbi.nlm.nih.gov/pubmed/22945481, 10.1038/embor.2012.128.
    • (2012) EMBO Reports , vol.13 , Issue.10 , pp. 909-915
    • Shutt, T.1
  • 53
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO Journal 2007, 26(7):1749-1760. http://www.ncbi.nlm.nih.gov/pubmed/17347651, 10.1038/sj.emboj.7601623.
    • (2007) EMBO Journal , vol.26 , Issue.7 , pp. 1749-1760
    • Scherz-Shouval, R.1
  • 54
    • 84862645519 scopus 로고    scopus 로고
    • Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells
    • Newick K., et al. Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells. PLoS ONE 2012, 7(6):e39404. http://www.ncbi.nlm.nih.gov/pubmed/22761781, 10.1371/journal.pone.0039404.
    • (2012) PLoS ONE , vol.7 , Issue.6 , pp. e39404
    • Newick, K.1
  • 55
    • 19644398798 scopus 로고    scopus 로고
    • . -mediated mitochondrial outgrowth
    • . -mediated mitochondrial outgrowth. American Journal of Physiology: Cell Physiology 2005, 288(6):C1440-C1450. http://www.ncbi.nlm.nih.gov/pubmed/15647387, 10.1152/ajpcell.00607.2004.
    • (2005) American Journal of Physiology: Cell Physiology , vol.288 , Issue.6 , pp. C1440-C1450
    • Koopman, W.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.