메뉴 건너뛰기




Volumn 29, Issue 9, 2017, Pages 2352-2449

Deep convolutional neural networks for image classification: A comprehensive review

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; IMAGE CLASSIFICATION; NEURAL NETWORKS; VISION;

EID: 85031680076     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00990     Document Type: Review
Times cited : (2828)

References (306)
  • 3
    • 56749159833 scopus 로고    scopus 로고
    • Training hierarchical feedforward visual recognition models using transfer learning from pseudo-tasks
    • Berlin: Springer
    • Ahmed, A., Yu, K., Xu, W., Gong, Y., & Xing, E. (2008). Training hierarchical feedforward visual recognition models using transfer learning from pseudo-tasks. In Proceedings of the European Conference on Computer Vision (pp. 69-82). Berlin: Springer
    • (2008) In Proceedings of the European Conference on Computer Vision , pp. 69-82
    • Ahmed, A.1    Yu, K.2    Xu, W.3    Gong, Y.4    Xing, E.5
  • 5
    • 84896515095 scopus 로고    scopus 로고
    • Adaptive dropout for training deep neural networks
    • In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Ba, J., & Frey, B. (2013). Adaptive dropout for training deep neural networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 3084-3092). Red Hook, NY: Curran
    • (2013) Advances in neural information processing systems , vol.26 , pp. 3084-3092
    • Ba, J.1    Frey, B.2
  • 7
    • 85018886752 scopus 로고    scopus 로고
    • An architecture for deep, hierarchical generative models
    • In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, &R.Garnett (Eds.), Red Hook, NY: Curran
    • Bachman, P. (2016). An architecture for deep, hierarchical generative models. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, &R.Garnett (Eds.), Advances in neural information processing systemsm, 29 (pp. 4826-4834). Red Hook, NY: Curran
    • (2016) Advances in neural information processing systemsm , vol.29 , pp. 4826-4834
    • Bachman, P.1
  • 8
    • 84896497059 scopus 로고    scopus 로고
    • Understanding dropout
    • In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Baldi, P., & Sadowski, P. J. (2013). Understanding dropout. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 3084-3092). Red Hook, NY: Curran
    • (2013) Advances in neural information processing systems , vol.26 , pp. 3084-3092
    • Baldi, P.1    Sadowski, P.J.2
  • 11
    • 85018916971 scopus 로고    scopus 로고
    • Measuring neural net robustnesswith constraints
    • D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), . Red Hook, NY: Curran
    • Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016).Measuring neural net robustnesswith constraints. InD. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 2613-2621). Red Hook, NY: Curran
    • (2016) Advances in neural information processing systems , vol.29 , pp. 2613-2621
    • Bastani, O.1    Ioannou, Y.2    Lampropoulos, L.3    Vytiniotis, D.4    Nori, A.5    Criminisi, A.6
  • 13
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples. Journal ofMachine Learning Research, 7, 2399-2434
    • (2006) Journal ofMachine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 14
    • 84947222450 scopus 로고    scopus 로고
    • Learning visual similarity for product design with convolutional neural networks
    • Bell, S., & Bala, K. (2015). Learning visual similarity for product design with convolutional neural networks. ACM Transactions on Graphics, 34(4), 98-107
    • (2015) ACM Transactions on Graphics , vol.34 , Issue.4 , pp. 98-107
    • Bell, S.1    Bala, K.2
  • 18
    • 34547988000 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Red Hook, NY: Curran
    • Bengio, Y., Lamblin, P., Popovici, D., &Larochelle, H. (2006).Greedy layer-wise training of deep networks. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Advances in neural information processing systems, 19 (pp. 2814-2822). Red Hook, NY: Curran
    • (2006) Advances in neural information processing systems , vol.19 , pp. 2814-2822
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 19
    • 85013683708 scopus 로고    scopus 로고
    • STDP-compatible approximation of backpropagation in an energy-based model
    • Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., &Wu, Y. (2017). STDP-compatible approximation of backpropagation in an energy-based model. Neural Computation, 29(3), 555-577
    • (2017) Neural Computation , vol.29 , Issue.3 , pp. 555-577
    • Bengio, Y.1    Mesnard, T.2    Fischer, A.3    Zhang, S.4    Wu, Y.5
  • 20
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 22
    • 0013309537 scopus 로고    scopus 로고
    • Online learning and stochastic approximations
    • Bottou, L. (1998). Online learning and stochastic approximations. On-Line Learning in Neural Networks, 17(9), 142-177
    • (1998) On-Line Learning in Neural Networks , vol.17 , Issue.9 , pp. 142-177
    • Bottou, L.1
  • 42
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12), 3207-3220
    • (2010) Neural Computation , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 49
    • 84965117606 scopus 로고    scopus 로고
    • BinaryConnect: Training deep neural networks with binary weights during propagations
    • In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
    • Courbariaux, M., Bengio, Y., & David, J. P. (2015). BinaryConnect: Training deep neural networks with binary weights during propagations. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 3123-3131). Red Hook, NY: Curran
    • (2015) Advances in neural information processing systems , vol.28 , pp. 3123-3131
    • Courbariaux, M.1    Bengio, Y.2    David, J.P.3
  • 50
    • 85026322165 scopus 로고    scopus 로고
    • Binarized neural networks
    • In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), N.p.: Preproceedings
    • Courbariaux, M., Hubara, I., Soudry, D., & Yaniv, R. E. (2016). Binarized neural networks. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 1-9). N.p.: Preproceedings
    • (2016) Advances in neural information processing systems , vol.29 , pp. 1-9
    • Courbariaux, M.1    Hubara, I.2    Soudry, D.3    Yaniv, R.E.4
  • 51
    • 84877760312 scopus 로고    scopus 로고
    • Large scale distributed deep networks
    • In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., . Le, Q. V. (2012). Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1223-1231). Red Hook, NY: Curran
    • (2012) Advances in neural information processing systems , vol.25 , pp. 1223-1231
    • Dean, J.1    Corrado, G.2    Monga, R.3    Chen, K.4    Devin, M.5    Mao, M.6    . Le, Q.V.7
  • 52
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46(1-3), 161-190
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 161-190
    • Decoste, D.1    Schölkopf, B.2
  • 53
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPATransactions on Signal and Information Processing, 3(2), 1-29
    • (2014) APSIPATransactions on Signal and Information Processing , vol.3 , Issue.2 , pp. 1-29
    • Deng, L.1
  • 55
    • 84898971588 scopus 로고    scopus 로고
    • Predicting parameters in deep learning
    • In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Denil, M., Shakibi, B., Dinh, L., & de Freitas, N. (2013). Predicting parameters in deep learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 2148-2156). Red Hook, NY: Curran
    • (2013) Advances in neural information processing systems , vol.26 , pp. 2148-2156
    • Denil, M.1    Shakibi, B.2    Dinh, L.3    De Freitas, N.4
  • 56
    • 84937896655 scopus 로고    scopus 로고
    • Exploiting linear structure within convolutional networks for efficient evaluation
    • In Z. Ghahramani, M.Welling, C. Cortes, N. D. Lawrence, & K. Q.Weinberger (Eds.), Red Hook, NY: Curran
    • Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., &Fergus, R. (2014). Exploiting linear structure within convolutional networks for efficient evaluation. In Z. Ghahramani, M.Welling, C. Cortes, N. D. Lawrence, & K. Q.Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 1269-1277). Red Hook, NY: Curran
    • (2014) Advances in neural information processing systems , vol.27 , pp. 1269-1277
    • Denton, E.L.1    Zaremba, W.2    Bruna, J.3    Lecun, Y.4    Fergus, R.5
  • 59
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121-2159
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 65
    • 70350455838 scopus 로고    scopus 로고
    • Knowledge transfer in learning to recognize visual objects classes
    • N.p.: IEEE Computational Intelligence Society
    • Fei-Fei, L. (2006). Knowledge transfer in learning to recognize visual objects classes. In Proceedings of the 4th International Conference on Development and Learning (pp. 11-17). N.p.: IEEE Computational Intelligence Society
    • (2006) In Proceedings of the 4th International Conference on Development and Learning , pp. 11-17
    • Fei-Fei, L.1
  • 71
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 72
    • 0020331278 scopus 로고
    • Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
    • Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 15(6), 455-469
    • (1982) Pattern Recognition , vol.15 , Issue.6 , pp. 455-469
    • Fukushima, K.1    Miyake, S.2
  • 84
  • 93
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding
    • N.p.: Computational and Biological Learning Society
    • Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. In Proceedings of the 3rd International Conference on Learning Representations (pp. 1-14).N.p.: Computational and Biological Learning Society
    • (2016) Proceedings of the 3rd International Conference on Learning Representations , pp. 1-14
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 95
    • 84923096391 scopus 로고    scopus 로고
    • The neocortical circuit: Themes and variations
    • Harris, K. D., & Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170-181
    • (2015) Nature Neuroscience , vol.18 , Issue.2 , pp. 170-181
    • Harris, K.D.1    Shepherd, G.M.2
  • 99
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • Red Hook, NY: Curran
    • He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034). Red Hook, NY: Curran
    • (2015) Proceedings of the IEEE International Conference on Computer Vision , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 101
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40(1), 185-234
    • (1989) Artificial Intelligence , vol.40 , Issue.1 , pp. 185-234
    • Hinton, G.E.1
  • 102
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771-1800
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 103
    • 33745805403 scopus 로고    scopus 로고
    • Afast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. (2006). Afast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 104
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 113
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology, 148(1), 574-591
    • (1959) Journal of Physiology , vol.148 , Issue.1 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 114
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160(1), 106-154
    • (1962) Journal of Physiology , vol.160 , Issue.1 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 115
    • 35649018818 scopus 로고    scopus 로고
    • Complex cell pooling and the statistics of natural images
    • Hyvärinen, A., & Köster, U. (2007). Complex cell pooling and the statistics of natural images. Network: Computation in Neural Systems, 18(2), 81-100
    • (2007) Network: Computation in Neural Systems , vol.18 , Issue.2 , pp. 81-100
    • Hyvärinen, A.1    Köster, U.2
  • 118
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • N.p.: International Machine Learning Society
    • Ioffe, S., &Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference Machine Learning (pp. 448-456). N.p.: International Machine Learning Society
    • (2015) In Proceedings of the 32nd International Conference Machine Learning , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 120
    • 84965096967 scopus 로고    scopus 로고
    • Spatial transformer networks
    • In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
    • Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2017-2025). Red Hook, NY: Curran
    • (2015) Advances in neural information processing systems , vol.28 , pp. 2017-2025
    • Jaderberg, M.1    Simonyan, K.2    Zisserman, A.3
  • 141
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1097-1105). Red Hook, NY: Curran
    • (2012) Advances in neural information processing systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 142
    • 84965156877 scopus 로고    scopus 로고
    • Deep convolutional inverse graphics network
    • In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
    • Kulkarni, T. D., Whitney, W. F., Kohli, P., & Tenenbaum, J. (2015). Deep convolutional inverse graphics network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systemsm, 28 (pp. 2539-2547). Red Hook, NY: Curran
    • (2015) Advances in neural information processing systemsm , vol.28 , pp. 2539-2547
    • Kulkarni, T.D.1    Whitney, W.F.2    Kohli, P.3    Tenenbaum, J.4
  • 152
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • In R. Pfeifer, Z. Schreter, F. Fogelman, & L. Steels (Eds.)
    • LeCun, Y. (1989). Generalization and network design strategies. In R. Pfeifer, Z. Schreter, F. Fogelman, & L. Steels (Eds.), Connections in perspective (pp. 143-155). Zurich, Switzerland: Elsevier
    • (1989) Connections in perspective , pp. 143-155
    • Lecun, Y.1
  • 153
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 156
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 161
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • N.p.: International Machine Learning Society
    • Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th International ConferenceMachine Learning (pp. 609-616).N.p.: International Machine Learning Society
    • (2009) Proceedings of the 26th International ConferenceMachine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 162
    • 85162478810 scopus 로고    scopus 로고
    • Why the brain separates face recognition from object recognition
    • In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Leibo, J. Z., Mutch, J., & Poggio, T. (2011). Why the brain separates face recognition from object recognition. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 24 (pp. 711-719). Red Hook, NY: Curran
    • (2011) Advances in neural information processing systems , vol.24 , pp. 711-719
    • Leibo, J.Z.1    Mutch, J.2    Poggio, T.3
  • 166
    • 85018878306 scopus 로고    scopus 로고
    • Improved dropout for shallow and deep learning
    • In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.)
    • Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep learning. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systemsm (pp. 1-9). N.p.: Preproceedings
    • (2016) Advances in neural information processing systemsm , pp. 1-9
    • Li, Z.1    Gong, B.2    Yang, T.3
  • 186
    • 34247492317 scopus 로고    scopus 로고
    • Off-road obstacle avoidance through end-to-end learning
    • In Y.Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Cambridge, MA: MIT Press
    • Muller, U., Ben, J., Cosatto, E., Flepp, B., & LeCun, Y. (2005). Off-road obstacle avoidance through end-to-end learning. In Y.Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 739-746). Cambridge, MA: MIT Press
    • (2005) Advances in neural information processing systems , vol.18 , pp. 739-746
    • Muller, U.1    Ben, J.2    Cosatto, E.3    Flepp, B.4    Lecun, Y.5
  • 189
    • 78149306047 scopus 로고    scopus 로고
    • 3D object recognition with deep belief nets
    • In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Nair, V., & Hinton, G. E. (2009). 3D object recognition with deep belief nets. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1339-1347). Red Hook, NY: Curran
    • (2009) Advances in neural information processing systems , vol.22 , pp. 1339-1347
    • Nair, V.1    Hinton, G.E.2
  • 190
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • N.p.: International Machine Learning Society
    • Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (pp. 807-814). N.p.: International Machine Learning Society
    • (2010) In Proceedings of the 27th International Conference on Machine Learning , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 192
    • 85047227405 scopus 로고    scopus 로고
    • National Data Science Bowl | Kaggle. (2016). Kaggle.com. https://www.kaggle.com/c/datasciencebowl
    • (2016) Kaggle.com
  • 193
    • 84865114495 scopus 로고    scopus 로고
    • Reading digits in natural imageswith unsupervised feature learning
    • (NIPS)Workshop on Deep Learning and Unsupervised Feature Learning Red Hook, NY: Curran
    • Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural imageswith unsupervised feature learning. In Advances in neural information processing systems, 24 (NIPS)Workshop on Deep Learning and Unsupervised Feature Learning (pp. 1-9). Red Hook, NY: Curran
    • (2011) In Advances in neural information processing systems , vol.24 , pp. 1-9
    • Netzer, Y.1    Wang, T.2    Coates, A.3    Bissacco, A.4    Wu, B.5    Ng, A.Y.6
  • 194
    • 85161972005 scopus 로고    scopus 로고
    • Tiled convolutional neural networks
    • In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., & Ng, A. Y. (2010). Tiled convolutional neural networks. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 1279-1287). Red Hook, NY: Curran
    • (2010) Advances in neural information processing systems , vol.23 , pp. 1279-1287
    • Ngiam, J.1    Chen, Z.2    Chia, D.3    Koh, P.W.4    Le, Q.V.5    Ng, A.Y.6
  • 195
  • 197
    • 84965128773 scopus 로고    scopus 로고
    • Tensorizing neural networks
    • In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
    • Novikov, A., Podoprikhin, D., Osokin, A., & Vetrov, D. P. (2015). Tensorizing neural networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 442-450). Red Hook, NY: Curran
    • (2015) Advances in neural information processing systems , vol.28 , pp. 442-450
    • Novikov, A.1    Podoprikhin, D.2    Osokin, A.3    Vetrov, D.P.4
  • 198
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weightsharing
    • Nowlan, S. J., & Hinton, G. E. (1992). Simplifying neural networks by soft weightsharing. Neural Computation, 4(4), 473-493
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 199
    • 2142662996 scopus 로고    scopus 로고
    • GPU implementation of neural networks
    • Oh, K., & Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition, 37(6), 1311-1314
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1311-1314
    • Oh, K.1    Jung, K.2
  • 210
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12, 145-150
    • (1999) Neural Networks , vol.12 , pp. 145-150
    • Qian, N.1
  • 212
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • In P. B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In P. B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 1137-1144). Cambridge, MA: MIT Press
    • (2006) Advances in neural information processing systems , vol.19 , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 213
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • N.p.: International Machine Learning Society
    • Ranzato, M. A., & Szummer, M. (2008). Semi-supervised learning of compact document representations with deep networks. In Proceedings of the 25th International Conference on Machine Learning (pp. 792-799). N.p.: International Machine Learning Society
    • (2008) In Proceedings of the 25th International Conference on Machine Learning , pp. 792-799
    • Ranzato, M.A.1    Szummer, M.2
  • 216
    • 85162467517 scopus 로고    scopus 로고
    • Hogwild: Alock-free approach to parallelizing stochastic gradient descent
    • In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q.Weinberger (Eds.), Red Hook, NY: Curran
    • Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild: Alock-free approach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q.Weinberger (Eds.), Advances in neural information processing systems, 24 (pp. 693-701). Red Hook, NY: Curran
    • (2011) Advances in neural information processing systems , vol.24 , pp. 693-701
    • Recht, B.1    Re, C.2    Wright, S.3    Niu, F.4
  • 218
    • 84965137166 scopus 로고    scopus 로고
    • Spectral representations for convolutional neural networks
    • In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
    • Rippel, O., Snoek, J., & Adams, R. P. (2015). Spectral representations for convolutional neural networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2449-2457). Red Hook, NY: Curran
    • (2015) Advances in neural information processing systems , vol.28 , pp. 2449-2457
    • Rippel, O.1    Snoek, J.2    Adams, R.P.3
  • 220
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E., &Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 230
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 234
    • 0032031687 scopus 로고    scopus 로고
    • Amodel of neuronal responses in visual area MT
    • Simoncelli, E. P., & Heeger, D. J. (1998). Amodel of neuronal responses in visual area MT. Vision Research, 38(5), 743-761
    • (1998) Vision Research , vol.38 , Issue.5 , pp. 743-761
    • Simoncelli, E.P.1    Heeger, D.J.2
  • 236
    • 84937413702 scopus 로고    scopus 로고
    • Comparison of regularization methods for ImageNet classification with deep convolutional neural networks
    • Smirnov, E. A., Timoshenko, D. M., & Andrianov, S. N. (2014). Comparison of regularization methods for ImageNet classification with deep convolutional neural networks. AASRI Procedia, 6, 89-94
    • (2014) AASRI Procedia , vol.6 , pp. 89-94
    • Smirnov, E.A.1    Timoshenko, D.M.2    Andrianov, S.N.3
  • 237
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 2951-2959). Red Hook, NY: Curran
    • (2012) Advances in neural information processing systems , vol.25 , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 243
    • 84898957541 scopus 로고    scopus 로고
    • Discriminative transfer learning with tree-based priors
    • In C. J. C. Burges, L. Bottou, M.Welling, Z. Ghahramani, &K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Srivastava, N., & Salakhutdinov, R. R. (2013). Discriminative transfer learning with tree-based priors. In C. J. C. Burges, L. Bottou, M.Welling, Z. Ghahramani, &K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 2094-2102). Red Hook, NY: Curran
    • (2013) Advances in neural information processing systems , vol.26 , pp. 2094-2102
    • Srivastava, N.1    Salakhutdinov, R.R.2
  • 244
    • 84965164720 scopus 로고    scopus 로고
    • Training very deep networks
    • C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), . Red Hook, NY: Curran
    • Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015a). Training very deep networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2377-2385). Red Hook, NY: Curran
    • (2015) Advances in neural information processing systems , vol.28 , pp. 2377-2385
    • Srivastava, R.K.1    Greff, K.2    Schmidhuber, J.3
  • 248
    • 84937961845 scopus 로고    scopus 로고
    • Deep networks with internal selective attention through feedback connections
    • In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Stollenga, M. F., Masci, J., Gomez, F., & Schmidhuber, J. (2014). Deep networks with internal selective attention through feedback connections. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 3545-3553). Red Hook, NY: Curran
    • (2014) Advances in neural information processing systems , vol.27 , pp. 3545-3553
    • Stollenga, M.F.1    Masci, J.2    Gomez, F.3    Schmidhuber, J.4
  • 249
    • 84937852544 scopus 로고    scopus 로고
    • Deep learning face representation by joint identification-verification
    • In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representation by joint identification-verification. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 1988-1996). Red Hook, NY: Curran
    • (2014) Advances in neural information processing systems , vol.27 , pp. 1988-1996
    • Sun, Y.1    Chen, Y.2    Wang, X.3    Tang, X.4
  • 263
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279-311
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1
  • 268
    • 84955753712 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications. 16(2), 11-30
    • (1971) Theory of Probability and Its Applications , vol.16 , Issue.2 , pp. 11-30
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 270
    • 84896538964 scopus 로고    scopus 로고
    • Dropout training as adaptive regularization
    • In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
    • Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adaptive regularization. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 351-359). Red Hook, NY: Curran
    • (2013) Advances in neural information processing systems , vol.26 , pp. 351-359
    • Wager, S.1    Wang, S.2    Liang, P.S.3
  • 274
    • 85021105662 scopus 로고    scopus 로고
    • CNNpack: Packing convolutional neural networks in the frequency domain
    • D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), . N.p.: Preproceedings
    • Wang, Y., Xu, C., You, S., Tao, D., & Xu, C. (2016). CNNpack: Packing convolutional neural networks in the frequency domain. InD. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 1-9). N.p.: Preproceedings
    • (2016) Advances in neural information processing systems , vol.29 , pp. 1-9
    • Wang, Y.1    Xu, C.2    You, S.3    Tao, D.4    Xu, C.5
  • 275
    • 84964663150 scopus 로고    scopus 로고
    • Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
    • Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 40-46)
    • (2015) Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence , pp. 40-46
    • Wang, Z.1    Oates, T.2
  • 277
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • In Y. Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Cambridge, MA: MIT Press
    • Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2005). Distance metric learning for large margin nearest neighbor classification. In Y. Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1473-1480). Cambridge, MA: MIT Press
    • (2005) Advances in neural information processing systems , vol.18 , pp. 1473-1480
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 279
    • 0001773535 scopus 로고
    • Applications of advances in nonlinear sensitivity analysis
    • In R. F. Drenick & F. Kozin (Eds.)
    • Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In R. F. Drenick & F. Kozin (Eds.), System modeling and optimization (pp. 762-770). Berlin: Springer
    • (1982) System modeling and optimization , pp. 762-770
    • Werbos, P.J.1
  • 300
    • 85019232787 scopus 로고    scopus 로고
    • Doubly convolutional neural networks
    • In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), N.p.: Preproceedings
    • Zhai, S., Cheng, Y., & Zhang, Z. M. (2016). Doubly convolutional neural networks. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 1-9). N.p.: Preproceedings
    • (2016) Advances in neural information processing systems , vol.29 , pp. 1-9
    • Zhai, S.1    Cheng, Y.2    Zhang, Z.M.3
  • 306
    • 85161967549 scopus 로고    scopus 로고
    • Parallelized stochastic gradient descent
    • In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
    • Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic gradient descent. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systemsm, 23 (pp. 2595-2603). Red Hook, NY: Curran
    • (2010) Advances in neural information processing systemsm , vol.23 , pp. 2595-2603
    • Zinkevich, M.1    Weimer, M.2    Li, L.3    Smola, A.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.