메뉴 건너뛰기




Volumn 29, Issue 10, 2017, Pages

Insulin action in the brain: Roles in energy and glucose homeostasis

Author keywords

AgRP; energy homeostasis; glucose homeostasis; hypothalamus; insulin; POMC

Indexed keywords

GLUCOSE; INSULIN; SOMATOMEDIN C RECEPTOR;

EID: 85032878514     PISSN: 09538194     EISSN: 13652826     Source Type: Journal    
DOI: 10.1111/jne.12513     Document Type: Review
Times cited : (62)

References (223)
  • 2
    • 3142517219 scopus 로고
    • The effect produced on diabetes by extracts of pancreas
    • Banting FG, Best CH, Collip JB, et al. The effect produced on diabetes by extracts of pancreas. Trans Assoc Am Phys. 1922;37:337-347.
    • (1922) Trans Assoc Am Phys , vol.37 , pp. 337-347
    • Banting, F.G.1    Best, C.H.2    Collip, J.B.3
  • 3
    • 50749118593 scopus 로고
    • The internal secretion of the pancreas
    • Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med. 1922;7:251-266.
    • (1922) J Lab Clin Med , vol.7 , pp. 251-266
    • Banting, F.G.1    Best, C.H.2
  • 6
    • 0033521130 scopus 로고    scopus 로고
    • Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats
    • Zhao W, et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem. 1999;274:34893-34902.
    • (1999) J Biol Chem , vol.274 , pp. 34893-34902
    • Zhao, W.1
  • 7
    • 0024625005 scopus 로고
    • Insulin and insulin-like growth factor receptors in the nervous system
    • Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol. 1989;3:71-100.
    • (1989) Mol Neurobiol , vol.3 , pp. 71-100
    • Adamo, M.1    Raizada, M.K.2    LeRoith, D.3
  • 8
    • 0018090354 scopus 로고
    • Insulin receptors are widely distributed in the central nervous system of the rat
    • Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827-829.
    • (1978) Nature , vol.272 , pp. 827-829
    • Havrankova, J.1    Roth, J.2    Brownstein, M.3
  • 9
    • 0023271871 scopus 로고
    • Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry
    • Werther GA, et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology. 1987;121:1562-1570.
    • (1987) Endocrinology , vol.121 , pp. 1562-1570
    • Werther, G.A.1
  • 10
    • 1842734654 scopus 로고    scopus 로고
    • Glucose transporter expression in the central nervous system: relationship to synaptic function
    • McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004;490:13-24.
    • (2004) Eur J Pharmacol , vol.490 , pp. 13-24
    • McEwen, B.S.1    Reagan, L.P.2
  • 11
    • 84902347329 scopus 로고    scopus 로고
    • Glut4 expression defines an insulin-sensitive hypothalamic neuronal population
    • Ren H, et al. Glut4 expression defines an insulin-sensitive hypothalamic neuronal population. Mol Metab. 2014;3:452-459.
    • (2014) Mol Metab , vol.3 , pp. 452-459
    • Ren, H.1
  • 12
    • 84875966088 scopus 로고    scopus 로고
    • Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes
    • Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25-53.
    • (2013) Curr Diabetes Rev , vol.9 , pp. 25-53
    • Fu, Z.1    Gilbert, E.R.2    Liu, D.3
  • 13
    • 0344833819 scopus 로고
    • Identification of insulin in rat brain
    • Havrankova J, et al. Identification of insulin in rat brain. Proc Natl Acad Sci USA. 1978;75:5737-5741.
    • (1978) Proc Natl Acad Sci USA , vol.75 , pp. 5737-5741
    • Havrankova, J.1
  • 14
    • 0031990011 scopus 로고    scopus 로고
    • Histologic distribution of insulin and glucagon receptors
    • Watanabe M, et al. Histologic distribution of insulin and glucagon receptors. Braz J Med Biol Res. 1998;31:243-256.
    • (1998) Braz J Med Biol Res , vol.31 , pp. 243-256
    • Watanabe, M.1
  • 15
    • 78651082269 scopus 로고    scopus 로고
    • Sensory circumventricular organs in health and disease
    • Siso S, Jeffrey M, Gonzalez L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010;120:689-705.
    • (2010) Acta Neuropathol , vol.120 , pp. 689-705
    • Siso, S.1    Jeffrey, M.2    Gonzalez, L.3
  • 16
    • 0022555988 scopus 로고
    • Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography
    • Corp ES, et al. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett. 1986;70:17-22.
    • (1986) Neurosci Lett , vol.70 , pp. 17-22
    • Corp, E.S.1
  • 17
    • 0025063027 scopus 로고
    • Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid
    • Schwartz MW, et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol. 1990;259:E378-E383.
    • (1990) Am J Physiol , vol.259 , pp. E378-E383
    • Schwartz, M.W.1
  • 18
    • 0022510796 scopus 로고
    • Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas
    • Hill JM, et al. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience. 1986;17:1127-1138.
    • (1986) Neuroscience , vol.17 , pp. 1127-1138
    • Hill, J.M.1
  • 19
    • 0027502573 scopus 로고
    • c-Fos expression in rat brain and brainstem nuclei in response to treatments that alter food intake and gastric motility
    • Olson BR, et al. c-Fos expression in rat brain and brainstem nuclei in response to treatments that alter food intake and gastric motility. Mol Cell Neurosci. 1993;4:93-106.
    • (1993) Mol Cell Neurosci , vol.4 , pp. 93-106
    • Olson, B.R.1
  • 20
    • 45749158925 scopus 로고    scopus 로고
    • Central insulin action regulates peripheral glucose and fat metabolism in mice
    • Koch L, et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 2008;118:2132-2147.
    • (2008) J Clin Invest , vol.118 , pp. 2132-2147
    • Koch, L.1
  • 21
    • 77249146406 scopus 로고    scopus 로고
    • Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons
    • Williams KW, et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci. 2010;30:2472-2479.
    • (2010) J Neurosci , vol.30 , pp. 2472-2479
    • Williams, K.W.1
  • 22
    • 84897507249 scopus 로고    scopus 로고
    • Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels
    • Qiu J, et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels. Cell Metab. 2014;19:682-693.
    • (2014) Cell Metab , vol.19 , pp. 682-693
    • Qiu, J.1
  • 23
    • 79952484959 scopus 로고    scopus 로고
    • Consumption of a high-fat diet induces central insulin resistance independent of adiposity
    • Clegg DJ, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103:10-16.
    • (2011) Physiol Behav , vol.103 , pp. 10-16
    • Clegg, D.J.1
  • 24
    • 84880419521 scopus 로고    scopus 로고
    • Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain
    • Prevot V, Langlet F, Dehouck B. Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain. Aging (Albany NY). 2013;5:332-334.
    • (2013) Aging (Albany NY) , vol.5 , pp. 332-334
    • Prevot, V.1    Langlet, F.2    Dehouck, B.3
  • 25
    • 84875885054 scopus 로고    scopus 로고
    • How is the hungry brain like a sieve?
    • Myers MG Jr. How is the hungry brain like a sieve? Cell Metab. 2013;17:467-468.
    • (2013) Cell Metab , vol.17 , pp. 467-468
    • Myers, M.G.1
  • 26
    • 84875883939 scopus 로고    scopus 로고
    • Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting
    • Langlet F, et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013;17:607-617.
    • (2013) Cell Metab , vol.17 , pp. 607-617
    • Langlet, F.1
  • 27
    • 0028310417 scopus 로고
    • Insulin gene expression and insulin synthesis in mammalian neuronal cells
    • Devaskar SU, et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem. 1994;269:8445-8454.
    • (1994) J Biol Chem , vol.269 , pp. 8445-8454
    • Devaskar, S.U.1
  • 28
    • 0030757533 scopus 로고    scopus 로고
    • Insulin responses to a fat meal in hypothalamic microdialysates and plasma
    • Gerozissis K, et al. Insulin responses to a fat meal in hypothalamic microdialysates and plasma. Physiol Behav. 1997;62:767-772.
    • (1997) Physiol Behav , vol.62 , pp. 767-772
    • Gerozissis, K.1
  • 29
    • 0028910245 scopus 로고
    • Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis
    • Orosco M, et al. Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis. Brain Res. 1995;671:149-158.
    • (1995) Brain Res , vol.671 , pp. 149-158
    • Orosco, M.1
  • 30
    • 84900033899 scopus 로고    scopus 로고
    • A new look at cerebrospinal fluid circulation
    • Brinker T, et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.
    • (2014) Fluids Barriers CNS , vol.11 , pp. 10
    • Brinker, T.1
  • 31
    • 76749146826 scopus 로고    scopus 로고
    • The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review
    • Veening JG, Barendregt HP. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 2010;7:1.
    • (2010) Cerebrospinal Fluid Res , vol.7 , pp. 1
    • Veening, J.G.1    Barendregt, H.P.2
  • 32
    • 84865123660 scopus 로고    scopus 로고
    • A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
    • Iliff JJ, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.
    • (2012) Sci Transl Med , vol.4 , pp. 147ra111
    • Iliff, J.J.1
  • 33
    • 84893434815 scopus 로고    scopus 로고
    • Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain
    • Balland E, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19:293-301.
    • (2014) Cell Metab , vol.19 , pp. 293-301
    • Balland, E.1
  • 34
    • 0032562817 scopus 로고    scopus 로고
    • Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA
    • Kosaki A, Nelson J, Webster NJ. Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA. J Biol Chem. 1998;273:10331-10337.
    • (1998) J Biol Chem , vol.273 , pp. 10331-10337
    • Kosaki, A.1    Nelson, J.2    Webster, N.J.3
  • 35
    • 0025362295 scopus 로고
    • Functionally distinct insulin receptors generated by tissue-specific alternative splicing
    • Mosthaf L, et al. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990;9:2409-2413.
    • (1990) EMBO J , vol.9 , pp. 2409-2413
    • Mosthaf, L.1
  • 36
    • 0032932822 scopus 로고    scopus 로고
    • Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells
    • Frasca F, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278-3288.
    • (1999) Mol Cell Biol , vol.19 , pp. 3278-3288
    • Frasca, F.1
  • 37
    • 0031454481 scopus 로고    scopus 로고
    • Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity
    • Hopkins DF, Williams G. Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med. 1997;14:1044-1050.
    • (1997) Diabet Med , vol.14 , pp. 1044-1050
    • Hopkins, D.F.1    Williams, G.2
  • 38
    • 0025612094 scopus 로고
    • Localization of insulin receptor mRNA in rat brain by in situ hybridization
    • Marks JL, et al. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology. 1990;127:3234-3236.
    • (1990) Endocrinology , vol.127 , pp. 3234-3236
    • Marks, J.L.1
  • 39
    • 70849120946 scopus 로고    scopus 로고
    • Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease
    • Belfiore A, et al. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586-623.
    • (2009) Endocr Rev , vol.30 , pp. 586-623
    • Belfiore, A.1
  • 40
    • 84858631674 scopus 로고    scopus 로고
    • The many faces of insulin-like peptide signalling in the brain
    • Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13:225-239.
    • (2012) Nat Rev Neurosci , vol.13 , pp. 225-239
    • Fernandez, A.M.1    Torres-Aleman, I.2
  • 41
    • 79961004321 scopus 로고    scopus 로고
    • Signalling by insulin and IGF receptors: supporting acts and new players
    • Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47:R1-R10.
    • (2011) J Mol Endocrinol , vol.47 , pp. R1-R10
    • Siddle, K.1
  • 42
    • 0030693249 scopus 로고    scopus 로고
    • Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting
    • Bailyes EM, et al. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J. 1997;327:209-215.
    • (1997) Biochem J , vol.327 , pp. 209-215
    • Bailyes, E.M.1
  • 43
    • 0024848790 scopus 로고
    • Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture
    • Shemer J, et al. Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture. J Mol Neurosci. 1989;1:3-8.
    • (1989) J Mol Neurosci , vol.1 , pp. 3-8
    • Shemer, J.1
  • 44
    • 84997107892 scopus 로고    scopus 로고
    • Deciphering brain insulin receptor and insulin-like growth factor 1 receptor signalling
    • Kleinridders A. Deciphering brain insulin receptor and insulin-like growth factor 1 receptor signalling. J Neuroendocrinol. 2016;28:https://doi.org/10.1111/jne.12433.
    • (2016) J Neuroendocrinol , vol.28
    • Kleinridders, A.1
  • 45
    • 0022413708 scopus 로고
    • Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro
    • White MF, Takayama S, Kahn CR. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro. J Biol Chem. 1985;260:9470-9478.
    • (1985) J Biol Chem , vol.260 , pp. 9470-9478
    • White, M.F.1    Takayama, S.2    Kahn, C.R.3
  • 46
    • 11844295386 scopus 로고    scopus 로고
    • Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP
    • Galic S, et al. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol. 2005;25:819-829.
    • (2005) Mol Cell Biol , vol.25 , pp. 819-829
    • Galic, S.1
  • 47
    • 0028032895 scopus 로고
    • Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene
    • Araki E, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186-190.
    • (1994) Nature , vol.372 , pp. 186-190
    • Araki, E.1
  • 48
    • 0028032894 scopus 로고
    • Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1
    • Tamemoto H, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372:182-186.
    • (1994) Nature , vol.372 , pp. 182-186
    • Tamemoto, H.1
  • 49
    • 0043127453 scopus 로고    scopus 로고
    • Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation
    • Schubert M, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci. 2003;23:7084-7092.
    • (2003) J Neurosci , vol.23 , pp. 7084-7092
    • Schubert, M.1
  • 50
    • 0032567937 scopus 로고    scopus 로고
    • Disruption of IRS-2 causes type 2 diabetes in mice
    • Withers DJ, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900-904.
    • (1998) Nature , vol.391 , pp. 900-904
    • Withers, D.J.1
  • 51
    • 0038339520 scopus 로고    scopus 로고
    • Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold
    • Torsoni MA, et al. Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold. Am J Physiol Endocrinol Metab. 2003;285:E216-E223.
    • (2003) Am J Physiol Endocrinol Metab , vol.285 , pp. E216-E223
    • Torsoni, M.A.1
  • 52
    • 34547097247 scopus 로고    scopus 로고
    • Brain IRS2 signaling coordinates life span and nutrient homeostasis
    • Taguchi A, Wartschow LM, White MF. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science. 2007;317:369-372.
    • (2007) Science , vol.317 , pp. 369-372
    • Taguchi, A.1    Wartschow, L.M.2    White, M.F.3
  • 53
    • 84954379006 scopus 로고    scopus 로고
    • Regulation of blood pressure, appetite, and glucose by leptin after inactivation of insulin receptor substrate 2 signaling in the entire brain or in proopiomelanocortin neurons
    • do Carmo JM, et al. Regulation of blood pressure, appetite, and glucose by leptin after inactivation of insulin receptor substrate 2 signaling in the entire brain or in proopiomelanocortin neurons. Hypertension. 2016;67:378-386.
    • (2016) Hypertension , vol.67 , pp. 378-386
    • do Carmo, J.M.1
  • 54
    • 84860451500 scopus 로고    scopus 로고
    • IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action
    • Sadagurski M, et al. IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action. Cell Metab. 2012;15:703-712.
    • (2012) Cell Metab , vol.15 , pp. 703-712
    • Sadagurski, M.1
  • 55
    • 0032853976 scopus 로고    scopus 로고
    • Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain
    • Numan S, Russell DS. Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain. Brain Res Mol Brain Res. 1999;72:97-102.
    • (1999) Brain Res Mol Brain Res , vol.72 , pp. 97-102
    • Numan, S.1    Russell, D.S.2
  • 56
    • 0033956283 scopus 로고    scopus 로고
    • Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis
    • Fantin VR, et al. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab. 2000;278:E127-E133.
    • (2000) Am J Physiol Endocrinol Metab , vol.278 , pp. E127-E133
    • Fantin, V.R.1
  • 57
    • 84895092552 scopus 로고    scopus 로고
    • Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis
    • Sadagurski M, et al. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol Metab. 2014;3:55-63.
    • (2014) Mol Metab , vol.3 , pp. 55-63
    • Sadagurski, M.1
  • 58
    • 0043207600 scopus 로고    scopus 로고
    • Regulation of insulin receptor substrate-2 tyrosine phosphorylation in animal models of insulin resistance
    • Rojas FA, Hirata AE, Saad MJ. Regulation of insulin receptor substrate-2 tyrosine phosphorylation in animal models of insulin resistance. Endocrine. 2003;21:115-122.
    • (2003) Endocrine , vol.21 , pp. 115-122
    • Rojas, F.A.1    Hirata, A.E.2    Saad, M.J.3
  • 59
    • 84943405749 scopus 로고    scopus 로고
    • Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling
    • Zhang ZY, Dodd GT, Tiganis T. Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol Sci. 2015;36:661-674.
    • (2015) Trends Pharmacol Sci , vol.36 , pp. 661-674
    • Zhang, Z.Y.1    Dodd, G.T.2    Tiganis, T.3
  • 60
    • 84920972410 scopus 로고    scopus 로고
    • Leptin and insulin act on POMC neurons to promote the browning of white fat
    • Dodd GT, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell. 2015;160:88-104.
    • (2015) Cell , vol.160 , pp. 88-104
    • Dodd, G.T.1
  • 61
    • 67349115357 scopus 로고    scopus 로고
    • Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons
    • Mayer CM, Belsham DD. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons. Mol Cell Endocrinol. 2009;307:99-108.
    • (2009) Mol Cell Endocrinol , vol.307 , pp. 99-108
    • Mayer, C.M.1    Belsham, D.D.2
  • 62
    • 33846945811 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase function: the substrate perspective
    • Tiganis T, Bennett AM. Protein tyrosine phosphatase function: the substrate perspective. Biochem J. 2007;402:1-15.
    • (2007) Biochem J , vol.402 , pp. 1-15
    • Tiganis, T.1    Bennett, A.M.2
  • 63
    • 0037371765 scopus 로고    scopus 로고
    • Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP
    • Galic S, et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol. 2003;23:2096-2108.
    • (2003) Mol Cell Biol , vol.23 , pp. 2096-2108
    • Galic, S.1
  • 64
    • 4444233558 scopus 로고    scopus 로고
    • Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B
    • Meng TC, et al. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem. 2004;279:37716-37725.
    • (2004) J Biol Chem , vol.279 , pp. 37716-37725
    • Meng, T.C.1
  • 65
    • 77955352846 scopus 로고    scopus 로고
    • T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis
    • Fukushima A, et al. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes. 2010;59:1906-1914.
    • (2010) Diabetes , vol.59 , pp. 1906-1914
    • Fukushima, A.1
  • 66
    • 33746810001 scopus 로고    scopus 로고
    • Neuronal PTP1B regulates body weight, adiposity and leptin action
    • Bence KK, et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12:917-924.
    • (2006) Nat Med , vol.12 , pp. 917-924
    • Bence, K.K.1
  • 67
    • 0033525870 scopus 로고    scopus 로고
    • Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
    • Elchebly M, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283:1544-1548.
    • (1999) Science , vol.283 , pp. 1544-1548
    • Elchebly, M.1
  • 68
    • 0033942614 scopus 로고    scopus 로고
    • Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice
    • Klaman LD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol. 2000;20:5479-5489.
    • (2000) Mol Cell Biol , vol.20 , pp. 5479-5489
    • Klaman, L.D.1
  • 69
    • 62749115187 scopus 로고    scopus 로고
    • Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress
    • Delibegovic M, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58:590-599.
    • (2009) Diabetes , vol.58 , pp. 590-599
    • Delibegovic, M.1
  • 70
    • 47949090359 scopus 로고    scopus 로고
    • Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats
    • Picardi PK, et al. Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology. 2008;149:3870-3880.
    • (2008) Endocrinology , vol.149 , pp. 3870-3880
    • Picardi, P.K.1
  • 71
    • 84907014635 scopus 로고    scopus 로고
    • Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice
    • Chiappini F, et al. Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice. J Clin Invest. 2014;124:3781-3792.
    • (2014) J Clin Invest , vol.124 , pp. 3781-3792
    • Chiappini, F.1
  • 72
    • 84895544568 scopus 로고    scopus 로고
    • Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity
    • Wunderlich CM, Hovelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAKSTAT. 2013;2:e23878.
    • (2013) JAKSTAT , vol.2 , pp. e23878
    • Wunderlich, C.M.1    Hovelmeyer, N.2    Wunderlich, F.T.3
  • 73
    • 59849086607 scopus 로고    scopus 로고
    • The role of SOCS-3 protein in leptin resistance and obesity
    • Lubis AR, et al. The role of SOCS-3 protein in leptin resistance and obesity. Acta Med Indones. 2008;40:89-95.
    • (2008) Acta Med Indones , vol.40 , pp. 89-95
    • Lubis, A.R.1
  • 74
    • 0034548763 scopus 로고    scopus 로고
    • Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor
    • Eyckerman S, et al. Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett. 2000;486:33-37.
    • (2000) FEBS Lett , vol.486 , pp. 33-37
    • Eyckerman, S.1
  • 75
    • 0032014178 scopus 로고    scopus 로고
    • Identification of SOCS-3 as a potential mediator of central leptin resistance
    • Bjorbaek C, et al. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998;1:619-625.
    • (1998) Mol Cell , vol.1 , pp. 619-625
    • Bjorbaek, C.1
  • 76
    • 4544256147 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling
    • Shi H, et al. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem. 2004;279:34733-34740.
    • (2004) J Biol Chem , vol.279 , pp. 34733-34740
    • Shi, H.1
  • 77
    • 0033569730 scopus 로고    scopus 로고
    • The role of SOCS-3 in leptin signaling and leptin resistance
    • Bjorbaek C, et al. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem. 1999;274:30059-30065.
    • (1999) J Biol Chem , vol.274 , pp. 30059-30065
    • Bjorbaek, C.1
  • 78
    • 0001421697 scopus 로고    scopus 로고
    • SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985
    • Bjorbak C, et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000;275:40649-40657.
    • (2000) J Biol Chem , vol.275 , pp. 40649-40657
    • Bjorbak, C.1
  • 79
    • 17844401180 scopus 로고    scopus 로고
    • Molecular and anatomical determinants of central leptin resistance
    • Munzberg H, Myers MG Jr. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8:566-570.
    • (2005) Nat Neurosci , vol.8 , pp. 566-570
    • Munzberg, H.1    Myers, M.G.2
  • 80
    • 3142782772 scopus 로고    scopus 로고
    • Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3
    • Howard JK, et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med. 2004;10:734-738.
    • (2004) Nat Med , vol.10 , pp. 734-738
    • Howard, J.K.1
  • 81
    • 33644782904 scopus 로고    scopus 로고
    • Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance
    • Shi H, et al. Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes. 2006;55:699-707.
    • (2006) Diabetes , vol.55 , pp. 699-707
    • Shi, H.1
  • 82
    • 0022513580 scopus 로고
    • Dependence of food intake on acute and chronic ventricular administration of insulin
    • Plata-Salaman CR, Oomura Y, Shimizu N. Dependence of food intake on acute and chronic ventricular administration of insulin. Physiol Behav. 1986;37:717-734.
    • (1986) Physiol Behav , vol.37 , pp. 717-734
    • Plata-Salaman, C.R.1    Oomura, Y.2    Shimizu, N.3
  • 83
    • 77951194676 scopus 로고    scopus 로고
    • Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis
    • Reed AS, et al. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes. 2010;59:894-906.
    • (2010) Diabetes , vol.59 , pp. 894-906
    • Reed, A.S.1
  • 84
    • 2942628012 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms
    • Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434-5446.
    • (2004) Mol Cell Biol , vol.24 , pp. 5434-5446
    • Ueki, K.1    Kondo, T.2    Kahn, C.R.3
  • 85
    • 0036830636 scopus 로고    scopus 로고
    • SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2
    • Rui L, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002;277:42394-42398.
    • (2002) J Biol Chem , vol.277 , pp. 42394-42398
    • Rui, L.1
  • 86
    • 3142723983 scopus 로고    scopus 로고
    • Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity
    • Mori H, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10:739-743.
    • (2004) Nat Med , vol.10 , pp. 739-743
    • Mori, H.1
  • 87
    • 33746537247 scopus 로고    scopus 로고
    • Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells
    • Kievit P, et al. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metab. 2006;4:123-132.
    • (2006) Cell Metab , vol.4 , pp. 123-132
    • Kievit, P.1
  • 88
    • 84906275240 scopus 로고    scopus 로고
    • Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity
    • Pedroso JA, et al. Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol Metab. 2014;3:608-618.
    • (2014) Mol Metab , vol.3 , pp. 608-618
    • Pedroso, J.A.1
  • 89
    • 84874236315 scopus 로고    scopus 로고
    • Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance
    • Olofsson LE, et al. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci USA. 2013;110:E697-E706.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E697-E706
    • Olofsson, L.E.1
  • 90
    • 0036558064 scopus 로고    scopus 로고
    • Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats
    • Davidson AJ, et al. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats. Physiol Behav. 2002;76:21-26.
    • (2002) Physiol Behav , vol.76 , pp. 21-26
    • Davidson, A.J.1
  • 91
    • 80455122701 scopus 로고    scopus 로고
    • Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance
    • Loh K, et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 2011;14:684-699.
    • (2011) Cell Metab , vol.14 , pp. 684-699
    • Loh, K.1
  • 92
    • 47249148827 scopus 로고    scopus 로고
    • Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo
    • Zabolotny JM, et al. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283:14230-14241.
    • (2008) J Biol Chem , vol.283 , pp. 14230-14241
    • Zabolotny, J.M.1
  • 93
    • 84856036647 scopus 로고    scopus 로고
    • Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity
    • Gamber KM, et al. Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS ONE. 2012;7:e30485.
    • (2012) PLoS ONE , vol.7
    • Gamber, K.M.1
  • 94
    • 84913530022 scopus 로고    scopus 로고
    • Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis
    • Williams KW, et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 2014;20:471-482.
    • (2014) Cell Metab , vol.20 , pp. 471-482
    • Williams, K.W.1
  • 95
    • 77951896006 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging and c-Fos mapping in rats following a glucoprivic dose of 2-deoxy-D-glucose
    • Dodd GT, Williams SR, Luckman SM. Functional magnetic resonance imaging and c-Fos mapping in rats following a glucoprivic dose of 2-deoxy-D-glucose. J Neurochem. 2010;113:1123-1132.
    • (2010) J Neurochem , vol.113 , pp. 1123-1132
    • Dodd, G.T.1    Williams, S.R.2    Luckman, S.M.3
  • 96
    • 84947614766 scopus 로고    scopus 로고
    • Impaired insulin action in the human brain: causes and metabolic consequences
    • Heni M, et al. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11:701-711.
    • (2015) Nat Rev Endocrinol , vol.11 , pp. 701-711
    • Heni, M.1
  • 97
    • 84929741877 scopus 로고    scopus 로고
    • Insulin action in the human brain: evidence from neuroimaging studies
    • Kullmann S, et al. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol. 2015;27:419-423.
    • (2015) J Neuroendocrinol , vol.27 , pp. 419-423
    • Kullmann, S.1
  • 98
    • 0032856158 scopus 로고    scopus 로고
    • Altered hypothalamic function in response to glucose ingestion in obese humans
    • Matsuda M, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801-1806.
    • (1999) Diabetes , vol.48 , pp. 1801-1806
    • Matsuda, M.1
  • 99
    • 84899966578 scopus 로고    scopus 로고
    • Mapping glucose-mediated gut-to-brain signalling pathways in humans
    • Little TJ, et al. Mapping glucose-mediated gut-to-brain signalling pathways in humans. NeuroImage. 2014;96:1-11.
    • (2014) NeuroImage , vol.96 , pp. 1-11
    • Little, T.J.1
  • 100
    • 84893766301 scopus 로고    scopus 로고
    • Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults
    • Heni M, et al. Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Hum Brain Mapp. 2014;35:918-928.
    • (2014) Hum Brain Mapp , vol.35 , pp. 918-928
    • Heni, M.1
  • 101
    • 16244398656 scopus 로고    scopus 로고
    • Functional MRI of human hypothalamic responses following glucose ingestion
    • Smeets PA, et al. Functional MRI of human hypothalamic responses following glucose ingestion. NeuroImage. 2005;24:363-368.
    • (2005) NeuroImage , vol.24 , pp. 363-368
    • Smeets, P.A.1
  • 102
    • 84871750355 scopus 로고    scopus 로고
    • Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways
    • Page KA, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA. 2013;309:63-70.
    • (2013) JAMA , vol.309 , pp. 63-70
    • Page, K.A.1
  • 103
    • 0030932292 scopus 로고    scopus 로고
    • Effect of intracerebroventricular and intravenous insulin on Fos-immunoreactivity in the rat brain
    • Porter JP, Bokil HS. Effect of intracerebroventricular and intravenous insulin on Fos-immunoreactivity in the rat brain. Neurosci Lett. 1997;224:161-164.
    • (1997) Neurosci Lett , vol.224 , pp. 161-164
    • Porter, J.P.1    Bokil, H.S.2
  • 104
    • 84870624154 scopus 로고    scopus 로고
    • Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis
    • Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012;13:1079-1086.
    • (2012) EMBO Rep , vol.13 , pp. 1079-1086
    • Varela, L.1    Horvath, T.L.2
  • 105
    • 84941881716 scopus 로고    scopus 로고
    • Hypothalamic PKA regulates leptin sensitivity and adiposity
    • Yang L, McKnight GS. Hypothalamic PKA regulates leptin sensitivity and adiposity. Nat Commun. 2015;6:8237.
    • (2015) Nat Commun , vol.6 , pp. 8237
    • Yang, L.1    McKnight, G.S.2
  • 106
    • 84962667977 scopus 로고    scopus 로고
    • Neurotrophic factor control of satiety and body weight
    • Xu B, Xie X. Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci. 2016;17:282-292.
    • (2016) Nat Rev Neurosci , vol.17 , pp. 282-292
    • Xu, B.1    Xie, X.2
  • 107
    • 27344431720 scopus 로고    scopus 로고
    • NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates
    • Luquet S, et al. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310:683-685.
    • (2005) Science , vol.310 , pp. 683-685
    • Luquet, S.1
  • 108
    • 27344433932 scopus 로고    scopus 로고
    • Agouti-related peptide-expressing neurons are mandatory for feeding
    • Gropp E, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005;8:1289-1291.
    • (2005) Nat Neurosci , vol.8 , pp. 1289-1291
    • Gropp, E.1
  • 109
    • 79953307878 scopus 로고    scopus 로고
    • Rapid, reversible activation of AgRP neurons drives feeding behavior in mice
    • Krashes MJ, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest. 2011;121:1424-1428.
    • (2011) J Clin Invest , vol.121 , pp. 1424-1428
    • Krashes, M.J.1
  • 110
    • 35348848018 scopus 로고    scopus 로고
    • The role of proopiomelanocortin (POMC) neurones in feeding behaviour
    • Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond). 2007;4:18.
    • (2007) Nutr Metab (Lond) , vol.4 , pp. 18
    • Millington, G.W.1
  • 111
    • 84978730641 scopus 로고    scopus 로고
    • Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism
    • Roh E, Song do K, Kim MS. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med. 2016;48:e216
    • (2016) Exp Mol Med , vol.48
    • Roh, E.1    Song do, K.2    Kim, M.S.3
  • 112
    • 84866686337 scopus 로고    scopus 로고
    • Synaptic plasticity in neuronal circuits regulating energy balance
    • Zeltser LM, Seeley RJ, Tschop MH. Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci. 2012;15:1336-1342.
    • (2012) Nat Neurosci , vol.15 , pp. 1336-1342
    • Zeltser, L.M.1    Seeley, R.J.2    Tschop, M.H.3
  • 113
    • 1842529267 scopus 로고    scopus 로고
    • Rapid rewiring of arcuate nucleus feeding circuits by leptin
    • Pinto S, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110-115.
    • (2004) Science , vol.304 , pp. 110-115
    • Pinto, S.1
  • 114
    • 0035709038 scopus 로고    scopus 로고
    • The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis
    • Cone RD, et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord. 2001;25(Suppl. 5):S63-S67.
    • (2001) Int J Obes Relat Metab Disord , vol.25 , pp. S63-S67
    • Cone, R.D.1
  • 115
    • 0031888157 scopus 로고    scopus 로고
    • Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin
    • Mizuno TM, et al. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes. 1998;47:294-297.
    • (1998) Diabetes , vol.47 , pp. 294-297
    • Mizuno, T.M.1
  • 116
    • 0035942777 scopus 로고    scopus 로고
    • Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus
    • Cowley MA, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480-484.
    • (2001) Nature , vol.411 , pp. 480-484
    • Cowley, M.A.1
  • 117
    • 0037713312 scopus 로고    scopus 로고
    • Electrophysiological actions of peripheral hormones on melanocortin neurons
    • Cowley MA, et al. Electrophysiological actions of peripheral hormones on melanocortin neurons. Ann N Y Acad Sci. 2003;994:175-186.
    • (2003) Ann N Y Acad Sci , vol.994 , pp. 175-186
    • Cowley, M.A.1
  • 118
    • 14244254196 scopus 로고    scopus 로고
    • Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons
    • Takahashi KA, Cone RD. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology. 2005;146:1043-1047.
    • (2005) Endocrinology , vol.146 , pp. 1043-1047
    • Takahashi, K.A.1    Cone, R.D.2
  • 119
    • 0026463547 scopus 로고
    • Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis
    • Horvath TL, et al. Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology. 1992;131:2461-2467.
    • (1992) Endocrinology , vol.131 , pp. 2461-2467
    • Horvath, T.L.1
  • 120
    • 0033562892 scopus 로고    scopus 로고
    • Leptin binding in the arcuate nucleus is increased during fasting
    • Baskin DG, et al. Leptin binding in the arcuate nucleus is increased during fasting. Brain Res. 1999;828:154-158.
    • (1999) Brain Res , vol.828 , pp. 154-158
    • Baskin, D.G.1
  • 121
    • 33846046623 scopus 로고    scopus 로고
    • Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals
    • Gao Q, et al. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med. 2007;13:89-94.
    • (2007) Nat Med , vol.13 , pp. 89-94
    • Gao, Q.1
  • 122
    • 78049525571 scopus 로고    scopus 로고
    • Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice
    • Gyengesi E, et al. Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology. 2010;151:5395-5402.
    • (2010) Endocrinology , vol.151 , pp. 5395-5402
    • Gyengesi, E.1
  • 123
    • 84863012024 scopus 로고    scopus 로고
    • Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone
    • Liu T, et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron. 2012;73:511-522.
    • (2012) Neuron , vol.73 , pp. 511-522
    • Liu, T.1
  • 124
    • 80052922112 scopus 로고    scopus 로고
    • Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop
    • Yang Y, et al. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell. 2011;146:992-1003.
    • (2011) Cell , vol.146 , pp. 992-1003
    • Yang, Y.1
  • 125
    • 77956241193 scopus 로고    scopus 로고
    • Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity
    • Dietrich MO, et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J Neurosci. 2010;30:11815-11825.
    • (2010) J Neurosci , vol.30 , pp. 11815-11825
    • Dietrich, M.O.1
  • 126
    • 77957053600 scopus 로고    scopus 로고
    • Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity
    • Horvath TL, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci USA. 2010;107:14875-14880.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 14875-14880
    • Horvath, T.L.1
  • 127
    • 27744457512 scopus 로고    scopus 로고
    • Topographic mapping of VMH –> arcuate nucleus microcircuits and their reorganization by fasting
    • Sternson SM, Shepherd GM, Friedman JM. Topographic mapping of VMH –> arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci. 2005;8:1356-1363.
    • (2005) Nat Neurosci , vol.8 , pp. 1356-1363
    • Sternson, S.M.1    Shepherd, G.M.2    Friedman, J.M.3
  • 128
    • 84927774781 scopus 로고    scopus 로고
    • Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons
    • Wang D, et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat. 2015;9:40.
    • (2015) Front Neuroanat , vol.9 , pp. 40
    • Wang, D.1
  • 129
    • 84961792763 scopus 로고    scopus 로고
    • AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue
    • Steculorum SM, et al. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell. 2016;165:125-138.
    • (2016) Cell , vol.165 , pp. 125-138
    • Steculorum, S.M.1
  • 130
    • 79959652223 scopus 로고    scopus 로고
    • High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons
    • Klockener T, et al. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci. 2011;14:911-918.
    • (2011) Nat Neurosci , vol.14 , pp. 911-918
    • Klockener, T.1
  • 131
    • 85002839751 scopus 로고    scopus 로고
    • Insulin-dependent activation of MCH neurons impairs locomotor activity and insulin sensitivity in obesity
    • Hausen AC, et al. Insulin-dependent activation of MCH neurons impairs locomotor activity and insulin sensitivity in obesity. Cell Rep. 2016;17:2512-2521.
    • (2016) Cell Rep , vol.17 , pp. 2512-2521
    • Hausen, A.C.1
  • 132
    • 84981295660 scopus 로고    scopus 로고
    • Astrocytic insulin signaling couples brain glucose uptake with nutrient availability
    • Garcia-Caceres C, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166:867-880.
    • (2016) Cell , vol.166 , pp. 867-880
    • Garcia-Caceres, C.1
  • 133
    • 79958026765 scopus 로고    scopus 로고
    • Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis
    • Konner AC, et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011;13:720-728.
    • (2011) Cell Metab , vol.13 , pp. 720-728
    • Konner, A.C.1
  • 134
    • 79955935863 scopus 로고    scopus 로고
    • The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects
    • Guthoff M, et al. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS ONE. 2011;6:e19482.
    • (2011) PLoS ONE , vol.6
    • Guthoff, M.1
  • 135
    • 76149103529 scopus 로고    scopus 로고
    • Insulin modulates food-related activity in the central nervous system
    • Guthoff M, et al. Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab. 2010;95:748-755.
    • (2010) J Clin Endocrinol Metab , vol.95 , pp. 748-755
    • Guthoff, M.1
  • 136
    • 84938302676 scopus 로고    scopus 로고
    • Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults
    • Kullmann S, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38:1044-1050.
    • (2015) Diabetes Care , vol.38 , pp. 1044-1050
    • Kullmann, S.1
  • 137
    • 84883797806 scopus 로고    scopus 로고
    • (Still) longing for food: insulin reactivity modulates response to food pictures
    • Kroemer NB, et al. (Still) longing for food: insulin reactivity modulates response to food pictures. Hum Brain Mapp. 2013;34:2367-2380.
    • (2013) Hum Brain Mapp , vol.34 , pp. 2367-2380
    • Kroemer, N.B.1
  • 138
    • 84962114196 scopus 로고    scopus 로고
    • Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes
    • Zhang H, et al. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes. 2015;64:1025-1034.
    • (2015) Diabetes , vol.64 , pp. 1025-1034
    • Zhang, H.1
  • 139
    • 77954176653 scopus 로고    scopus 로고
    • Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions
    • Winocur G, Moscovitch M, Bontempi B. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia. 2010;48:2339-2356.
    • (2010) Neuropsychologia , vol.48 , pp. 2339-2356
    • Winocur, G.1    Moscovitch, M.2    Bontempi, B.3
  • 140
    • 70349285955 scopus 로고    scopus 로고
    • Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent
    • Grillo CA, et al. Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res. 2009;1296:35-45.
    • (2009) Brain Res , vol.1296 , pp. 35-45
    • Grillo, C.A.1
  • 141
    • 0030988864 scopus 로고    scopus 로고
    • Regional differences in cannabinoid receptor/G-protein coupling in rat brain
    • Breivogel CS, Sim LJ, Childers SR. Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J Pharmacol Exp Ther. 1997;282:1632-1642.
    • (1997) J Pharmacol Exp Ther , vol.282 , pp. 1632-1642
    • Breivogel, C.S.1    Sim, L.J.2    Childers, S.R.3
  • 142
    • 76249124415 scopus 로고    scopus 로고
    • Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat
    • Dodd GT, et al. Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience. 2009;163:1192-1200.
    • (2009) Neuroscience , vol.163 , pp. 1192-1200
    • Dodd, G.T.1
  • 143
    • 84857034930 scopus 로고    scopus 로고
    • Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism
    • Ott V, et al. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism. Diabetes Obes Metab. 2012;14:214-221.
    • (2012) Diabetes Obes Metab , vol.14 , pp. 214-221
    • Ott, V.1
  • 144
    • 0034703229 scopus 로고    scopus 로고
    • Role of brain insulin receptor in control of body weight and reproduction
    • Bruning JC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122-2125.
    • (2000) Science , vol.289 , pp. 2122-2125
    • Bruning, J.C.1
  • 145
    • 0036267472 scopus 로고    scopus 로고
    • Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats
    • Obici S, et al. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci. 2002;5:566-572.
    • (2002) Nat Neurosci , vol.5 , pp. 566-572
    • Obici, S.1
  • 146
    • 0036913187 scopus 로고    scopus 로고
    • Hypothalamic insulin signaling is required for inhibition of glucose production
    • Obici S, et al. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376-1382.
    • (2002) Nat Med , vol.8 , pp. 1376-1382
    • Obici, S.1
  • 147
    • 0018621289 scopus 로고
    • Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons
    • Woods SC, et al. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503-505.
    • (1979) Nature , vol.282 , pp. 503-505
    • Woods, S.C.1
  • 148
    • 0025947341 scopus 로고
    • Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I
    • Foster LA, Ames NK, Emery RS. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav. 1991;50:745-749.
    • (1991) Physiol Behav , vol.50 , pp. 745-749
    • Foster, L.A.1    Ames, N.K.2    Emery, R.S.3
  • 149
    • 84941644382 scopus 로고    scopus 로고
    • Inconsistencies in the hypophagic action of intracerebroventricular insulin in mice
    • Mc Allister E, et al. Inconsistencies in the hypophagic action of intracerebroventricular insulin in mice. Physiol Behav. 2015;151:623-628.
    • (2015) Physiol Behav , vol.151 , pp. 623-628
    • Mc Allister, E.1
  • 150
    • 33845448933 scopus 로고    scopus 로고
    • Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice
    • Brown LM, et al. Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice. Physiol Behav. 2006;89:687-691.
    • (2006) Physiol Behav , vol.89 , pp. 687-691
    • Brown, L.M.1
  • 151
    • 67650257653 scopus 로고    scopus 로고
    • Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism
    • Jaillard T, et al. Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism. Diabetes. 2009;58:1544-1549.
    • (2009) Diabetes , vol.58 , pp. 1544-1549
    • Jaillard, T.1
  • 152
    • 0036202441 scopus 로고    scopus 로고
    • Acute third ventricular administration of insulin decreases food intake in two paradigms
    • Air EL, et al. Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol Biochem Behav. 2002;72:423-429.
    • (2002) Pharmacol Biochem Behav , vol.72 , pp. 423-429
    • Air, E.L.1
  • 153
    • 84871319731 scopus 로고    scopus 로고
    • Inconsistencies in the assessment of food intake
    • Woods SC, Langhans W. Inconsistencies in the assessment of food intake. Am J Physiol Endocrinol Metab. 2012;303:E1408-E1418.
    • (2012) Am J Physiol Endocrinol Metab , vol.303 , pp. E1408-E1418
    • Woods, S.C.1    Langhans, W.2
  • 154
    • 73549099979 scopus 로고    scopus 로고
    • Evaluation of the lack of anorectic effect of intracerebroventricular insulin in rats
    • Jessen L, Clegg DJ, Bouman SD. Evaluation of the lack of anorectic effect of intracerebroventricular insulin in rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R43-R50.
    • (2010) Am J Physiol Regul Integr Comp Physiol , vol.298 , pp. R43-R50
    • Jessen, L.1    Clegg, D.J.2    Bouman, S.D.3
  • 155
    • 33646547197 scopus 로고    scopus 로고
    • In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain
    • Nagaraja TN, et al. In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res. 2005;2:5.
    • (2005) Cerebrospinal Fluid Res , vol.2 , pp. 5.
    • Nagaraja, T.N.1
  • 156
    • 21444436722 scopus 로고    scopus 로고
    • Highlighting the positive impact of increasing feeding frequency on metabolism and weight management
    • Louis-Sylvestre J, et al. Highlighting the positive impact of increasing feeding frequency on metabolism and weight management. Forum Nutr. 2003;56:126-128.
    • (2003) Forum Nutr , vol.56 , pp. 126-128
    • Louis-Sylvestre, J.1
  • 157
    • 80051589489 scopus 로고    scopus 로고
    • Acute, short-term hyperinsulinemia increases olfactory threshold in healthy subjects
    • Ketterer C, et al. Acute, short-term hyperinsulinemia increases olfactory threshold in healthy subjects. Int J Obes (Lond). 2011;35:1135-1138.
    • (2011) Int J Obes (Lond) , vol.35 , pp. 1135-1138
    • Ketterer, C.1
  • 158
    • 84885191812 scopus 로고    scopus 로고
    • Intranasal insulin reduces olfactory sensitivity in normosmic humans
    • Brunner YF, Benedict C, Freiherr J. Intranasal insulin reduces olfactory sensitivity in normosmic humans. J Clin Endocrinol Metab. 2013;98:E1626-E1630.
    • (2013) J Clin Endocrinol Metab , vol.98 , pp. E1626-E1630
    • Brunner, Y.F.1    Benedict, C.2    Freiherr, J.3
  • 159
    • 84911916822 scopus 로고    scopus 로고
    • Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men
    • Heni M, et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes. 2014;63:4083-4088.
    • (2014) Diabetes , vol.63 , pp. 4083-4088
    • Heni, M.1
  • 160
    • 84921779810 scopus 로고    scopus 로고
    • Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness
    • Chong AC, et al. Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness. Mol Metab. 2015;4:83-92.
    • (2015) Mol Metab , vol.4 , pp. 83-92
    • Chong, A.C.1
  • 161
    • 34249651956 scopus 로고    scopus 로고
    • Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production
    • Konner AC, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5:438-449.
    • (2007) Cell Metab , vol.5 , pp. 438-449
    • Konner, A.C.1
  • 162
    • 85018636776 scopus 로고    scopus 로고
    • Insulin controls food intake and energy balance via NPY neurons
    • Loh K, et al. Insulin controls food intake and energy balance via NPY neurons. Mol Metab. 2017;6:574-584.
    • (2017) Mol Metab , vol.6 , pp. 574-584
    • Loh, K.1
  • 163
    • 84873518501 scopus 로고    scopus 로고
    • Adaptive thermogenesis in adipocytes: is beige the new brown?
    • Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27:234-250.
    • (2013) Genes Dev , vol.27 , pp. 234-250
    • Wu, J.1    Cohen, P.2    Spiegelman, B.M.3
  • 164
    • 84946611387 scopus 로고    scopus 로고
    • Human brown adipose tissue: what we have learned so far
    • Betz MJ, Enerback S. Human brown adipose tissue: what we have learned so far. Diabetes. 2015;64:2352-2360.
    • (2015) Diabetes , vol.64 , pp. 2352-2360
    • Betz, M.J.1    Enerback, S.2
  • 165
    • 84943402947 scopus 로고    scopus 로고
    • Brown and beige fat: physiological roles beyond heat generation
    • Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22:546-559.
    • (2015) Cell Metab , vol.22 , pp. 546-559
    • Kajimura, S.1    Spiegelman, B.M.2    Seale, P.3
  • 166
    • 84962076500 scopus 로고    scopus 로고
    • Brown and beige fat: molecular parts of a thermogenic machine
    • Cohen P, Spiegelman BM. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes. 2015;64:2346-2351.
    • (2015) Diabetes , vol.64 , pp. 2346-2351
    • Cohen, P.1    Spiegelman, B.M.2
  • 167
    • 84892727198 scopus 로고    scopus 로고
    • What we talk about when we talk about fat
    • Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20-44.
    • (2014) Cell , vol.156 , pp. 20-44
    • Rosen, E.D.1    Spiegelman, B.M.2
  • 168
    • 84962821261 scopus 로고    scopus 로고
    • Mitochondria in white, brown, and beige adipocytes
    • Cedikova M, et al. Mitochondria in white, brown, and beige adipocytes. Stem Cells Int. 2016;2016:6067349.
    • (2016) Stem Cells Int , vol.2016 , pp. 6067349.
    • Cedikova, M.1
  • 169
    • 84887431711 scopus 로고    scopus 로고
    • Brown and beige fat: development, function and therapeutic potential
    • Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252-1263.
    • (2013) Nat Med , vol.19 , pp. 1252-1263
    • Harms, M.1    Seale, P.2
  • 170
    • 0020803772 scopus 로고
    • Role of insulin in thermogenic responses to refeeding in 3-day-fasted rats
    • Rothwell NJ, Saville ME, Stock MJ. Role of insulin in thermogenic responses to refeeding in 3-day-fasted rats. Am J Physiol. 1983;245:E160-E165.
    • (1983) Am J Physiol , vol.245 , pp. E160-E165
    • Rothwell, N.J.1    Saville, M.E.2    Stock, M.J.3
  • 171
    • 0025916854 scopus 로고
    • Insulin and the paraventricular hypothalamus: modulation of energy balance
    • Menendez JA, Atrens DM. Insulin and the paraventricular hypothalamus: modulation of energy balance. Brain Res. 1991;555:193-201.
    • (1991) Brain Res , vol.555 , pp. 193-201
    • Menendez, J.A.1    Atrens, D.M.2
  • 172
    • 77955854156 scopus 로고    scopus 로고
    • Differential effects of insulin on sympathetic nerve activity in agouti obese mice
    • Morgan DA, Rahmouni K. Differential effects of insulin on sympathetic nerve activity in agouti obese mice. J Hypertens. 2010;28:1913-1919.
    • (2010) J Hypertens , vol.28 , pp. 1913-1919
    • Morgan, D.A.1    Rahmouni, K.2
  • 173
    • 0028840194 scopus 로고
    • Mechanisms of insulin action on sympathetic nerve activity
    • Muntzel MS, et al. Mechanisms of insulin action on sympathetic nerve activity. Clin Exp Hypertens. 1995;17:39-50.
    • (1995) Clin Exp Hypertens , vol.17 , pp. 39-50
    • Muntzel, M.S.1
  • 174
    • 78751485383 scopus 로고    scopus 로고
    • Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men
    • Benedict C, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60:114-118.
    • (2011) Diabetes , vol.60 , pp. 114-118
    • Benedict, C.1
  • 175
    • 77449144768 scopus 로고    scopus 로고
    • Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC and POMC neurons
    • Lin HV, et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC and POMC neurons. Diabetes. 2010;59:337-346.
    • (2010) Diabetes , vol.59 , pp. 337-346
    • Lin, H.V.1
  • 176
    • 84961615828 scopus 로고    scopus 로고
    • Neural control of energy expenditure
    • Munzberg H, et al. Neural control of energy expenditure. Handb Exp Pharmacol. 2016;233:173-194.
    • (2016) Handb Exp Pharmacol , vol.233 , pp. 173-194
    • Munzberg, H.1
  • 177
    • 84930668378 scopus 로고    scopus 로고
    • Cerebellar contribution to feedforward control of locomotion
    • Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Front Hum Neurosci. 2014;8:475.
    • (2014) Front Hum Neurosci , vol.8 , pp. 475.
    • Pisotta, I.1    Molinari, M.2
  • 178
    • 77950264425 scopus 로고    scopus 로고
    • Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility
    • Hill JW, et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11:286-297.
    • (2010) Cell Metab , vol.11 , pp. 286-297
    • Hill, J.W.1
  • 179
    • 84921534037 scopus 로고    scopus 로고
    • Gut-brain mechanisms controlling glucose homeostasis
    • Scarlett JM, Schwartz MW. Gut-brain mechanisms controlling glucose homeostasis. F1000Prime Rep. 2015;7:12.
    • (2015) F1000Prime Rep , vol.7 , pp. 12.
    • Scarlett, J.M.1    Schwartz, M.W.2
  • 180
    • 84960444062 scopus 로고    scopus 로고
    • Central insulin action activates kupffer cells by suppressing hepatic vagal activation via the nicotinic alpha 7 acetylcholine receptor
    • Kimura K, et al. Central insulin action activates kupffer cells by suppressing hepatic vagal activation via the nicotinic alpha 7 acetylcholine receptor. Cell Rep. 2016;14:2362-2374.
    • (2016) Cell Rep , vol.14 , pp. 2362-2374
    • Kimura, K.1
  • 181
    • 84956825645 scopus 로고    scopus 로고
    • Central insulin-mediated regulation of hepatic glucose production
    • Inoue H. Central insulin-mediated regulation of hepatic glucose production. Endocr J. 2016;63:1-7.
    • (2016) Endocr J , vol.63 , pp. 1-7
    • Inoue, H.1
  • 182
    • 77951029840 scopus 로고    scopus 로고
    • Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically
    • Stanley S, et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci USA. 2010;107:7024-7029.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7024-7029
    • Stanley, S.1
  • 183
    • 84872850105 scopus 로고    scopus 로고
    • Revealing the secrets of neuronal circuits with recombinant rabies virus technology
    • Ginger M, et al. Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits. 2013;7:2.
    • (2013) Front Neural Circuits , vol.7 , pp. 2
    • Ginger, M.1
  • 184
    • 0030865881 scopus 로고    scopus 로고
    • Regulation of glucose homeostasis in humans with denervated livers
    • Perseghin G, et al. Regulation of glucose homeostasis in humans with denervated livers. J Clin Invest. 1997;100:931-941.
    • (1997) J Clin Invest , vol.100 , pp. 931-941
    • Perseghin, G.1
  • 185
    • 76749172118 scopus 로고    scopus 로고
    • The role of the autonomic nervous liver innervation in the control of energy metabolism
    • Yi CX, et al. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta. 2010;1802:416-431.
    • (2010) Biochim Biophys Acta , vol.1802 , pp. 416-431
    • Yi, C.X.1
  • 186
    • 0028966341 scopus 로고
    • Hepatic denervation does not significantly change the response of the liver to glucagon in conscious dogs
    • Wada M, et al. Hepatic denervation does not significantly change the response of the liver to glucagon in conscious dogs. Am J Physiol. 1995;268:E194-E203.
    • (1995) Am J Physiol , vol.268 , pp. E194-E203
    • Wada, M.1
  • 187
    • 84890097302 scopus 로고    scopus 로고
    • Parallel, redundant circuit organization for homeostatic control of feeding behavior
    • Betley JN, et al. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell. 2013;155:1337-1350.
    • (2013) Cell , vol.155 , pp. 1337-1350
    • Betley, J.N.1
  • 188
    • 79551506567 scopus 로고    scopus 로고
    • Brain insulin controls adipose tissue lipolysis and lipogenesis
    • Scherer T, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13:183-194.
    • (2011) Cell Metab , vol.13 , pp. 183-194
    • Scherer, T.1
  • 189
    • 80051810499 scopus 로고    scopus 로고
    • Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice
    • Coomans CP, et al. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice. J Lipid Res. 2011;52:1712-1722.
    • (2011) J Lipid Res , vol.52 , pp. 1712-1722
    • Coomans, C.P.1
  • 190
    • 85019593045 scopus 로고    scopus 로고
    • Insulin receptor signaling in Pomc, but not Agrp, neurons controls adipose tissue insulin action
    • Shin AC, et al. Insulin receptor signaling in Pomc, but not Agrp, neurons controls adipose tissue insulin action. Diabetes. 2017;66:1560–1571.
    • (2017) Diabetes , vol.66 , pp. 1560-1571
    • Shin, A.C.1
  • 191
    • 77952503211 scopus 로고    scopus 로고
    • Pathogenesis of insulin resistance in skeletal muscle
    • Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.
    • (2010) J Biomed Biotechnol , vol.2010 , pp. 476279
    • Abdul-Ghani, M.A.1    DeFronzo, R.A.2
  • 192
    • 0030938616 scopus 로고    scopus 로고
    • Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis
    • DeFronzo RA. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med. 1997;50:191-197.
    • (1997) Neth J Med , vol.50 , pp. 191-197
    • DeFronzo, R.A.1
  • 193
    • 84989193573 scopus 로고    scopus 로고
    • Type 2 diabetes mellitus
    • DeFronzo RA, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.
    • (2015) Nat Rev Dis Primers , vol.1 , pp. 15019
    • DeFronzo, R.A.1
  • 194
    • 0035654626 scopus 로고    scopus 로고
    • Overfeeding rapidly induces leptin and insulin resistance
    • Wang J, et al. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786-2791.
    • (2001) Diabetes , vol.50 , pp. 2786-2791
    • Wang, J.1
  • 195
    • 0036310147 scopus 로고    scopus 로고
    • Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance–is insulin resistance initiated in the adipose tissue?
    • Smith U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance–is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord. 2002;26:897-904.
    • (2002) Int J Obes Relat Metab Disord , vol.26 , pp. 897-904
    • Smith, U.1
  • 196
    • 17944396193 scopus 로고    scopus 로고
    • Adiposity and fat distribution outcome measures: assessment and clinical implications
    • Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res. 2002;10(Suppl. 1):14S-21S.
    • (2002) Obes Res , vol.10 , pp. 14S-21S
    • Aronne, L.J.1    Segal, K.R.2
  • 197
    • 0033595120 scopus 로고    scopus 로고
    • Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes
    • Cline GW, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341:240-246.
    • (1999) N Engl J Med , vol.341 , pp. 240-246
    • Cline, G.W.1
  • 198
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: common threads and missing links
    • Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852-871.
    • (2012) Cell , vol.148 , pp. 852-871
    • Samuel, V.T.1    Shulman, G.I.2
  • 199
    • 70349484212 scopus 로고    scopus 로고
    • MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity
    • Kleinridders A, et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10:249-259.
    • (2009) Cell Metab , vol.10 , pp. 249-259
    • Kleinridders, A.1
  • 200
    • 84996843658 scopus 로고    scopus 로고
    • High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-alpha on appetite-regulating NPY neurons
    • Dalvi PS, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-alpha on appetite-regulating NPY neurons. Int J Obes (Lond). 2017;41:149-158.
    • (2017) Int J Obes (Lond) , vol.41 , pp. 149-158
    • Dalvi, P.S.1
  • 201
    • 84885743311 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis
    • Panzhinskiy E, Ren J, Nair S. Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. PLoS ONE. 2013;8:e77228.
    • (2013) PLoS ONE , vol.8
    • Panzhinskiy, E.1    Ren, J.2    Nair, S.3
  • 202
    • 85009742434 scopus 로고    scopus 로고
    • Deficiency of PTP1B attenuates hypothalamic inflammation via activation of the JAK2-STAT3 pathway in microglia
    • Tsunekawa T, et al. Deficiency of PTP1B attenuates hypothalamic inflammation via activation of the JAK2-STAT3 pathway in microglia. EBioMedicine. 2017;16:172-183.
    • (2017) EBioMedicine , vol.16 , pp. 172-183
    • Tsunekawa, T.1
  • 203
    • 85007460170 scopus 로고    scopus 로고
    • A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation
    • Song GJ, et al. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation. 2016;13:86.
    • (2016) J Neuroinflammation , vol.13 , pp. 86.
    • Song, G.J.1
  • 204
    • 9244219587 scopus 로고    scopus 로고
    • Region-specific leptin resistance within the hypothalamus of diet-induced obese mice
    • Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145:4880-4889.
    • (2004) Endocrinology , vol.145 , pp. 4880-4889
    • Munzberg, H.1    Flier, J.S.2    Bjorbaek, C.3
  • 205
    • 18344379861 scopus 로고    scopus 로고
    • PTP1B regulates leptin signal transduction in vivo
    • Zabolotny JM, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002;2:489-495.
    • (2002) Dev Cell , vol.2 , pp. 489-495
    • Zabolotny, J.M.1
  • 206
    • 84865404028 scopus 로고    scopus 로고
    • Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice
    • Tsou RC, et al. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology. 2012;153:4227-4237.
    • (2012) Endocrinology , vol.153 , pp. 4227-4237
    • Tsou, R.C.1
  • 207
    • 64149130937 scopus 로고    scopus 로고
    • Leptin resistance: a prediposing factor for diet-induced obesity
    • Scarpace PJ, Zhang Y. Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2009;296:R493-R500.
    • (2009) Am J Physiol Regul Integr Comp Physiol , vol.296 , pp. R493-R500
    • Scarpace, P.J.1    Zhang, Y.2
  • 208
    • 77949673935 scopus 로고    scopus 로고
    • PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice
    • Banno R, et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest. 2010;120:720-734.
    • (2010) J Clin Invest , vol.120 , pp. 720-734
    • Banno, R.1
  • 209
    • 85014108547 scopus 로고    scopus 로고
    • Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-alpha dependent mechanisms
    • Bruder-Nascimento T, et al. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-alpha dependent mechanisms. Clin Sci (Lond). 2016;130:881-893.
    • (2016) Clin Sci (Lond) , vol.130 , pp. 881-893
    • Bruder-Nascimento, T.1
  • 210
    • 57849115277 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress plays a central role in development of leptin resistance
    • Ozcan L, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9:35-51.
    • (2009) Cell Metab , vol.9 , pp. 35-51
    • Ozcan, L.1
  • 211
    • 34848848771 scopus 로고    scopus 로고
    • Low cerebrospinal fluid insulin levels in obese humans
    • Kern W, et al. Low cerebrospinal fluid insulin levels in obese humans. Diabetologia. 2006;49:2790-2792.
    • (2006) Diabetologia , vol.49 , pp. 2790-2792
    • Kern, W.1
  • 212
    • 84901334114 scopus 로고    scopus 로고
    • Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia
    • Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci. 2014;6:88.
    • (2014) Front Aging Neurosci , vol.6 , pp. 88
    • Hsu, T.M.1    Kanoski, S.E.2
  • 213
    • 84946011612 scopus 로고    scopus 로고
    • Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans
    • Schur EA, et al. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity (Silver Spring). 2015;23:2142-2148.
    • (2015) Obesity (Silver Spring) , vol.23 , pp. 2142-2148
    • Schur, E.A.1
  • 215
    • 84855459760 scopus 로고    scopus 로고
    • Obesity is associated with hypothalamic injury in rodents and humans
    • Thaler JP, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153-162.
    • (2012) J Clin Invest , vol.122 , pp. 153-162
    • Thaler, J.P.1
  • 216
    • 84905014938 scopus 로고    scopus 로고
    • Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study
    • Berkseth KE, et al. Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study. Endocrinology. 2014;155:2858-2867.
    • (2014) Endocrinology , vol.155 , pp. 2858-2867
    • Berkseth, K.E.1
  • 217
    • 84903173931 scopus 로고    scopus 로고
    • Insulin action in brain regulates systemic metabolism and brain function
    • Kleinridders A, et al. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63:2232-2243.
    • (2014) Diabetes , vol.63 , pp. 2232-2243
    • Kleinridders, A.1
  • 218
    • 84944714835 scopus 로고    scopus 로고
    • Hippocampal insulin resistance and cognitive dysfunction
    • Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660-671.
    • (2015) Nat Rev Neurosci , vol.16 , pp. 660-671
    • Biessels, G.J.1    Reagan, L.P.2
  • 219
    • 77952545095 scopus 로고    scopus 로고
    • Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance
    • McNay EC, et al. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem. 2010;93:546-553.
    • (2010) Neurobiol Learn Mem , vol.93 , pp. 546-553
    • McNay, E.C.1
  • 220
    • 84871295159 scopus 로고    scopus 로고
    • A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats
    • Aime P, et al. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS ONE. 2012;7:e51227.
    • (2012) PLoS ONE , vol.7
    • Aime, P.1
  • 221
    • 84922693194 scopus 로고    scopus 로고
    • Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease
    • Blazquez E, et al. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne). 2014;5:161.
    • (2014) Front Endocrinol (Lausanne) , vol.5 , pp. 161.
    • Blazquez, E.1
  • 222
    • 84873162774 scopus 로고    scopus 로고
    • Hypothalamic tanycytes: potential roles in the control of feeding and energy balance
    • Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36:91-100.
    • (2013) Trends Neurosci , vol.36 , pp. 91-100
    • Bolborea, M.1    Dale, N.2
  • 223
    • 0033944152 scopus 로고    scopus 로고
    • Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats
    • Spanswick D, et al. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci. 2000;3:757-758.
    • (2000) Nat Neurosci , vol.3 , pp. 757-758
    • Spanswick, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.