메뉴 건너뛰기




Volumn 28, Issue 6, 2017, Pages 449-460

Nutrient Sensing and the Oxidative Stress Response

Author keywords

[No Author keywords available]

Indexed keywords

GENERAL AMINO ACID CONTROL NON DEREPRESSIBLE 2; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; PROTEIN; REACTIVE OXYGEN METABOLITE; SIRTUIN; UNCLASSIFIED DRUG;

EID: 85019220504     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2017.02.008     Document Type: Review
Times cited : (85)

References (104)
  • 1
    • 0011164979 scopus 로고
    • Prolonging the life span
    • McCay, C.M., Crowell, M.F., Prolonging the life span. Sci. Monthly 39 (1934), 405–414.
    • (1934) Sci. Monthly , vol.39 , pp. 405-414
    • McCay, C.M.1    Crowell, M.F.2
  • 2
    • 77649317347 scopus 로고    scopus 로고
    • Age and energy intake interact to modify cell stress pathways and stroke outcome
    • Arumugam, T.V., et al. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann. Neurol. 67 (2010), 41–52.
    • (2010) Ann. Neurol. , vol.67 , pp. 41-52
    • Arumugam, T.V.1
  • 3
    • 67650439330 scopus 로고    scopus 로고
    • Caloric restriction delays disease onset and mortality in rhesus monkeys
    • Colman, R.J., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325 (2009), 201–204.
    • (2009) Science , vol.325 , pp. 201-204
    • Colman, R.J.1
  • 4
    • 84947592469 scopus 로고    scopus 로고
    • Repetitive stimulation of autophagy–lysosome machinery by intermittent fasting preconditions the myocardium to ischemia–reperfusion injury
    • Godar, R.J., et al. Repetitive stimulation of autophagy–lysosome machinery by intermittent fasting preconditions the myocardium to ischemia–reperfusion injury. Autophagy 11 (2015), 1537–1560.
    • (2015) Autophagy , vol.11 , pp. 1537-1560
    • Godar, R.J.1
  • 5
    • 84893802111 scopus 로고    scopus 로고
    • Fasting: molecular mechanisms and clinical applications
    • Longo, V.D., Mattson, M.P., Fasting: molecular mechanisms and clinical applications. Cell Metab. 19 (2014), 181–192.
    • (2014) Cell Metab. , vol.19 , pp. 181-192
    • Longo, V.D.1    Mattson, M.P.2
  • 6
    • 0003540187 scopus 로고
    • Retardation of aging and disease by dietary restriction
    • C.C. Thomas
    • Weindruch, R., Walford, R.L., Retardation of aging and disease by dietary restriction. 1988, C.C. Thomas.
    • (1988)
    • Weindruch, R.1    Walford, R.L.2
  • 7
    • 0030038103 scopus 로고    scopus 로고
    • Oxidative stress, caloric restriction, and aging
    • Sohal, R.S., Weindruch, R., Oxidative stress, caloric restriction, and aging. Science 273 (1996), 59–63.
    • (1996) Science , vol.273 , pp. 59-63
    • Sohal, R.S.1    Weindruch, R.2
  • 8
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires Sirt1
    • Chen, D., et al. Increase in activity during calorie restriction requires Sirt1. Science, 310, 2005, 1641.
    • (2005) Science , vol.310 , pp. 1641
    • Chen, D.1
  • 9
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • Qiu, X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12 (2010), 662–667.
    • (2010) Cell Metab. , vol.12 , pp. 662-667
    • Qiu, X.1
  • 10
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya, S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143 (2010), 802–812.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 11
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • Balaban, R.S., et al. Mitochondria, oxidants, and aging. Cell 120 (2005), 483–495.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1
  • 12
    • 77049308856 scopus 로고
    • Aging: a theory based on free radical and radiation chemistry
    • Harman, D., Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11 (1956), 298–300.
    • (1956) J. Gerontol. , vol.11 , pp. 298-300
    • Harman, D.1
  • 14
    • 84880299429 scopus 로고    scopus 로고
    • Landscape of the mitochondrial Hsp90 metabolome in tumours
    • Chae, Y.C., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat. Commun., 4, 2013, 2139.
    • (2013) Nat. Commun. , vol.4 , pp. 2139
    • Chae, Y.C.1
  • 15
    • 84881538902 scopus 로고    scopus 로고
    • Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts
    • Liang, Q., et al. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem. J. 454 (2013), 249–257.
    • (2013) Biochem. J. , vol.454 , pp. 249-257
    • Liang, Q.1
  • 16
    • 84949517543 scopus 로고    scopus 로고
    • Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells
    • Liu, Z., et al. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells. Tumour Biol. 37 (2016), 6661–6671.
    • (2016) Tumour Biol. , vol.37 , pp. 6661-6671
    • Liu, Z.1
  • 17
    • 73649120921 scopus 로고    scopus 로고
    • Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates
    • Bruss, M.D., et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am. J. Physiol. Endocrinol. Metab. 298 (2010), E108–E116.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.298 , pp. E108-E116
    • Bruss, M.D.1
  • 18
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • Nisoli, E., et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310 (2005), 314–317.
    • (2005) Science , vol.310 , pp. 314-317
    • Nisoli, E.1
  • 19
    • 38649123072 scopus 로고    scopus 로고
    • Conserved metabolic regulatory functions of sirtuins
    • Schwer, B., Verdin, E., Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7 (2008), 104–112.
    • (2008) Cell Metab. , vol.7 , pp. 104-112
    • Schwer, B.1    Verdin, E.2
  • 20
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows, W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41 (2011), 139–149.
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 21
    • 17144424946 scopus 로고    scopus 로고
    • SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
    • Shi, T., et al. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280 (2005), 13560–13567.
    • (2005) J. Biol. Chem. , vol.280 , pp. 13560-13567
    • Shi, T.1
  • 22
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production
    • Bell, E.L., et al. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30 (2011), 2986–2996.
    • (2011) Oncogene , vol.30 , pp. 2986-2996
    • Bell, E.L.1
  • 23
    • 84874238886 scopus 로고    scopus 로고
    • SIRT3 reverses aging-associated degeneration
    • Brown, K., et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3 (2013), 319–327.
    • (2013) Cell Rep. , vol.3 , pp. 319-327
    • Brown, K.1
  • 24
    • 84879119336 scopus 로고    scopus 로고
    • Role of SIRT3 in the regulation of redox balance during oral carcinogenesis
    • Chen, I.C., et al. Role of SIRT3 in the regulation of redox balance during oral carcinogenesis. Mol. Cancer, 12, 2013, 68.
    • (2013) Mol. Cancer , vol.12 , pp. 68
    • Chen, I.C.1
  • 25
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
    • Finley, L.W., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19 (2011), 416–428.
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1
  • 26
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey, M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44 (2011), 177–190.
    • (2011) Mol. Cell , vol.44 , pp. 177-190
    • Hirschey, M.D.1
  • 27
    • 84866459450 scopus 로고    scopus 로고
    • Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD
    • Jang, Y.C., et al. Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell 11 (2012), 770–782.
    • (2012) Aging Cell , vol.11 , pp. 770-782
    • Jang, Y.C.1
  • 28
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • Jing, E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 14608–14613.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 14608-14613
    • Jing, E.1
  • 29
    • 84948807305 scopus 로고    scopus 로고
    • Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects
    • Traba, J., et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J. Clin. Invest. 125 (2015), 4592–4600.
    • (2015) J. Clin. Invest. , vol.125 , pp. 4592-4600
    • Traba, J.1
  • 30
    • 84964680484 scopus 로고    scopus 로고
    • Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies
    • Yu, W., et al. Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies. J. Biol. Chem. 291 (2016), 3268–3279.
    • (2016) J. Biol. Chem. , vol.291 , pp. 3268-3279
    • Yu, W.1
  • 31
    • 84955371298 scopus 로고    scopus 로고
    • Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges
    • Cheng, A., et al. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab. 23 (2016), 128–142.
    • (2016) Cell Metab. , vol.23 , pp. 128-142
    • Cheng, A.1
  • 32
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • Tao, R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40 (2010), 893–904.
    • (2010) Mol. Cell , vol.40 , pp. 893-904
    • Tao, R.1
  • 33
    • 79959873784 scopus 로고    scopus 로고
    • Reversible acetylation of metabolic enzymes celebration: SIRT2 and p300 join the party
    • Shin, J., et al. Reversible acetylation of metabolic enzymes celebration: SIRT2 and p300 join the party. Mol. Cell 43 (2011), 3–5.
    • (2011) Mol. Cell , vol.43 , pp. 3-5
    • Shin, J.1
  • 34
    • 45549098657 scopus 로고    scopus 로고
    • SirT1 regulates energy metabolism and response to caloric restriction in mice
    • Boily, G., et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One, 3, 2008, e1759.
    • (2008) PLoS One , vol.3 , pp. e1759
    • Boily, G.1
  • 35
    • 78649482634 scopus 로고    scopus 로고
    • SIRT1: recent lessons from mouse models
    • Herranz, D., Serrano, M., SIRT1: recent lessons from mouse models. Nat. Rev. Cancer 10 (2010), 819–823.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 819-823
    • Herranz, D.1    Serrano, M.2
  • 36
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
    • Kume, S., et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120 (2010), 1043–1055.
    • (2010) J. Clin. Invest. , vol.120 , pp. 1043-1055
    • Kume, S.1
  • 37
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet, A., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303 (2004), 2011–2015.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1
  • 38
    • 0037136563 scopus 로고    scopus 로고
    • Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress
    • Kops, G.J., et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419 (2002), 316–321.
    • (2002) Nature , vol.419 , pp. 316-321
    • Kops, G.J.1
  • 39
    • 63549108476 scopus 로고    scopus 로고
    • Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C elegans
    • Greer, E.L., Brunet, A., Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C elegans. Aging Cell 8 (2009), 113–127.
    • (2009) Aging Cell , vol.8 , pp. 113-127
    • Greer, E.L.1    Brunet, A.2
  • 40
    • 34848850156 scopus 로고    scopus 로고
    • An AMPK–FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans
    • Greer, E.L., et al. An AMPK–FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17 (2007), 1646–1656.
    • (2007) Curr. Biol. , vol.17 , pp. 1646-1656
    • Greer, E.L.1
  • 41
    • 77958504514 scopus 로고    scopus 로고
    • Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila
    • Johnson, E.C., et al. Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila. PLoS One, 5, 2010, e12799.
    • (2010) PLoS One , vol.5 , pp. e12799
    • Johnson, E.C.1
  • 42
    • 34748850786 scopus 로고    scopus 로고
    • Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
    • Schulz, T.J., et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6 (2007), 280–293.
    • (2007) Cell Metab. , vol.6 , pp. 280-293
    • Schulz, T.J.1
  • 43
    • 84872527628 scopus 로고    scopus 로고
    • mTOR is a key modulator of ageing and age-related disease
    • Johnson, S.C., et al. mTOR is a key modulator of ageing and age-related disease. Nature 493 (2013), 338–345.
    • (2013) Nature , vol.493 , pp. 338-345
    • Johnson, S.C.1
  • 44
    • 77955747346 scopus 로고    scopus 로고
    • With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging
    • Kapahi, P., et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11 (2010), 453–465.
    • (2010) Cell Metab. , vol.11 , pp. 453-465
    • Kapahi, P.1
  • 45
    • 84927697295 scopus 로고    scopus 로고
    • Protein and amino acid restriction, aging and disease: from yeast to humans
    • Mirzaei, H., et al. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol. Metab. 25 (2014), 558–566.
    • (2014) Trends Endocrinol. Metab. , vol.25 , pp. 558-566
    • Mirzaei, H.1
  • 46
    • 80052217019 scopus 로고    scopus 로고
    • 2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae
    • 2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol. Cell 43 (2011), 823–833.
    • (2011) Mol. Cell , vol.43 , pp. 823-833
    • Molin, M.1
  • 47
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie, D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13 (2012), 251–262.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1
  • 48
    • 84922789990 scopus 로고    scopus 로고
    • Nutrient-sensing mechanisms and pathways
    • Efeyan, A., et al. Nutrient-sensing mechanisms and pathways. Nature 517 (2015), 302–310.
    • (2015) Nature , vol.517 , pp. 302-310
    • Efeyan, A.1
  • 49
    • 27144510561 scopus 로고    scopus 로고
    • Translational regulation of GCN4 and the general amino acid control of yeast
    • Hinnebusch, A.G., Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59 (2005), 407–450.
    • (2005) Annu. Rev. Microbiol. , vol.59 , pp. 407-450
    • Hinnebusch, A.G.1
  • 50
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon, S.M., et al. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485 (2012), 661–665.
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.M.1
  • 51
    • 84947749584 scopus 로고    scopus 로고
    • AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow
    • Saito, Y., et al. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell 17 (2015), 585–596.
    • (2015) Cell Stem Cell , vol.17 , pp. 585-596
    • Saito, Y.1
  • 52
    • 53349091768 scopus 로고    scopus 로고
    • TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen, C., et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205 (2008), 2397–2408.
    • (2008) J. Exp. Med. , vol.205 , pp. 2397-2408
    • Chen, C.1
  • 53
    • 84961721972 scopus 로고    scopus 로고
    • The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation
    • Ravindran, R., et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature 531 (2016), 523–527.
    • (2016) Nature , vol.531 , pp. 523-527
    • Ravindran, R.1
  • 54
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149 (2012), 274–293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 55
    • 84887415150 scopus 로고    scopus 로고
    • mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
    • Morita, M., et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18 (2013), 698–711.
    • (2013) Cell Metab. , vol.18 , pp. 698-711
    • Morita, M.1
  • 56
    • 79957979314 scopus 로고    scopus 로고
    • Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
    • Chen, Y., et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12 (2011), 534–5341.
    • (2011) EMBO Rep. , vol.12 , pp. 534-5341
    • Chen, Y.1
  • 57
    • 77749233738 scopus 로고    scopus 로고
    • ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS
    • Alexander, A., et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 4153–4158.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 4153-4158
    • Alexander, A.1
  • 58
    • 77956410464 scopus 로고    scopus 로고
    • Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation
    • Hawley, S.A., et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11 (2010), 554–565.
    • (2010) Cell Metab. , vol.11 , pp. 554-565
    • Hawley, S.A.1
  • 59
    • 77958501463 scopus 로고    scopus 로고
    • Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
    • Zmijewski, J.W., et al. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 285 (2010), 33154–33164.
    • (2010) J. Biol. Chem. , vol.285 , pp. 33154-33164
    • Zmijewski, J.W.1
  • 60
    • 69949091182 scopus 로고    scopus 로고
    • Is the oxidative stress theory of aging dead?
    • Perez, V.I., et al. Is the oxidative stress theory of aging dead?. Biochim. Biophys. Acta 1790 (2009), 1005–1014.
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 1005-1014
    • Perez, V.I.1
  • 61
    • 84976871568 scopus 로고    scopus 로고
    • Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins
    • Hanzen, S., et al. Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins. Cell 166 (2016), 140–151.
    • (2016) Cell , vol.166 , pp. 140-151
    • Hanzen, S.1
  • 62
    • 84961156995 scopus 로고    scopus 로고
    • G6PD protects from oxidative damage and improves healthspan in mice
    • Nobrega-Pereira, S., G6PD protects from oxidative damage and improves healthspan in mice. Nat. Commun., 7, 2016, 10894.
    • (2016) Nat. Commun. , vol.7 , pp. 10894
    • Nobrega-Pereira, S.1
  • 63
    • 84971529257 scopus 로고    scopus 로고
    • Repression of the antioxidant NRF2 pathway in premature aging
    • Kubben, N., et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 165 (2016), 1361–1374.
    • (2016) Cell , vol.165 , pp. 1361-1374
    • Kubben, N.1
  • 64
    • 0038049143 scopus 로고    scopus 로고
    • Cancer and ageing: rival demons?
    • Campisi, J., Cancer and ageing: rival demons?. Nat. Rev. Cancer 3 (2003), 339–349.
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 339-349
    • Campisi, J.1
  • 65
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • Anastasiou, D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334 (2011), 1278–1283.
    • (2011) Science , vol.334 , pp. 1278-1283
    • Anastasiou, D.1
  • 66
    • 84964374713 scopus 로고    scopus 로고
    • Reductive carboxylation supports redox homeostasis during anchorage-independent growth
    • Jiang, L., et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532 (2016), 255–258.
    • (2016) Nature , vol.532 , pp. 255-258
    • Jiang, L.1
  • 67
    • 84964329374 scopus 로고    scopus 로고
    • sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance
    • Kaur, A., et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532 (2016), 250–254.
    • (2016) Nature , vol.532 , pp. 250-254
    • Kaur, A.1
  • 68
    • 84946903513 scopus 로고    scopus 로고
    • Oxidative stress inhibits distant metastasis by human melanoma cells
    • Piskounova, E., et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527 (2015), 186–191.
    • (2015) Nature , vol.527 , pp. 186-191
    • Piskounova, E.1
  • 69
    • 84949679802 scopus 로고    scopus 로고
    • Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH
    • Yun, J., et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350 (2015), 1391–1396.
    • (2015) Science , vol.350 , pp. 1391-1396
    • Yun, J.1
  • 70
    • 84868347607 scopus 로고    scopus 로고
    • Metabolic plasticity in stem cell homeostasis and differentiation
    • Folmes, C.D., et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11 (2012), 596–606.
    • (2012) Cell Stem Cell , vol.11 , pp. 596-606
    • Folmes, C.D.1
  • 71
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1α level is essential for hematopoietic stem cells
    • Takubo, K., et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7 (2010), 391–402.
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1
  • 72
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo, K., et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12 (2013), 49–61.
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1
  • 73
    • 76249087423 scopus 로고    scopus 로고
    • TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia
    • Naka, K., et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463 (2010), 676–680.
    • (2010) Nature , vol.463 , pp. 676-680
    • Naka, K.1
  • 74
    • 84960145820 scopus 로고    scopus 로고
    • The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells
    • Mohrin, M., Chen, D., The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells. Curr. Opin. Hematol. 23 (2016), 318–324.
    • (2016) Curr. Opin. Hematol. , vol.23 , pp. 318-324
    • Mohrin, M.1    Chen, D.2
  • 75
    • 84925265469 scopus 로고    scopus 로고
    • Stem cell aging: A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
    • Mohrin, M., et al. Stem cell aging: A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347 (2015), 1374–1377.
    • (2015) Science , vol.347 , pp. 1374-1377
    • Mohrin, M.1
  • 76
    • 77953283847 scopus 로고    scopus 로고
    • AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
    • Juntilla, M.M., et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115 (2010), 4030–4038.
    • (2010) Blood , vol.115 , pp. 4030-4038
    • Juntilla, M.M.1
  • 77
    • 7244250309 scopus 로고    scopus 로고
    • Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
    • Ito, K., et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431 (2004), 997–1002.
    • (2004) Nature , vol.431 , pp. 997-1002
    • Ito, K.1
  • 78
    • 84860528235 scopus 로고    scopus 로고
    • The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells
    • Maryanovich, M., et al. The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat. Cell Biol. 14 (2012), 535–541.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 535-541
    • Maryanovich, M.1
  • 79
    • 84879858404 scopus 로고    scopus 로고
    • TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress
    • Jung, H., et al. TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab. 18 (2013), 75–85.
    • (2013) Cell Metab. , vol.18 , pp. 75-85
    • Jung, H.1
  • 80
    • 34249882777 scopus 로고    scopus 로고
    • Foxo3a is essential for maintenance of the hematopoietic stem cell pool
    • Miyamoto, K., et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1 (2007), 101–112.
    • (2007) Cell Stem Cell , vol.1 , pp. 101-112
    • Miyamoto, K.1
  • 81
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova, Z., et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128 (2007), 325–339.
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1
  • 82
    • 84874655208 scopus 로고    scopus 로고
    • Nrf2 regulates haematopoietic stem cell function
    • Tsai, J.J., et al. Nrf2 regulates haematopoietic stem cell function. Nat. Cell Biol. 15 (2013), 309–316.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 309-316
    • Tsai, J.J.1
  • 83
    • 84887613799 scopus 로고    scopus 로고
    • SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
    • Shin, J., et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5 (2013), 654–665.
    • (2013) Cell Rep. , vol.5 , pp. 654-665
    • Shin, J.1
  • 84
    • 33645730667 scopus 로고    scopus 로고
    • Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
    • Ito, K., et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12 (2006), 446–451.
    • (2006) Nat. Med. , vol.12 , pp. 446-451
    • Ito, K.1
  • 85
    • 70350497348 scopus 로고    scopus 로고
    • FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis
    • Paik, J.H., et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5 (2009), 540–553.
    • (2009) Cell Stem Cell , vol.5 , pp. 540-553
    • Paik, J.H.1
  • 86
    • 70350506802 scopus 로고    scopus 로고
    • FoxO3 regulates neural stem cell homeostasis
    • Renault, V.M., et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5 (2009), 527–539.
    • (2009) Cell Stem Cell , vol.5 , pp. 527-539
    • Renault, V.M.1
  • 87
    • 84881610068 scopus 로고    scopus 로고
    • FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis
    • Webb, A.E., et al. FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep. 4 (2013), 477–491.
    • (2013) Cell Rep. , vol.4 , pp. 477-491
    • Webb, A.E.1
  • 88
    • 84885172074 scopus 로고    scopus 로고
    • FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells
    • Yeo, H., et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J. 32 (2013), 2589–2602.
    • (2013) EMBO J. , vol.32 , pp. 2589-2602
    • Yeo, H.1
  • 89
    • 79551610653 scopus 로고    scopus 로고
    • Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila
    • Hochmuth, C., et al. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8 (2011), 188–199.
    • (2011) Cell Stem Cell , vol.8 , pp. 188-199
    • Hochmuth, C.1
  • 90
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah, E., Banerjee, U., Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461 (2009), 537–541.
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 91
    • 84892604268 scopus 로고    scopus 로고
    • Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice
    • Burton, N.A., et al. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15 (2014), 72–83.
    • (2014) Cell Host Microbe , vol.15 , pp. 72-83
    • Burton, N.A.1
  • 92
    • 84902108865 scopus 로고    scopus 로고
    • Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes
    • Walch, M., et al. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 157 (2014), 1309–1323.
    • (2014) Cell , vol.157 , pp. 1309-1323
    • Walch, M.1
  • 93
    • 84990845578 scopus 로고    scopus 로고
    • Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
    • Mills, E.L., et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167 (2016), 457–470.
    • (2016) Cell , vol.167 , pp. 457-470
    • Mills, E.L.1
  • 94
    • 84986579079 scopus 로고    scopus 로고
    • Salmonella apidly regulates membrane permeability to survive oxidative stress
    • van der Heijden, J., Salmonella apidly regulates membrane permeability to survive oxidative stress. MBio, 7, 2016.
    • (2016) MBio , vol.7
    • van der Heijden, J.1
  • 95
    • 84923035093 scopus 로고    scopus 로고
    • Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells
    • Vaubourgeix, J., et al. Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. Cell Host Microbe 17 (2015), 178–190.
    • (2015) Cell Host Microbe , vol.17 , pp. 178-190
    • Vaubourgeix, J.1
  • 96
    • 84989956131 scopus 로고    scopus 로고
    • Nrf2 modulates host defense during streptococcus pneumoniae pneumonia in mice
    • Gomez, J.C., et al. Nrf2 modulates host defense during streptococcus pneumoniae pneumonia in mice. J. Immunol. 197 (2016), 2864–2879.
    • (2016) J. Immunol. , vol.197 , pp. 2864-2879
    • Gomez, J.C.1
  • 97
    • 84899992126 scopus 로고    scopus 로고
    • NRROS negatively regulates reactive oxygen species during host defence and autoimmunity
    • Noubade, R., et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509 (2014), 235–239.
    • (2014) Nature , vol.509 , pp. 235-239
    • Noubade, R.1
  • 98
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim, H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17 (2010), 41–52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1
  • 99
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
    • Sebastián, C., et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151 (2012), 1185–1199.
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastián, C.1
  • 100
    • 20444400257 scopus 로고    scopus 로고
    • Redox redux: revisiting PTPs and the control of cell signaling
    • Tonks, N.K., Redox redux: revisiting PTPs and the control of cell signaling. Cell 121 (2005), 667–670.
    • (2005) Cell , vol.121 , pp. 667-670
    • Tonks, N.K.1
  • 101
    • 77950346282 scopus 로고    scopus 로고
    • Immunity, inflammation, and cancer
    • Grivennikov, S.I., et al. Immunity, inflammation, and cancer. Cell 140 (2010), 883–899.
    • (2010) Cell , vol.140 , pp. 883-899
    • Grivennikov, S.I.1
  • 102
    • 84902449198 scopus 로고    scopus 로고
    • Keeping the eIF2 alpha kinase Gcn2 in check
    • Castilho, B.A., et al. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta 1843 (2014), 1948–1968.
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 1948-1968
    • Castilho, B.A.1
  • 103
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel, T., et al. Recent progress in the biology and physiology of sirtuins. Nature 460 (2009), 587–591.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1
  • 104
    • 63849301000 scopus 로고    scopus 로고
    • AMPK: Lessons from transgenic and knockout animals
    • Viollet, B., et al. AMPK: Lessons from transgenic and knockout animals. Front. Biosci. (Landmark Ed) 14 (2009), 19–44.
    • (2009) Front. Biosci. (Landmark Ed) , vol.14 , pp. 19-44
    • Viollet, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.