-
2
-
-
3142517219
-
The effect produced on diabetes by extracts of pancreas
-
Banting FG, Best CH, Collip JB, et al. The effect produced on diabetes by extracts of pancreas. Trans Assoc Am Phys. 1922;37:337-347.
-
(1922)
Trans Assoc Am Phys
, vol.37
, pp. 337-347
-
-
Banting, F.G.1
Best, C.H.2
Collip, J.B.3
-
3
-
-
50749118593
-
The internal secretion of the pancreas
-
Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med. 1922;7:251-266.
-
(1922)
J Lab Clin Med
, vol.7
, pp. 251-266
-
-
Banting, F.G.1
Best, C.H.2
-
6
-
-
0033521130
-
Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats
-
Zhao W, et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem. 1999;274:34893-34902.
-
(1999)
J Biol Chem
, vol.274
, pp. 34893-34902
-
-
Zhao, W.1
-
7
-
-
0024625005
-
Insulin and insulin-like growth factor receptors in the nervous system
-
Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol. 1989;3:71-100.
-
(1989)
Mol Neurobiol
, vol.3
, pp. 71-100
-
-
Adamo, M.1
Raizada, M.K.2
LeRoith, D.3
-
8
-
-
0018090354
-
Insulin receptors are widely distributed in the central nervous system of the rat
-
Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827-829.
-
(1978)
Nature
, vol.272
, pp. 827-829
-
-
Havrankova, J.1
Roth, J.2
Brownstein, M.3
-
9
-
-
0023271871
-
Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry
-
Werther GA, et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology. 1987;121:1562-1570.
-
(1987)
Endocrinology
, vol.121
, pp. 1562-1570
-
-
Werther, G.A.1
-
10
-
-
1842734654
-
Glucose transporter expression in the central nervous system: relationship to synaptic function
-
McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004;490:13-24.
-
(2004)
Eur J Pharmacol
, vol.490
, pp. 13-24
-
-
McEwen, B.S.1
Reagan, L.P.2
-
11
-
-
84902347329
-
Glut4 expression defines an insulin-sensitive hypothalamic neuronal population
-
Ren H, et al. Glut4 expression defines an insulin-sensitive hypothalamic neuronal population. Mol Metab. 2014;3:452-459.
-
(2014)
Mol Metab
, vol.3
, pp. 452-459
-
-
Ren, H.1
-
12
-
-
84875966088
-
Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes
-
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25-53.
-
(2013)
Curr Diabetes Rev
, vol.9
, pp. 25-53
-
-
Fu, Z.1
Gilbert, E.R.2
Liu, D.3
-
13
-
-
0344833819
-
Identification of insulin in rat brain
-
Havrankova J, et al. Identification of insulin in rat brain. Proc Natl Acad Sci USA. 1978;75:5737-5741.
-
(1978)
Proc Natl Acad Sci USA
, vol.75
, pp. 5737-5741
-
-
Havrankova, J.1
-
14
-
-
0031990011
-
Histologic distribution of insulin and glucagon receptors
-
Watanabe M, et al. Histologic distribution of insulin and glucagon receptors. Braz J Med Biol Res. 1998;31:243-256.
-
(1998)
Braz J Med Biol Res
, vol.31
, pp. 243-256
-
-
Watanabe, M.1
-
15
-
-
78651082269
-
Sensory circumventricular organs in health and disease
-
Siso S, Jeffrey M, Gonzalez L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010;120:689-705.
-
(2010)
Acta Neuropathol
, vol.120
, pp. 689-705
-
-
Siso, S.1
Jeffrey, M.2
Gonzalez, L.3
-
16
-
-
0022555988
-
Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography
-
Corp ES, et al. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett. 1986;70:17-22.
-
(1986)
Neurosci Lett
, vol.70
, pp. 17-22
-
-
Corp, E.S.1
-
17
-
-
0025063027
-
Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid
-
Schwartz MW, et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol. 1990;259:E378-E383.
-
(1990)
Am J Physiol
, vol.259
, pp. E378-E383
-
-
Schwartz, M.W.1
-
18
-
-
0022510796
-
Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas
-
Hill JM, et al. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience. 1986;17:1127-1138.
-
(1986)
Neuroscience
, vol.17
, pp. 1127-1138
-
-
Hill, J.M.1
-
19
-
-
0027502573
-
c-Fos expression in rat brain and brainstem nuclei in response to treatments that alter food intake and gastric motility
-
Olson BR, et al. c-Fos expression in rat brain and brainstem nuclei in response to treatments that alter food intake and gastric motility. Mol Cell Neurosci. 1993;4:93-106.
-
(1993)
Mol Cell Neurosci
, vol.4
, pp. 93-106
-
-
Olson, B.R.1
-
20
-
-
45749158925
-
Central insulin action regulates peripheral glucose and fat metabolism in mice
-
Koch L, et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 2008;118:2132-2147.
-
(2008)
J Clin Invest
, vol.118
, pp. 2132-2147
-
-
Koch, L.1
-
21
-
-
77249146406
-
Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons
-
Williams KW, et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci. 2010;30:2472-2479.
-
(2010)
J Neurosci
, vol.30
, pp. 2472-2479
-
-
Williams, K.W.1
-
22
-
-
84897507249
-
Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels
-
Qiu J, et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels. Cell Metab. 2014;19:682-693.
-
(2014)
Cell Metab
, vol.19
, pp. 682-693
-
-
Qiu, J.1
-
23
-
-
79952484959
-
Consumption of a high-fat diet induces central insulin resistance independent of adiposity
-
Clegg DJ, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103:10-16.
-
(2011)
Physiol Behav
, vol.103
, pp. 10-16
-
-
Clegg, D.J.1
-
24
-
-
84880419521
-
Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain
-
Prevot V, Langlet F, Dehouck B. Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain. Aging (Albany NY). 2013;5:332-334.
-
(2013)
Aging (Albany NY)
, vol.5
, pp. 332-334
-
-
Prevot, V.1
Langlet, F.2
Dehouck, B.3
-
25
-
-
84875885054
-
How is the hungry brain like a sieve?
-
Myers MG Jr. How is the hungry brain like a sieve? Cell Metab. 2013;17:467-468.
-
(2013)
Cell Metab
, vol.17
, pp. 467-468
-
-
Myers, M.G.1
-
26
-
-
84875883939
-
Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting
-
Langlet F, et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 2013;17:607-617.
-
(2013)
Cell Metab
, vol.17
, pp. 607-617
-
-
Langlet, F.1
-
27
-
-
0028310417
-
Insulin gene expression and insulin synthesis in mammalian neuronal cells
-
Devaskar SU, et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem. 1994;269:8445-8454.
-
(1994)
J Biol Chem
, vol.269
, pp. 8445-8454
-
-
Devaskar, S.U.1
-
28
-
-
0030757533
-
Insulin responses to a fat meal in hypothalamic microdialysates and plasma
-
Gerozissis K, et al. Insulin responses to a fat meal in hypothalamic microdialysates and plasma. Physiol Behav. 1997;62:767-772.
-
(1997)
Physiol Behav
, vol.62
, pp. 767-772
-
-
Gerozissis, K.1
-
29
-
-
0028910245
-
Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis
-
Orosco M, et al. Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis. Brain Res. 1995;671:149-158.
-
(1995)
Brain Res
, vol.671
, pp. 149-158
-
-
Orosco, M.1
-
30
-
-
84900033899
-
A new look at cerebrospinal fluid circulation
-
Brinker T, et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.
-
(2014)
Fluids Barriers CNS
, vol.11
, pp. 10
-
-
Brinker, T.1
-
31
-
-
76749146826
-
The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review
-
Veening JG, Barendregt HP. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 2010;7:1.
-
(2010)
Cerebrospinal Fluid Res
, vol.7
, pp. 1
-
-
Veening, J.G.1
Barendregt, H.P.2
-
32
-
-
84865123660
-
A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
-
Iliff JJ, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111.
-
(2012)
Sci Transl Med
, vol.4
, pp. 147ra111
-
-
Iliff, J.J.1
-
33
-
-
84893434815
-
Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain
-
Balland E, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19:293-301.
-
(2014)
Cell Metab
, vol.19
, pp. 293-301
-
-
Balland, E.1
-
34
-
-
0032562817
-
Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA
-
Kosaki A, Nelson J, Webster NJ. Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA. J Biol Chem. 1998;273:10331-10337.
-
(1998)
J Biol Chem
, vol.273
, pp. 10331-10337
-
-
Kosaki, A.1
Nelson, J.2
Webster, N.J.3
-
35
-
-
0025362295
-
Functionally distinct insulin receptors generated by tissue-specific alternative splicing
-
Mosthaf L, et al. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990;9:2409-2413.
-
(1990)
EMBO J
, vol.9
, pp. 2409-2413
-
-
Mosthaf, L.1
-
36
-
-
0032932822
-
Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells
-
Frasca F, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278-3288.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 3278-3288
-
-
Frasca, F.1
-
37
-
-
0031454481
-
Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity
-
Hopkins DF, Williams G. Insulin receptors are widely distributed in human brain and bind human and porcine insulin with equal affinity. Diabet Med. 1997;14:1044-1050.
-
(1997)
Diabet Med
, vol.14
, pp. 1044-1050
-
-
Hopkins, D.F.1
Williams, G.2
-
38
-
-
0025612094
-
Localization of insulin receptor mRNA in rat brain by in situ hybridization
-
Marks JL, et al. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology. 1990;127:3234-3236.
-
(1990)
Endocrinology
, vol.127
, pp. 3234-3236
-
-
Marks, J.L.1
-
39
-
-
70849120946
-
Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease
-
Belfiore A, et al. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586-623.
-
(2009)
Endocr Rev
, vol.30
, pp. 586-623
-
-
Belfiore, A.1
-
40
-
-
84858631674
-
The many faces of insulin-like peptide signalling in the brain
-
Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13:225-239.
-
(2012)
Nat Rev Neurosci
, vol.13
, pp. 225-239
-
-
Fernandez, A.M.1
Torres-Aleman, I.2
-
41
-
-
79961004321
-
Signalling by insulin and IGF receptors: supporting acts and new players
-
Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47:R1-R10.
-
(2011)
J Mol Endocrinol
, vol.47
, pp. R1-R10
-
-
Siddle, K.1
-
42
-
-
0030693249
-
Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting
-
Bailyes EM, et al. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J. 1997;327:209-215.
-
(1997)
Biochem J
, vol.327
, pp. 209-215
-
-
Bailyes, E.M.1
-
43
-
-
0024848790
-
Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture
-
Shemer J, et al. Insulin and IGF-I stimulate phosphorylation of their respective receptors in intact neuronal and glial cells in primary culture. J Mol Neurosci. 1989;1:3-8.
-
(1989)
J Mol Neurosci
, vol.1
, pp. 3-8
-
-
Shemer, J.1
-
44
-
-
84997107892
-
Deciphering brain insulin receptor and insulin-like growth factor 1 receptor signalling
-
Kleinridders A. Deciphering brain insulin receptor and insulin-like growth factor 1 receptor signalling. J Neuroendocrinol. 2016;28:https://doi.org/10.1111/jne.12433.
-
(2016)
J Neuroendocrinol
, vol.28
-
-
Kleinridders, A.1
-
45
-
-
0022413708
-
Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro
-
White MF, Takayama S, Kahn CR. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro. J Biol Chem. 1985;260:9470-9478.
-
(1985)
J Biol Chem
, vol.260
, pp. 9470-9478
-
-
White, M.F.1
Takayama, S.2
Kahn, C.R.3
-
46
-
-
11844295386
-
Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP
-
Galic S, et al. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol. 2005;25:819-829.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 819-829
-
-
Galic, S.1
-
47
-
-
0028032895
-
Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene
-
Araki E, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186-190.
-
(1994)
Nature
, vol.372
, pp. 186-190
-
-
Araki, E.1
-
48
-
-
0028032894
-
Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1
-
Tamemoto H, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372:182-186.
-
(1994)
Nature
, vol.372
, pp. 182-186
-
-
Tamemoto, H.1
-
49
-
-
0043127453
-
Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation
-
Schubert M, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci. 2003;23:7084-7092.
-
(2003)
J Neurosci
, vol.23
, pp. 7084-7092
-
-
Schubert, M.1
-
50
-
-
0032567937
-
Disruption of IRS-2 causes type 2 diabetes in mice
-
Withers DJ, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900-904.
-
(1998)
Nature
, vol.391
, pp. 900-904
-
-
Withers, D.J.1
-
51
-
-
0038339520
-
Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold
-
Torsoni MA, et al. Molecular and functional resistance to insulin in hypothalamus of rats exposed to cold. Am J Physiol Endocrinol Metab. 2003;285:E216-E223.
-
(2003)
Am J Physiol Endocrinol Metab
, vol.285
, pp. E216-E223
-
-
Torsoni, M.A.1
-
52
-
-
34547097247
-
Brain IRS2 signaling coordinates life span and nutrient homeostasis
-
Taguchi A, Wartschow LM, White MF. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science. 2007;317:369-372.
-
(2007)
Science
, vol.317
, pp. 369-372
-
-
Taguchi, A.1
Wartschow, L.M.2
White, M.F.3
-
53
-
-
84954379006
-
Regulation of blood pressure, appetite, and glucose by leptin after inactivation of insulin receptor substrate 2 signaling in the entire brain or in proopiomelanocortin neurons
-
do Carmo JM, et al. Regulation of blood pressure, appetite, and glucose by leptin after inactivation of insulin receptor substrate 2 signaling in the entire brain or in proopiomelanocortin neurons. Hypertension. 2016;67:378-386.
-
(2016)
Hypertension
, vol.67
, pp. 378-386
-
-
do Carmo, J.M.1
-
54
-
-
84860451500
-
IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action
-
Sadagurski M, et al. IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action. Cell Metab. 2012;15:703-712.
-
(2012)
Cell Metab
, vol.15
, pp. 703-712
-
-
Sadagurski, M.1
-
55
-
-
0032853976
-
Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain
-
Numan S, Russell DS. Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain. Brain Res Mol Brain Res. 1999;72:97-102.
-
(1999)
Brain Res Mol Brain Res
, vol.72
, pp. 97-102
-
-
Numan, S.1
Russell, D.S.2
-
56
-
-
0033956283
-
Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis
-
Fantin VR, et al. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab. 2000;278:E127-E133.
-
(2000)
Am J Physiol Endocrinol Metab
, vol.278
, pp. E127-E133
-
-
Fantin, V.R.1
-
57
-
-
84895092552
-
Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis
-
Sadagurski M, et al. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol Metab. 2014;3:55-63.
-
(2014)
Mol Metab
, vol.3
, pp. 55-63
-
-
Sadagurski, M.1
-
58
-
-
0043207600
-
Regulation of insulin receptor substrate-2 tyrosine phosphorylation in animal models of insulin resistance
-
Rojas FA, Hirata AE, Saad MJ. Regulation of insulin receptor substrate-2 tyrosine phosphorylation in animal models of insulin resistance. Endocrine. 2003;21:115-122.
-
(2003)
Endocrine
, vol.21
, pp. 115-122
-
-
Rojas, F.A.1
Hirata, A.E.2
Saad, M.J.3
-
59
-
-
84943405749
-
Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling
-
Zhang ZY, Dodd GT, Tiganis T. Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol Sci. 2015;36:661-674.
-
(2015)
Trends Pharmacol Sci
, vol.36
, pp. 661-674
-
-
Zhang, Z.Y.1
Dodd, G.T.2
Tiganis, T.3
-
60
-
-
84920972410
-
Leptin and insulin act on POMC neurons to promote the browning of white fat
-
Dodd GT, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell. 2015;160:88-104.
-
(2015)
Cell
, vol.160
, pp. 88-104
-
-
Dodd, G.T.1
-
61
-
-
67349115357
-
Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons
-
Mayer CM, Belsham DD. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons. Mol Cell Endocrinol. 2009;307:99-108.
-
(2009)
Mol Cell Endocrinol
, vol.307
, pp. 99-108
-
-
Mayer, C.M.1
Belsham, D.D.2
-
62
-
-
33846945811
-
Protein tyrosine phosphatase function: the substrate perspective
-
Tiganis T, Bennett AM. Protein tyrosine phosphatase function: the substrate perspective. Biochem J. 2007;402:1-15.
-
(2007)
Biochem J
, vol.402
, pp. 1-15
-
-
Tiganis, T.1
Bennett, A.M.2
-
63
-
-
0037371765
-
Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP
-
Galic S, et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol. 2003;23:2096-2108.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 2096-2108
-
-
Galic, S.1
-
64
-
-
4444233558
-
Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B
-
Meng TC, et al. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem. 2004;279:37716-37725.
-
(2004)
J Biol Chem
, vol.279
, pp. 37716-37725
-
-
Meng, T.C.1
-
65
-
-
77955352846
-
T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis
-
Fukushima A, et al. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes. 2010;59:1906-1914.
-
(2010)
Diabetes
, vol.59
, pp. 1906-1914
-
-
Fukushima, A.1
-
66
-
-
33746810001
-
Neuronal PTP1B regulates body weight, adiposity and leptin action
-
Bence KK, et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12:917-924.
-
(2006)
Nat Med
, vol.12
, pp. 917-924
-
-
Bence, K.K.1
-
67
-
-
0033525870
-
Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
-
Elchebly M, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283:1544-1548.
-
(1999)
Science
, vol.283
, pp. 1544-1548
-
-
Elchebly, M.1
-
68
-
-
0033942614
-
Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice
-
Klaman LD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol. 2000;20:5479-5489.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 5479-5489
-
-
Klaman, L.D.1
-
69
-
-
62749115187
-
Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress
-
Delibegovic M, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58:590-599.
-
(2009)
Diabetes
, vol.58
, pp. 590-599
-
-
Delibegovic, M.1
-
70
-
-
47949090359
-
Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats
-
Picardi PK, et al. Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology. 2008;149:3870-3880.
-
(2008)
Endocrinology
, vol.149
, pp. 3870-3880
-
-
Picardi, P.K.1
-
71
-
-
84907014635
-
Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice
-
Chiappini F, et al. Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice. J Clin Invest. 2014;124:3781-3792.
-
(2014)
J Clin Invest
, vol.124
, pp. 3781-3792
-
-
Chiappini, F.1
-
72
-
-
84895544568
-
Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity
-
Wunderlich CM, Hovelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAKSTAT. 2013;2:e23878.
-
(2013)
JAKSTAT
, vol.2
, pp. e23878
-
-
Wunderlich, C.M.1
Hovelmeyer, N.2
Wunderlich, F.T.3
-
73
-
-
59849086607
-
The role of SOCS-3 protein in leptin resistance and obesity
-
Lubis AR, et al. The role of SOCS-3 protein in leptin resistance and obesity. Acta Med Indones. 2008;40:89-95.
-
(2008)
Acta Med Indones
, vol.40
, pp. 89-95
-
-
Lubis, A.R.1
-
74
-
-
0034548763
-
Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor
-
Eyckerman S, et al. Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett. 2000;486:33-37.
-
(2000)
FEBS Lett
, vol.486
, pp. 33-37
-
-
Eyckerman, S.1
-
75
-
-
0032014178
-
Identification of SOCS-3 as a potential mediator of central leptin resistance
-
Bjorbaek C, et al. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell. 1998;1:619-625.
-
(1998)
Mol Cell
, vol.1
, pp. 619-625
-
-
Bjorbaek, C.1
-
76
-
-
4544256147
-
Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling
-
Shi H, et al. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem. 2004;279:34733-34740.
-
(2004)
J Biol Chem
, vol.279
, pp. 34733-34740
-
-
Shi, H.1
-
77
-
-
0033569730
-
The role of SOCS-3 in leptin signaling and leptin resistance
-
Bjorbaek C, et al. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem. 1999;274:30059-30065.
-
(1999)
J Biol Chem
, vol.274
, pp. 30059-30065
-
-
Bjorbaek, C.1
-
78
-
-
0001421697
-
SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985
-
Bjorbak C, et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000;275:40649-40657.
-
(2000)
J Biol Chem
, vol.275
, pp. 40649-40657
-
-
Bjorbak, C.1
-
79
-
-
17844401180
-
Molecular and anatomical determinants of central leptin resistance
-
Munzberg H, Myers MG Jr. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8:566-570.
-
(2005)
Nat Neurosci
, vol.8
, pp. 566-570
-
-
Munzberg, H.1
Myers, M.G.2
-
80
-
-
3142782772
-
Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3
-
Howard JK, et al. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med. 2004;10:734-738.
-
(2004)
Nat Med
, vol.10
, pp. 734-738
-
-
Howard, J.K.1
-
81
-
-
33644782904
-
Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance
-
Shi H, et al. Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes. 2006;55:699-707.
-
(2006)
Diabetes
, vol.55
, pp. 699-707
-
-
Shi, H.1
-
82
-
-
0022513580
-
Dependence of food intake on acute and chronic ventricular administration of insulin
-
Plata-Salaman CR, Oomura Y, Shimizu N. Dependence of food intake on acute and chronic ventricular administration of insulin. Physiol Behav. 1986;37:717-734.
-
(1986)
Physiol Behav
, vol.37
, pp. 717-734
-
-
Plata-Salaman, C.R.1
Oomura, Y.2
Shimizu, N.3
-
83
-
-
77951194676
-
Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis
-
Reed AS, et al. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes. 2010;59:894-906.
-
(2010)
Diabetes
, vol.59
, pp. 894-906
-
-
Reed, A.S.1
-
84
-
-
2942628012
-
Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms
-
Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434-5446.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 5434-5446
-
-
Ueki, K.1
Kondo, T.2
Kahn, C.R.3
-
85
-
-
0036830636
-
SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2
-
Rui L, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002;277:42394-42398.
-
(2002)
J Biol Chem
, vol.277
, pp. 42394-42398
-
-
Rui, L.1
-
86
-
-
3142723983
-
Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity
-
Mori H, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10:739-743.
-
(2004)
Nat Med
, vol.10
, pp. 739-743
-
-
Mori, H.1
-
87
-
-
33746537247
-
Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells
-
Kievit P, et al. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metab. 2006;4:123-132.
-
(2006)
Cell Metab
, vol.4
, pp. 123-132
-
-
Kievit, P.1
-
88
-
-
84906275240
-
Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity
-
Pedroso JA, et al. Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol Metab. 2014;3:608-618.
-
(2014)
Mol Metab
, vol.3
, pp. 608-618
-
-
Pedroso, J.A.1
-
89
-
-
84874236315
-
Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance
-
Olofsson LE, et al. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci USA. 2013;110:E697-E706.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E697-E706
-
-
Olofsson, L.E.1
-
90
-
-
0036558064
-
Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats
-
Davidson AJ, et al. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats. Physiol Behav. 2002;76:21-26.
-
(2002)
Physiol Behav
, vol.76
, pp. 21-26
-
-
Davidson, A.J.1
-
91
-
-
80455122701
-
Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance
-
Loh K, et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 2011;14:684-699.
-
(2011)
Cell Metab
, vol.14
, pp. 684-699
-
-
Loh, K.1
-
92
-
-
47249148827
-
Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo
-
Zabolotny JM, et al. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283:14230-14241.
-
(2008)
J Biol Chem
, vol.283
, pp. 14230-14241
-
-
Zabolotny, J.M.1
-
93
-
-
84856036647
-
Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity
-
Gamber KM, et al. Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS ONE. 2012;7:e30485.
-
(2012)
PLoS ONE
, vol.7
-
-
Gamber, K.M.1
-
94
-
-
84913530022
-
Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis
-
Williams KW, et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 2014;20:471-482.
-
(2014)
Cell Metab
, vol.20
, pp. 471-482
-
-
Williams, K.W.1
-
95
-
-
77951896006
-
Functional magnetic resonance imaging and c-Fos mapping in rats following a glucoprivic dose of 2-deoxy-D-glucose
-
Dodd GT, Williams SR, Luckman SM. Functional magnetic resonance imaging and c-Fos mapping in rats following a glucoprivic dose of 2-deoxy-D-glucose. J Neurochem. 2010;113:1123-1132.
-
(2010)
J Neurochem
, vol.113
, pp. 1123-1132
-
-
Dodd, G.T.1
Williams, S.R.2
Luckman, S.M.3
-
96
-
-
84947614766
-
Impaired insulin action in the human brain: causes and metabolic consequences
-
Heni M, et al. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11:701-711.
-
(2015)
Nat Rev Endocrinol
, vol.11
, pp. 701-711
-
-
Heni, M.1
-
97
-
-
84929741877
-
Insulin action in the human brain: evidence from neuroimaging studies
-
Kullmann S, et al. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol. 2015;27:419-423.
-
(2015)
J Neuroendocrinol
, vol.27
, pp. 419-423
-
-
Kullmann, S.1
-
98
-
-
0032856158
-
Altered hypothalamic function in response to glucose ingestion in obese humans
-
Matsuda M, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801-1806.
-
(1999)
Diabetes
, vol.48
, pp. 1801-1806
-
-
Matsuda, M.1
-
99
-
-
84899966578
-
Mapping glucose-mediated gut-to-brain signalling pathways in humans
-
Little TJ, et al. Mapping glucose-mediated gut-to-brain signalling pathways in humans. NeuroImage. 2014;96:1-11.
-
(2014)
NeuroImage
, vol.96
, pp. 1-11
-
-
Little, T.J.1
-
100
-
-
84893766301
-
Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults
-
Heni M, et al. Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Hum Brain Mapp. 2014;35:918-928.
-
(2014)
Hum Brain Mapp
, vol.35
, pp. 918-928
-
-
Heni, M.1
-
101
-
-
16244398656
-
Functional MRI of human hypothalamic responses following glucose ingestion
-
Smeets PA, et al. Functional MRI of human hypothalamic responses following glucose ingestion. NeuroImage. 2005;24:363-368.
-
(2005)
NeuroImage
, vol.24
, pp. 363-368
-
-
Smeets, P.A.1
-
102
-
-
84871750355
-
Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways
-
Page KA, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA. 2013;309:63-70.
-
(2013)
JAMA
, vol.309
, pp. 63-70
-
-
Page, K.A.1
-
103
-
-
0030932292
-
Effect of intracerebroventricular and intravenous insulin on Fos-immunoreactivity in the rat brain
-
Porter JP, Bokil HS. Effect of intracerebroventricular and intravenous insulin on Fos-immunoreactivity in the rat brain. Neurosci Lett. 1997;224:161-164.
-
(1997)
Neurosci Lett
, vol.224
, pp. 161-164
-
-
Porter, J.P.1
Bokil, H.S.2
-
104
-
-
84870624154
-
Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis
-
Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012;13:1079-1086.
-
(2012)
EMBO Rep
, vol.13
, pp. 1079-1086
-
-
Varela, L.1
Horvath, T.L.2
-
105
-
-
84941881716
-
Hypothalamic PKA regulates leptin sensitivity and adiposity
-
Yang L, McKnight GS. Hypothalamic PKA regulates leptin sensitivity and adiposity. Nat Commun. 2015;6:8237.
-
(2015)
Nat Commun
, vol.6
, pp. 8237
-
-
Yang, L.1
McKnight, G.S.2
-
106
-
-
84962667977
-
Neurotrophic factor control of satiety and body weight
-
Xu B, Xie X. Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci. 2016;17:282-292.
-
(2016)
Nat Rev Neurosci
, vol.17
, pp. 282-292
-
-
Xu, B.1
Xie, X.2
-
107
-
-
27344431720
-
NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates
-
Luquet S, et al. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310:683-685.
-
(2005)
Science
, vol.310
, pp. 683-685
-
-
Luquet, S.1
-
108
-
-
27344433932
-
Agouti-related peptide-expressing neurons are mandatory for feeding
-
Gropp E, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005;8:1289-1291.
-
(2005)
Nat Neurosci
, vol.8
, pp. 1289-1291
-
-
Gropp, E.1
-
109
-
-
79953307878
-
Rapid, reversible activation of AgRP neurons drives feeding behavior in mice
-
Krashes MJ, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest. 2011;121:1424-1428.
-
(2011)
J Clin Invest
, vol.121
, pp. 1424-1428
-
-
Krashes, M.J.1
-
110
-
-
35348848018
-
The role of proopiomelanocortin (POMC) neurones in feeding behaviour
-
Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond). 2007;4:18.
-
(2007)
Nutr Metab (Lond)
, vol.4
, pp. 18
-
-
Millington, G.W.1
-
111
-
-
84978730641
-
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism
-
Roh E, Song do K, Kim MS. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med. 2016;48:e216
-
(2016)
Exp Mol Med
, vol.48
-
-
Roh, E.1
Song do, K.2
Kim, M.S.3
-
112
-
-
84866686337
-
Synaptic plasticity in neuronal circuits regulating energy balance
-
Zeltser LM, Seeley RJ, Tschop MH. Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci. 2012;15:1336-1342.
-
(2012)
Nat Neurosci
, vol.15
, pp. 1336-1342
-
-
Zeltser, L.M.1
Seeley, R.J.2
Tschop, M.H.3
-
113
-
-
1842529267
-
Rapid rewiring of arcuate nucleus feeding circuits by leptin
-
Pinto S, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110-115.
-
(2004)
Science
, vol.304
, pp. 110-115
-
-
Pinto, S.1
-
114
-
-
0035709038
-
The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis
-
Cone RD, et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord. 2001;25(Suppl. 5):S63-S67.
-
(2001)
Int J Obes Relat Metab Disord
, vol.25
, pp. S63-S67
-
-
Cone, R.D.1
-
115
-
-
0031888157
-
Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin
-
Mizuno TM, et al. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes. 1998;47:294-297.
-
(1998)
Diabetes
, vol.47
, pp. 294-297
-
-
Mizuno, T.M.1
-
116
-
-
0035942777
-
Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus
-
Cowley MA, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480-484.
-
(2001)
Nature
, vol.411
, pp. 480-484
-
-
Cowley, M.A.1
-
117
-
-
0037713312
-
Electrophysiological actions of peripheral hormones on melanocortin neurons
-
Cowley MA, et al. Electrophysiological actions of peripheral hormones on melanocortin neurons. Ann N Y Acad Sci. 2003;994:175-186.
-
(2003)
Ann N Y Acad Sci
, vol.994
, pp. 175-186
-
-
Cowley, M.A.1
-
118
-
-
14244254196
-
Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons
-
Takahashi KA, Cone RD. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology. 2005;146:1043-1047.
-
(2005)
Endocrinology
, vol.146
, pp. 1043-1047
-
-
Takahashi, K.A.1
Cone, R.D.2
-
119
-
-
0026463547
-
Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis
-
Horvath TL, et al. Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology. 1992;131:2461-2467.
-
(1992)
Endocrinology
, vol.131
, pp. 2461-2467
-
-
Horvath, T.L.1
-
120
-
-
0033562892
-
Leptin binding in the arcuate nucleus is increased during fasting
-
Baskin DG, et al. Leptin binding in the arcuate nucleus is increased during fasting. Brain Res. 1999;828:154-158.
-
(1999)
Brain Res
, vol.828
, pp. 154-158
-
-
Baskin, D.G.1
-
121
-
-
33846046623
-
Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals
-
Gao Q, et al. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med. 2007;13:89-94.
-
(2007)
Nat Med
, vol.13
, pp. 89-94
-
-
Gao, Q.1
-
122
-
-
78049525571
-
Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice
-
Gyengesi E, et al. Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology. 2010;151:5395-5402.
-
(2010)
Endocrinology
, vol.151
, pp. 5395-5402
-
-
Gyengesi, E.1
-
123
-
-
84863012024
-
Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone
-
Liu T, et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron. 2012;73:511-522.
-
(2012)
Neuron
, vol.73
, pp. 511-522
-
-
Liu, T.1
-
124
-
-
80052922112
-
Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop
-
Yang Y, et al. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell. 2011;146:992-1003.
-
(2011)
Cell
, vol.146
, pp. 992-1003
-
-
Yang, Y.1
-
125
-
-
77956241193
-
Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity
-
Dietrich MO, et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J Neurosci. 2010;30:11815-11825.
-
(2010)
J Neurosci
, vol.30
, pp. 11815-11825
-
-
Dietrich, M.O.1
-
126
-
-
77957053600
-
Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity
-
Horvath TL, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci USA. 2010;107:14875-14880.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 14875-14880
-
-
Horvath, T.L.1
-
127
-
-
27744457512
-
Topographic mapping of VMH –> arcuate nucleus microcircuits and their reorganization by fasting
-
Sternson SM, Shepherd GM, Friedman JM. Topographic mapping of VMH –> arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci. 2005;8:1356-1363.
-
(2005)
Nat Neurosci
, vol.8
, pp. 1356-1363
-
-
Sternson, S.M.1
Shepherd, G.M.2
Friedman, J.M.3
-
128
-
-
84927774781
-
Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons
-
Wang D, et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat. 2015;9:40.
-
(2015)
Front Neuroanat
, vol.9
, pp. 40
-
-
Wang, D.1
-
129
-
-
84961792763
-
AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue
-
Steculorum SM, et al. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell. 2016;165:125-138.
-
(2016)
Cell
, vol.165
, pp. 125-138
-
-
Steculorum, S.M.1
-
130
-
-
79959652223
-
High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons
-
Klockener T, et al. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci. 2011;14:911-918.
-
(2011)
Nat Neurosci
, vol.14
, pp. 911-918
-
-
Klockener, T.1
-
131
-
-
85002839751
-
Insulin-dependent activation of MCH neurons impairs locomotor activity and insulin sensitivity in obesity
-
Hausen AC, et al. Insulin-dependent activation of MCH neurons impairs locomotor activity and insulin sensitivity in obesity. Cell Rep. 2016;17:2512-2521.
-
(2016)
Cell Rep
, vol.17
, pp. 2512-2521
-
-
Hausen, A.C.1
-
132
-
-
84981295660
-
Astrocytic insulin signaling couples brain glucose uptake with nutrient availability
-
Garcia-Caceres C, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166:867-880.
-
(2016)
Cell
, vol.166
, pp. 867-880
-
-
Garcia-Caceres, C.1
-
133
-
-
79958026765
-
Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis
-
Konner AC, et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011;13:720-728.
-
(2011)
Cell Metab
, vol.13
, pp. 720-728
-
-
Konner, A.C.1
-
134
-
-
79955935863
-
The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects
-
Guthoff M, et al. The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS ONE. 2011;6:e19482.
-
(2011)
PLoS ONE
, vol.6
-
-
Guthoff, M.1
-
135
-
-
76149103529
-
Insulin modulates food-related activity in the central nervous system
-
Guthoff M, et al. Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab. 2010;95:748-755.
-
(2010)
J Clin Endocrinol Metab
, vol.95
, pp. 748-755
-
-
Guthoff, M.1
-
136
-
-
84938302676
-
Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults
-
Kullmann S, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38:1044-1050.
-
(2015)
Diabetes Care
, vol.38
, pp. 1044-1050
-
-
Kullmann, S.1
-
137
-
-
84883797806
-
(Still) longing for food: insulin reactivity modulates response to food pictures
-
Kroemer NB, et al. (Still) longing for food: insulin reactivity modulates response to food pictures. Hum Brain Mapp. 2013;34:2367-2380.
-
(2013)
Hum Brain Mapp
, vol.34
, pp. 2367-2380
-
-
Kroemer, N.B.1
-
138
-
-
84962114196
-
Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes
-
Zhang H, et al. Intranasal insulin enhanced resting-state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes. 2015;64:1025-1034.
-
(2015)
Diabetes
, vol.64
, pp. 1025-1034
-
-
Zhang, H.1
-
139
-
-
77954176653
-
Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions
-
Winocur G, Moscovitch M, Bontempi B. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia. 2010;48:2339-2356.
-
(2010)
Neuropsychologia
, vol.48
, pp. 2339-2356
-
-
Winocur, G.1
Moscovitch, M.2
Bontempi, B.3
-
140
-
-
70349285955
-
Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent
-
Grillo CA, et al. Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res. 2009;1296:35-45.
-
(2009)
Brain Res
, vol.1296
, pp. 35-45
-
-
Grillo, C.A.1
-
141
-
-
0030988864
-
Regional differences in cannabinoid receptor/G-protein coupling in rat brain
-
Breivogel CS, Sim LJ, Childers SR. Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J Pharmacol Exp Ther. 1997;282:1632-1642.
-
(1997)
J Pharmacol Exp Ther
, vol.282
, pp. 1632-1642
-
-
Breivogel, C.S.1
Sim, L.J.2
Childers, S.R.3
-
142
-
-
76249124415
-
Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat
-
Dodd GT, et al. Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience. 2009;163:1192-1200.
-
(2009)
Neuroscience
, vol.163
, pp. 1192-1200
-
-
Dodd, G.T.1
-
143
-
-
84857034930
-
Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism
-
Ott V, et al. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism. Diabetes Obes Metab. 2012;14:214-221.
-
(2012)
Diabetes Obes Metab
, vol.14
, pp. 214-221
-
-
Ott, V.1
-
144
-
-
0034703229
-
Role of brain insulin receptor in control of body weight and reproduction
-
Bruning JC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122-2125.
-
(2000)
Science
, vol.289
, pp. 2122-2125
-
-
Bruning, J.C.1
-
145
-
-
0036267472
-
Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats
-
Obici S, et al. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci. 2002;5:566-572.
-
(2002)
Nat Neurosci
, vol.5
, pp. 566-572
-
-
Obici, S.1
-
146
-
-
0036913187
-
Hypothalamic insulin signaling is required for inhibition of glucose production
-
Obici S, et al. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376-1382.
-
(2002)
Nat Med
, vol.8
, pp. 1376-1382
-
-
Obici, S.1
-
147
-
-
0018621289
-
Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons
-
Woods SC, et al. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503-505.
-
(1979)
Nature
, vol.282
, pp. 503-505
-
-
Woods, S.C.1
-
148
-
-
0025947341
-
Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I
-
Foster LA, Ames NK, Emery RS. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav. 1991;50:745-749.
-
(1991)
Physiol Behav
, vol.50
, pp. 745-749
-
-
Foster, L.A.1
Ames, N.K.2
Emery, R.S.3
-
149
-
-
84941644382
-
Inconsistencies in the hypophagic action of intracerebroventricular insulin in mice
-
Mc Allister E, et al. Inconsistencies in the hypophagic action of intracerebroventricular insulin in mice. Physiol Behav. 2015;151:623-628.
-
(2015)
Physiol Behav
, vol.151
, pp. 623-628
-
-
Mc Allister, E.1
-
150
-
-
33845448933
-
Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice
-
Brown LM, et al. Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice. Physiol Behav. 2006;89:687-691.
-
(2006)
Physiol Behav
, vol.89
, pp. 687-691
-
-
Brown, L.M.1
-
151
-
-
67650257653
-
Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism
-
Jaillard T, et al. Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition: an NADPH oxidase-dependent mechanism. Diabetes. 2009;58:1544-1549.
-
(2009)
Diabetes
, vol.58
, pp. 1544-1549
-
-
Jaillard, T.1
-
152
-
-
0036202441
-
Acute third ventricular administration of insulin decreases food intake in two paradigms
-
Air EL, et al. Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol Biochem Behav. 2002;72:423-429.
-
(2002)
Pharmacol Biochem Behav
, vol.72
, pp. 423-429
-
-
Air, E.L.1
-
153
-
-
84871319731
-
Inconsistencies in the assessment of food intake
-
Woods SC, Langhans W. Inconsistencies in the assessment of food intake. Am J Physiol Endocrinol Metab. 2012;303:E1408-E1418.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
, pp. E1408-E1418
-
-
Woods, S.C.1
Langhans, W.2
-
154
-
-
73549099979
-
Evaluation of the lack of anorectic effect of intracerebroventricular insulin in rats
-
Jessen L, Clegg DJ, Bouman SD. Evaluation of the lack of anorectic effect of intracerebroventricular insulin in rats. Am J Physiol Regul Integr Comp Physiol. 2010;298:R43-R50.
-
(2010)
Am J Physiol Regul Integr Comp Physiol
, vol.298
, pp. R43-R50
-
-
Jessen, L.1
Clegg, D.J.2
Bouman, S.D.3
-
155
-
-
33646547197
-
In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain
-
Nagaraja TN, et al. In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res. 2005;2:5.
-
(2005)
Cerebrospinal Fluid Res
, vol.2
, pp. 5.
-
-
Nagaraja, T.N.1
-
156
-
-
21444436722
-
Highlighting the positive impact of increasing feeding frequency on metabolism and weight management
-
Louis-Sylvestre J, et al. Highlighting the positive impact of increasing feeding frequency on metabolism and weight management. Forum Nutr. 2003;56:126-128.
-
(2003)
Forum Nutr
, vol.56
, pp. 126-128
-
-
Louis-Sylvestre, J.1
-
157
-
-
80051589489
-
Acute, short-term hyperinsulinemia increases olfactory threshold in healthy subjects
-
Ketterer C, et al. Acute, short-term hyperinsulinemia increases olfactory threshold in healthy subjects. Int J Obes (Lond). 2011;35:1135-1138.
-
(2011)
Int J Obes (Lond)
, vol.35
, pp. 1135-1138
-
-
Ketterer, C.1
-
158
-
-
84885191812
-
Intranasal insulin reduces olfactory sensitivity in normosmic humans
-
Brunner YF, Benedict C, Freiherr J. Intranasal insulin reduces olfactory sensitivity in normosmic humans. J Clin Endocrinol Metab. 2013;98:E1626-E1630.
-
(2013)
J Clin Endocrinol Metab
, vol.98
, pp. E1626-E1630
-
-
Brunner, Y.F.1
Benedict, C.2
Freiherr, J.3
-
159
-
-
84911916822
-
Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men
-
Heni M, et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes. 2014;63:4083-4088.
-
(2014)
Diabetes
, vol.63
, pp. 4083-4088
-
-
Heni, M.1
-
160
-
-
84921779810
-
Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness
-
Chong AC, et al. Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness. Mol Metab. 2015;4:83-92.
-
(2015)
Mol Metab
, vol.4
, pp. 83-92
-
-
Chong, A.C.1
-
161
-
-
34249651956
-
Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production
-
Konner AC, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5:438-449.
-
(2007)
Cell Metab
, vol.5
, pp. 438-449
-
-
Konner, A.C.1
-
162
-
-
85018636776
-
Insulin controls food intake and energy balance via NPY neurons
-
Loh K, et al. Insulin controls food intake and energy balance via NPY neurons. Mol Metab. 2017;6:574-584.
-
(2017)
Mol Metab
, vol.6
, pp. 574-584
-
-
Loh, K.1
-
163
-
-
84873518501
-
Adaptive thermogenesis in adipocytes: is beige the new brown?
-
Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27:234-250.
-
(2013)
Genes Dev
, vol.27
, pp. 234-250
-
-
Wu, J.1
Cohen, P.2
Spiegelman, B.M.3
-
164
-
-
84946611387
-
Human brown adipose tissue: what we have learned so far
-
Betz MJ, Enerback S. Human brown adipose tissue: what we have learned so far. Diabetes. 2015;64:2352-2360.
-
(2015)
Diabetes
, vol.64
, pp. 2352-2360
-
-
Betz, M.J.1
Enerback, S.2
-
165
-
-
84943402947
-
Brown and beige fat: physiological roles beyond heat generation
-
Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22:546-559.
-
(2015)
Cell Metab
, vol.22
, pp. 546-559
-
-
Kajimura, S.1
Spiegelman, B.M.2
Seale, P.3
-
166
-
-
84962076500
-
Brown and beige fat: molecular parts of a thermogenic machine
-
Cohen P, Spiegelman BM. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes. 2015;64:2346-2351.
-
(2015)
Diabetes
, vol.64
, pp. 2346-2351
-
-
Cohen, P.1
Spiegelman, B.M.2
-
167
-
-
84892727198
-
What we talk about when we talk about fat
-
Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20-44.
-
(2014)
Cell
, vol.156
, pp. 20-44
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
168
-
-
84962821261
-
Mitochondria in white, brown, and beige adipocytes
-
Cedikova M, et al. Mitochondria in white, brown, and beige adipocytes. Stem Cells Int. 2016;2016:6067349.
-
(2016)
Stem Cells Int
, vol.2016
, pp. 6067349.
-
-
Cedikova, M.1
-
169
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252-1263.
-
(2013)
Nat Med
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
170
-
-
0020803772
-
Role of insulin in thermogenic responses to refeeding in 3-day-fasted rats
-
Rothwell NJ, Saville ME, Stock MJ. Role of insulin in thermogenic responses to refeeding in 3-day-fasted rats. Am J Physiol. 1983;245:E160-E165.
-
(1983)
Am J Physiol
, vol.245
, pp. E160-E165
-
-
Rothwell, N.J.1
Saville, M.E.2
Stock, M.J.3
-
171
-
-
0025916854
-
Insulin and the paraventricular hypothalamus: modulation of energy balance
-
Menendez JA, Atrens DM. Insulin and the paraventricular hypothalamus: modulation of energy balance. Brain Res. 1991;555:193-201.
-
(1991)
Brain Res
, vol.555
, pp. 193-201
-
-
Menendez, J.A.1
Atrens, D.M.2
-
172
-
-
77955854156
-
Differential effects of insulin on sympathetic nerve activity in agouti obese mice
-
Morgan DA, Rahmouni K. Differential effects of insulin on sympathetic nerve activity in agouti obese mice. J Hypertens. 2010;28:1913-1919.
-
(2010)
J Hypertens
, vol.28
, pp. 1913-1919
-
-
Morgan, D.A.1
Rahmouni, K.2
-
173
-
-
0028840194
-
Mechanisms of insulin action on sympathetic nerve activity
-
Muntzel MS, et al. Mechanisms of insulin action on sympathetic nerve activity. Clin Exp Hypertens. 1995;17:39-50.
-
(1995)
Clin Exp Hypertens
, vol.17
, pp. 39-50
-
-
Muntzel, M.S.1
-
174
-
-
78751485383
-
Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men
-
Benedict C, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60:114-118.
-
(2011)
Diabetes
, vol.60
, pp. 114-118
-
-
Benedict, C.1
-
175
-
-
77449144768
-
Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC and POMC neurons
-
Lin HV, et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC and POMC neurons. Diabetes. 2010;59:337-346.
-
(2010)
Diabetes
, vol.59
, pp. 337-346
-
-
Lin, H.V.1
-
176
-
-
84961615828
-
Neural control of energy expenditure
-
Munzberg H, et al. Neural control of energy expenditure. Handb Exp Pharmacol. 2016;233:173-194.
-
(2016)
Handb Exp Pharmacol
, vol.233
, pp. 173-194
-
-
Munzberg, H.1
-
177
-
-
84930668378
-
Cerebellar contribution to feedforward control of locomotion
-
Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Front Hum Neurosci. 2014;8:475.
-
(2014)
Front Hum Neurosci
, vol.8
, pp. 475.
-
-
Pisotta, I.1
Molinari, M.2
-
178
-
-
77950264425
-
Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility
-
Hill JW, et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010;11:286-297.
-
(2010)
Cell Metab
, vol.11
, pp. 286-297
-
-
Hill, J.W.1
-
179
-
-
84921534037
-
Gut-brain mechanisms controlling glucose homeostasis
-
Scarlett JM, Schwartz MW. Gut-brain mechanisms controlling glucose homeostasis. F1000Prime Rep. 2015;7:12.
-
(2015)
F1000Prime Rep
, vol.7
, pp. 12.
-
-
Scarlett, J.M.1
Schwartz, M.W.2
-
180
-
-
84960444062
-
Central insulin action activates kupffer cells by suppressing hepatic vagal activation via the nicotinic alpha 7 acetylcholine receptor
-
Kimura K, et al. Central insulin action activates kupffer cells by suppressing hepatic vagal activation via the nicotinic alpha 7 acetylcholine receptor. Cell Rep. 2016;14:2362-2374.
-
(2016)
Cell Rep
, vol.14
, pp. 2362-2374
-
-
Kimura, K.1
-
181
-
-
84956825645
-
Central insulin-mediated regulation of hepatic glucose production
-
Inoue H. Central insulin-mediated regulation of hepatic glucose production. Endocr J. 2016;63:1-7.
-
(2016)
Endocr J
, vol.63
, pp. 1-7
-
-
Inoue, H.1
-
182
-
-
77951029840
-
Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically
-
Stanley S, et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci USA. 2010;107:7024-7029.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7024-7029
-
-
Stanley, S.1
-
183
-
-
84872850105
-
Revealing the secrets of neuronal circuits with recombinant rabies virus technology
-
Ginger M, et al. Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits. 2013;7:2.
-
(2013)
Front Neural Circuits
, vol.7
, pp. 2
-
-
Ginger, M.1
-
184
-
-
0030865881
-
Regulation of glucose homeostasis in humans with denervated livers
-
Perseghin G, et al. Regulation of glucose homeostasis in humans with denervated livers. J Clin Invest. 1997;100:931-941.
-
(1997)
J Clin Invest
, vol.100
, pp. 931-941
-
-
Perseghin, G.1
-
185
-
-
76749172118
-
The role of the autonomic nervous liver innervation in the control of energy metabolism
-
Yi CX, et al. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta. 2010;1802:416-431.
-
(2010)
Biochim Biophys Acta
, vol.1802
, pp. 416-431
-
-
Yi, C.X.1
-
186
-
-
0028966341
-
Hepatic denervation does not significantly change the response of the liver to glucagon in conscious dogs
-
Wada M, et al. Hepatic denervation does not significantly change the response of the liver to glucagon in conscious dogs. Am J Physiol. 1995;268:E194-E203.
-
(1995)
Am J Physiol
, vol.268
, pp. E194-E203
-
-
Wada, M.1
-
187
-
-
84890097302
-
Parallel, redundant circuit organization for homeostatic control of feeding behavior
-
Betley JN, et al. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell. 2013;155:1337-1350.
-
(2013)
Cell
, vol.155
, pp. 1337-1350
-
-
Betley, J.N.1
-
188
-
-
79551506567
-
Brain insulin controls adipose tissue lipolysis and lipogenesis
-
Scherer T, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13:183-194.
-
(2011)
Cell Metab
, vol.13
, pp. 183-194
-
-
Scherer, T.1
-
189
-
-
80051810499
-
Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice
-
Coomans CP, et al. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice. J Lipid Res. 2011;52:1712-1722.
-
(2011)
J Lipid Res
, vol.52
, pp. 1712-1722
-
-
Coomans, C.P.1
-
190
-
-
85019593045
-
Insulin receptor signaling in Pomc, but not Agrp, neurons controls adipose tissue insulin action
-
Shin AC, et al. Insulin receptor signaling in Pomc, but not Agrp, neurons controls adipose tissue insulin action. Diabetes. 2017;66:1560–1571.
-
(2017)
Diabetes
, vol.66
, pp. 1560-1571
-
-
Shin, A.C.1
-
191
-
-
77952503211
-
Pathogenesis of insulin resistance in skeletal muscle
-
Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279.
-
(2010)
J Biomed Biotechnol
, vol.2010
, pp. 476279
-
-
Abdul-Ghani, M.A.1
DeFronzo, R.A.2
-
192
-
-
0030938616
-
Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis
-
DeFronzo RA. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med. 1997;50:191-197.
-
(1997)
Neth J Med
, vol.50
, pp. 191-197
-
-
DeFronzo, R.A.1
-
193
-
-
84989193573
-
Type 2 diabetes mellitus
-
DeFronzo RA, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.
-
(2015)
Nat Rev Dis Primers
, vol.1
, pp. 15019
-
-
DeFronzo, R.A.1
-
194
-
-
0035654626
-
Overfeeding rapidly induces leptin and insulin resistance
-
Wang J, et al. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786-2791.
-
(2001)
Diabetes
, vol.50
, pp. 2786-2791
-
-
Wang, J.1
-
195
-
-
0036310147
-
Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance–is insulin resistance initiated in the adipose tissue?
-
Smith U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance–is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord. 2002;26:897-904.
-
(2002)
Int J Obes Relat Metab Disord
, vol.26
, pp. 897-904
-
-
Smith, U.1
-
196
-
-
17944396193
-
Adiposity and fat distribution outcome measures: assessment and clinical implications
-
Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res. 2002;10(Suppl. 1):14S-21S.
-
(2002)
Obes Res
, vol.10
, pp. 14S-21S
-
-
Aronne, L.J.1
Segal, K.R.2
-
197
-
-
0033595120
-
Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes
-
Cline GW, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341:240-246.
-
(1999)
N Engl J Med
, vol.341
, pp. 240-246
-
-
Cline, G.W.1
-
198
-
-
84857861919
-
Mechanisms for insulin resistance: common threads and missing links
-
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852-871.
-
(2012)
Cell
, vol.148
, pp. 852-871
-
-
Samuel, V.T.1
Shulman, G.I.2
-
199
-
-
70349484212
-
MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity
-
Kleinridders A, et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10:249-259.
-
(2009)
Cell Metab
, vol.10
, pp. 249-259
-
-
Kleinridders, A.1
-
200
-
-
84996843658
-
High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-alpha on appetite-regulating NPY neurons
-
Dalvi PS, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-alpha on appetite-regulating NPY neurons. Int J Obes (Lond). 2017;41:149-158.
-
(2017)
Int J Obes (Lond)
, vol.41
, pp. 149-158
-
-
Dalvi, P.S.1
-
201
-
-
84885743311
-
Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis
-
Panzhinskiy E, Ren J, Nair S. Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. PLoS ONE. 2013;8:e77228.
-
(2013)
PLoS ONE
, vol.8
-
-
Panzhinskiy, E.1
Ren, J.2
Nair, S.3
-
202
-
-
85009742434
-
Deficiency of PTP1B attenuates hypothalamic inflammation via activation of the JAK2-STAT3 pathway in microglia
-
Tsunekawa T, et al. Deficiency of PTP1B attenuates hypothalamic inflammation via activation of the JAK2-STAT3 pathway in microglia. EBioMedicine. 2017;16:172-183.
-
(2017)
EBioMedicine
, vol.16
, pp. 172-183
-
-
Tsunekawa, T.1
-
203
-
-
85007460170
-
A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation
-
Song GJ, et al. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation. 2016;13:86.
-
(2016)
J Neuroinflammation
, vol.13
, pp. 86.
-
-
Song, G.J.1
-
204
-
-
9244219587
-
Region-specific leptin resistance within the hypothalamus of diet-induced obese mice
-
Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145:4880-4889.
-
(2004)
Endocrinology
, vol.145
, pp. 4880-4889
-
-
Munzberg, H.1
Flier, J.S.2
Bjorbaek, C.3
-
205
-
-
18344379861
-
PTP1B regulates leptin signal transduction in vivo
-
Zabolotny JM, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002;2:489-495.
-
(2002)
Dev Cell
, vol.2
, pp. 489-495
-
-
Zabolotny, J.M.1
-
206
-
-
84865404028
-
Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice
-
Tsou RC, et al. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology. 2012;153:4227-4237.
-
(2012)
Endocrinology
, vol.153
, pp. 4227-4237
-
-
Tsou, R.C.1
-
207
-
-
64149130937
-
Leptin resistance: a prediposing factor for diet-induced obesity
-
Scarpace PJ, Zhang Y. Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2009;296:R493-R500.
-
(2009)
Am J Physiol Regul Integr Comp Physiol
, vol.296
, pp. R493-R500
-
-
Scarpace, P.J.1
Zhang, Y.2
-
208
-
-
77949673935
-
PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice
-
Banno R, et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest. 2010;120:720-734.
-
(2010)
J Clin Invest
, vol.120
, pp. 720-734
-
-
Banno, R.1
-
209
-
-
85014108547
-
Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-alpha dependent mechanisms
-
Bruder-Nascimento T, et al. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-alpha dependent mechanisms. Clin Sci (Lond). 2016;130:881-893.
-
(2016)
Clin Sci (Lond)
, vol.130
, pp. 881-893
-
-
Bruder-Nascimento, T.1
-
210
-
-
57849115277
-
Endoplasmic reticulum stress plays a central role in development of leptin resistance
-
Ozcan L, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9:35-51.
-
(2009)
Cell Metab
, vol.9
, pp. 35-51
-
-
Ozcan, L.1
-
211
-
-
34848848771
-
Low cerebrospinal fluid insulin levels in obese humans
-
Kern W, et al. Low cerebrospinal fluid insulin levels in obese humans. Diabetologia. 2006;49:2790-2792.
-
(2006)
Diabetologia
, vol.49
, pp. 2790-2792
-
-
Kern, W.1
-
212
-
-
84901334114
-
Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia
-
Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci. 2014;6:88.
-
(2014)
Front Aging Neurosci
, vol.6
, pp. 88
-
-
Hsu, T.M.1
Kanoski, S.E.2
-
213
-
-
84946011612
-
Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans
-
Schur EA, et al. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity (Silver Spring). 2015;23:2142-2148.
-
(2015)
Obesity (Silver Spring)
, vol.23
, pp. 2142-2148
-
-
Schur, E.A.1
-
215
-
-
84855459760
-
Obesity is associated with hypothalamic injury in rodents and humans
-
Thaler JP, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153-162.
-
(2012)
J Clin Invest
, vol.122
, pp. 153-162
-
-
Thaler, J.P.1
-
216
-
-
84905014938
-
Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study
-
Berkseth KE, et al. Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study. Endocrinology. 2014;155:2858-2867.
-
(2014)
Endocrinology
, vol.155
, pp. 2858-2867
-
-
Berkseth, K.E.1
-
217
-
-
84903173931
-
Insulin action in brain regulates systemic metabolism and brain function
-
Kleinridders A, et al. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63:2232-2243.
-
(2014)
Diabetes
, vol.63
, pp. 2232-2243
-
-
Kleinridders, A.1
-
218
-
-
84944714835
-
Hippocampal insulin resistance and cognitive dysfunction
-
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660-671.
-
(2015)
Nat Rev Neurosci
, vol.16
, pp. 660-671
-
-
Biessels, G.J.1
Reagan, L.P.2
-
219
-
-
77952545095
-
Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance
-
McNay EC, et al. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem. 2010;93:546-553.
-
(2010)
Neurobiol Learn Mem
, vol.93
, pp. 546-553
-
-
McNay, E.C.1
-
220
-
-
84871295159
-
A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats
-
Aime P, et al. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats. PLoS ONE. 2012;7:e51227.
-
(2012)
PLoS ONE
, vol.7
-
-
Aime, P.1
-
221
-
-
84922693194
-
Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease
-
Blazquez E, et al. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne). 2014;5:161.
-
(2014)
Front Endocrinol (Lausanne)
, vol.5
, pp. 161.
-
-
Blazquez, E.1
-
222
-
-
84873162774
-
Hypothalamic tanycytes: potential roles in the control of feeding and energy balance
-
Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36:91-100.
-
(2013)
Trends Neurosci
, vol.36
, pp. 91-100
-
-
Bolborea, M.1
Dale, N.2
-
223
-
-
0033944152
-
Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats
-
Spanswick D, et al. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci. 2000;3:757-758.
-
(2000)
Nat Neurosci
, vol.3
, pp. 757-758
-
-
Spanswick, D.1
|