-
2
-
-
84964687855
-
-
Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation functions to improve deep neural networks. arXiv 1412.6830
-
(2014)
Learning activation functions to improve deep neural networks
-
-
Agostinelli, F.1
Hoffman, M.2
Sadowski, P.3
Baldi, P.4
-
3
-
-
56749159833
-
Training hierarchical feedforward visual recognition models using transfer learning from pseudo-tasks
-
Berlin: Springer
-
Ahmed, A., Yu, K., Xu, W., Gong, Y., & Xing, E. (2008). Training hierarchical feedforward visual recognition models using transfer learning from pseudo-tasks. In Proceedings of the European Conference on Computer Vision (pp. 69-82). Berlin: Springer
-
(2008)
In Proceedings of the European Conference on Computer Vision
, pp. 69-82
-
-
Ahmed, A.1
Yu, K.2
Xu, W.3
Gong, Y.4
Xing, E.5
-
4
-
-
85046997370
-
Provable bounds for learning some deep representations
-
N.p.: International Machine Learning Society
-
Arora, S., Bhaskara, A., Ge, R., & Ma, T. (2014). Provable bounds for learning some deep representations. In Proceedings of the 31th International Conference Machine Learning (pp. 584-592). N.p.: International Machine Learning Society
-
(2014)
In Proceedings of the 31th International Conference Machine Learning
, pp. 584-592
-
-
Arora, S.1
Bhaskara, A.2
Ge, R.3
Ma, T.4
-
5
-
-
84896515095
-
Adaptive dropout for training deep neural networks
-
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Ba, J., & Frey, B. (2013). Adaptive dropout for training deep neural networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 3084-3092). Red Hook, NY: Curran
-
(2013)
Advances in neural information processing systems
, vol.26
, pp. 3084-3092
-
-
Ba, J.1
Frey, B.2
-
7
-
-
85018886752
-
An architecture for deep, hierarchical generative models
-
In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, &R.Garnett (Eds.), Red Hook, NY: Curran
-
Bachman, P. (2016). An architecture for deep, hierarchical generative models. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, &R.Garnett (Eds.), Advances in neural information processing systemsm, 29 (pp. 4826-4834). Red Hook, NY: Curran
-
(2016)
Advances in neural information processing systemsm
, vol.29
, pp. 4826-4834
-
-
Bachman, P.1
-
8
-
-
84896497059
-
Understanding dropout
-
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Baldi, P., & Sadowski, P. J. (2013). Understanding dropout. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 3084-3092). Red Hook, NY: Curran
-
(2013)
Advances in neural information processing systems
, vol.26
, pp. 3084-3092
-
-
Baldi, P.1
Sadowski, P.J.2
-
10
-
-
84898819467
-
Fast high dimensional vector multiplication face recognition
-
Red Hook, NY: Curran
-
Barkan, O., Weill, J., Wolf, L., & Aronowitz, H. (2013). Fast high dimensional vector multiplication face recognition. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1960-1967). Red Hook, NY: Curran
-
(2013)
In Proceedings of the IEEE International Conference on Computer Vision
, pp. 1960-1967
-
-
Barkan, O.1
Weill, J.2
Wolf, L.3
Aronowitz, H.4
-
11
-
-
85018916971
-
Measuring neural net robustnesswith constraints
-
D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), . Red Hook, NY: Curran
-
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016).Measuring neural net robustnesswith constraints. InD. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 2613-2621). Red Hook, NY: Curran
-
(2016)
Advances in neural information processing systems
, vol.29
, pp. 2613-2621
-
-
Bastani, O.1
Ioannou, Y.2
Lampropoulos, L.3
Vytiniotis, D.4
Nori, A.5
Criminisi, A.6
-
12
-
-
85032983929
-
-
Basu, S., Karki, M., DiBiano, R., Mukhopadhyay, S., Ganguly, S., Nemani, R., & Gayaka, S. (2016). A theoretical analysis of deep neural networks for texture classification. arXiv 1605.02699
-
(2016)
A theoretical analysis of deep neural networks for texture classification
-
-
Basu, S.1
Karki, M.2
Dibiano, R.3
Mukhopadhyay, S.4
Ganguly, S.5
Nemani, R.6
Gayaka, S.7
-
13
-
-
33750729556
-
Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples
-
Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples. Journal ofMachine Learning Research, 7, 2399-2434
-
(2006)
Journal ofMachine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
14
-
-
84947222450
-
Learning visual similarity for product design with convolutional neural networks
-
Bell, S., & Bala, K. (2015). Learning visual similarity for product design with convolutional neural networks. ACM Transactions on Graphics, 34(4), 98-107
-
(2015)
ACM Transactions on Graphics
, vol.34
, Issue.4
, pp. 98-107
-
-
Bell, S.1
Bala, K.2
-
17
-
-
84879854889
-
Representation learning: Areview and new perspectives
-
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: Areview and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
18
-
-
34547988000
-
Greedy layer-wise training of deep networks
-
In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Red Hook, NY: Curran
-
Bengio, Y., Lamblin, P., Popovici, D., &Larochelle, H. (2006).Greedy layer-wise training of deep networks. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Advances in neural information processing systems, 19 (pp. 2814-2822). Red Hook, NY: Curran
-
(2006)
Advances in neural information processing systems
, vol.19
, pp. 2814-2822
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
19
-
-
85013683708
-
STDP-compatible approximation of backpropagation in an energy-based model
-
Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., &Wu, Y. (2017). STDP-compatible approximation of backpropagation in an energy-based model. Neural Computation, 29(3), 555-577
-
(2017)
Neural Computation
, vol.29
, Issue.3
, pp. 555-577
-
-
Bengio, Y.1
Mesnard, T.2
Fischer, A.3
Zhang, S.4
Wu, Y.5
-
20
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
21
-
-
84893376517
-
Deep generative stochastic networks trainable by backprop
-
N.p.: International Machine Learning Society
-
Bengio, Y., Thibodeau-Laufer, E., Alain, G., & Yosinski, J. (2014). Deep generative stochastic networks trainable by backprop. In Proceedings of the 31st International Conference Machine Learning (pp. 226-234). N.p.: International Machine Learning Society
-
(2014)
In Proceedings of the 31st International Conference Machine Learning
, pp. 226-234
-
-
Bengio, Y.1
Thibodeau-Laufer, E.2
Alain, G.3
Yosinski, J.4
-
22
-
-
0013309537
-
Online learning and stochastic approximations
-
Bottou, L. (1998). Online learning and stochastic approximations. On-Line Learning in Neural Networks, 17(9), 142-177
-
(1998)
On-Line Learning in Neural Networks
, vol.17
, Issue.9
, pp. 142-177
-
-
Bottou, L.1
-
25
-
-
0005594495
-
Signature verification using a "Siamese" time delay neural network
-
Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., . Shah, R. (1993). Signature verification using a "Siamese" time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7(4), 669-688
-
(1993)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.7
, Issue.4
, pp. 669-688
-
-
Bromley, J.1
Bentz, J.W.2
Bottou, L.3
Guyon, I.4
Lecun, Y.5
Moore, C.6
. Shah, R.7
-
28
-
-
84898801171
-
A practical transfer learning algorithm for face verification
-
Red Hook, NY: Curran
-
Cao, X., Wipf, D., Wen, F., Duan, G., & Sun, J. (2013). A practical transfer learning algorithm for face verification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3208-3215). Red Hook, NY: Curran
-
(2013)
In Proceedings of the IEEE International Conference on Computer Vision
, pp. 3208-3215
-
-
Cao, X.1
Wipf, D.2
Wen, F.3
Duan, G.4
Sun, J.5
-
30
-
-
85072028231
-
-
Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. arXiv 1405.3531
-
(2014)
Return of the devil in the details: Delving deep into convolutional nets
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
31
-
-
85047227642
-
-
In Proceedings of the 10th InternationalWorkshop on Frontiers in Handwriting Recognition. Los Alamitos, CA: IEEE Computer Society
-
Chellapilla, K., & Puri, S., & Simard, P. (2006). High performance convolutional neural networks for document processing. In Proceedings of the 10th InternationalWorkshop on Frontiers in Handwriting Recognition. Los Alamitos, CA: IEEE Computer Society
-
(2006)
High performance convolutional neural networks for document processing
-
-
Chellapilla, K.1
Puri, S.2
Simard, P.3
-
34
-
-
84887396870
-
Blessing of dimensionality: Highdimensional feature and its efficient compression for face verification
-
Red Hook, NY: Curran
-
Chen, D., Cao, X., Wen, F., & Sun, J. (2013). Blessing of dimensionality: Highdimensional feature and its efficient compression for face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3025-3032). Red Hook, NY: Curran
-
(2013)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3025-3032
-
-
Chen, D.1
Cao, X.2
Wen, F.3
Sun, J.4
-
35
-
-
84965172096
-
-
Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q., & Chen, Y. (2015). Compressing neural networks with the hashing trick. arXiv 1504.04788v1
-
(2015)
Compressing neural networks with the hashing trick
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
36
-
-
84965161214
-
-
Cheng, Y., Felix, X. Y., Feris, R. S., Kumar, S., Choudhary, A., & Chang, S. (2015). Fast neural networks with circulant projections. arXiv 1502.03436
-
(2015)
Fast neural networks with circulant projections
-
-
Cheng, Y.1
Felix, X.Y.2
Feris, R.S.3
Kumar, S.4
Choudhary, A.5
Chang, S.6
-
37
-
-
84973890879
-
An exploration of parameter redundancy in deep networks with circulant projections
-
Red Hook, NY: Curran
-
Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A., & Chang, S. (2015). An exploration of parameter redundancy in deep networks with circulant projections. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2857-2865). Red Hook, NY: Curran
-
(2015)
In Proceedings of the IEEE International Conference on Computer Vision
, pp. 2857-2865
-
-
Cheng, Y.1
Yu, F.X.2
Feris, R.S.3
Kumar, S.4
Choudhary, A.5
Chang, S.6
-
38
-
-
84965138857
-
-
Cheng, Z., Soudry, D., Mao, Z., & Lan, Z. (2015). Training binary multilayer neural networks for image classification using expectation backpropagation. arXiv 1503.03562
-
(2015)
Training binary multilayer neural networks for image classification using expectation backpropagation
-
-
Cheng, Z.1
Soudry, D.2
Mao, Z.3
Lan, Z.4
-
40
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face verification
-
Los Alamitos, CA: IEEE Computer Society
-
Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 539-546). Los Alamitos, CA: IEEE Computer Society
-
(2005)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 539-546
-
-
Chopra, S.1
Hadsell, R.2
Lecun, Y.3
-
41
-
-
84954310140
-
The loss surfaces of multilayer networks
-
Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The loss surfaces of multilayer networks. In Proceedings 18th International Conference on Artificial Intelligence and Statistics (pp. 192-204). www.jmlr.org/proceedings/papers/v38/choromanska15.pdf
-
(2015)
In Proceedings 18th International Conference on Artificial Intelligence and Statistics
, pp. 192-204
-
-
Choromanska, A.1
Henaff, M.2
Mathieu, M.3
Arous, G.B.4
Lecun, Y.5
-
42
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digit recognition
-
Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12), 3207-3220
-
(2010)
Neural Computation
, vol.22
, Issue.12
, pp. 3207-3220
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
43
-
-
84881039921
-
Flexible, high performance convolutional neural networks for image classification
-
Menlo Park, CA: AAAI Press
-
Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L., & Schmidhuber, J. (2011). Flexible, high performance convolutional neural networks for image classification. In Proceedings of the International Joint Conference on Artificial Intelligence (vol. 1, pp. 1237-1242). Menlo Park, CA: AAAI Press
-
(2011)
In Proceedings of the International Joint Conference on Artificial Intelligence
, vol.1
, pp. 1237-1242
-
-
Ciresan, D.C.1
Meier, U.2
Masci, J.3
Maria Gambardella, L.4
Schmidhuber, J.5
-
44
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
Red Hook, NY: Curran
-
Ciresan, D., Meier, U., &Schmidhuber, J. (2012).Multi-column deep neural networks for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3642-3649). Red Hook, NY: Curran
-
(2012)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3642-3649
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
47
-
-
4544287663
-
A gentle Hessian for efficient gradient descent
-
N.p.: IEEE Signal Processing Society
-
Collobert, R., & Bengio, S. (2004). A gentle Hessian for efficient gradient descent. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 517-520). N.p.: IEEE Signal Processing Society
-
(2004)
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
, pp. 517-520
-
-
Collobert, R.1
Bengio, S.2
-
48
-
-
33747128180
-
Large scale transductive SVMs
-
Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Large scale transductive SVMs. Journal of Machine Learning Research, 7, 1687-1712
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
49
-
-
84965117606
-
BinaryConnect: Training deep neural networks with binary weights during propagations
-
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
-
Courbariaux, M., Bengio, Y., & David, J. P. (2015). BinaryConnect: Training deep neural networks with binary weights during propagations. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 3123-3131). Red Hook, NY: Curran
-
(2015)
Advances in neural information processing systems
, vol.28
, pp. 3123-3131
-
-
Courbariaux, M.1
Bengio, Y.2
David, J.P.3
-
50
-
-
85026322165
-
Binarized neural networks
-
In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), N.p.: Preproceedings
-
Courbariaux, M., Hubara, I., Soudry, D., & Yaniv, R. E. (2016). Binarized neural networks. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 1-9). N.p.: Preproceedings
-
(2016)
Advances in neural information processing systems
, vol.29
, pp. 1-9
-
-
Courbariaux, M.1
Hubara, I.2
Soudry, D.3
Yaniv, R.E.4
-
51
-
-
84877760312
-
Large scale distributed deep networks
-
In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., . Le, Q. V. (2012). Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1223-1231). Red Hook, NY: Curran
-
(2012)
Advances in neural information processing systems
, vol.25
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
. Le, Q.V.7
-
52
-
-
0036161034
-
Training invariant support vector machines
-
Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46(1-3), 161-190
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 161-190
-
-
Decoste, D.1
Schölkopf, B.2
-
53
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPATransactions on Signal and Information Processing, 3(2), 1-29
-
(2014)
APSIPATransactions on Signal and Information Processing
, vol.3
, Issue.2
, pp. 1-29
-
-
Deng, L.1
-
54
-
-
84903724014
-
Deep learning:Methods and applications
-
Deng, L., & Yu, D. (2014). Deep learning:Methods and applications. Foundations and Trends in Signal Processing, 7(3-4), 197-387
-
(2014)
Foundations and Trends in Signal Processing
, vol.7
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
55
-
-
84898971588
-
Predicting parameters in deep learning
-
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Denil, M., Shakibi, B., Dinh, L., & de Freitas, N. (2013). Predicting parameters in deep learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 2148-2156). Red Hook, NY: Curran
-
(2013)
Advances in neural information processing systems
, vol.26
, pp. 2148-2156
-
-
Denil, M.1
Shakibi, B.2
Dinh, L.3
De Freitas, N.4
-
56
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
In Z. Ghahramani, M.Welling, C. Cortes, N. D. Lawrence, & K. Q.Weinberger (Eds.), Red Hook, NY: Curran
-
Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., &Fergus, R. (2014). Exploiting linear structure within convolutional networks for efficient evaluation. In Z. Ghahramani, M.Welling, C. Cortes, N. D. Lawrence, & K. Q.Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 1269-1277). Red Hook, NY: Curran
-
(2014)
Advances in neural information processing systems
, vol.27
, pp. 1269-1277
-
-
Denton, E.L.1
Zaremba, W.2
Bruna, J.3
Lecun, Y.4
Fergus, R.5
-
59
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121-2159
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
61
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11, 625-660
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
62
-
-
84867136939
-
-
Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2012). Scene parsing with multiscale feature learning, purity trees, and optimal covers. arXiv 1202.2160
-
(2012)
Scene parsing with multiscale feature learning, purity trees, and optimal covers
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
65
-
-
70350455838
-
Knowledge transfer in learning to recognize visual objects classes
-
N.p.: IEEE Computational Intelligence Society
-
Fei-Fei, L. (2006). Knowledge transfer in learning to recognize visual objects classes. In Proceedings of the 4th International Conference on Development and Learning (pp. 11-17). N.p.: IEEE Computational Intelligence Society
-
(2006)
In Proceedings of the 4th International Conference on Development and Learning
, pp. 11-17
-
-
Fei-Fei, L.1
-
66
-
-
33144466753
-
One-shot learning of object categories
-
Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 594-611
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
67
-
-
85047196784
-
A database for forest species recognition
-
Red Hook, NY: Curran
-
Filho, D. P., Luiz, P., Oliveira, L. S., & Britto, A. S. Jr. (2009). A database for forest species recognition. In Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing (pp. 1-2). Red Hook, NY: Curran
-
(2009)
In Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing
, pp. 1-2
-
-
Filho, D.P.1
Luiz, P.2
Oliveira, L.S.3
Britto, A.S.4
-
68
-
-
85029570668
-
-
Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., & Abbeel, P. (2015). Deep spatial autoencoders for visuomotor learning. arXiv 1509.06113
-
(2015)
Deep spatial autoencoders for visuomotor learning
-
-
Finn, C.1
Tan, X.Y.2
Duan, Y.3
Darrell, T.4
Levine, S.5
Abbeel, P.6
-
69
-
-
67749135953
-
-
Cambridge, MA: MIT Press
-
Floreano, D., &Mattiussi, C. (2008). Bio-inspired artificial intelligence: Theories, methods, and technologies. Cambridge, MA: MIT Press
-
(2008)
Bio-inspired artificial intelligence: Theories, methods, and technologies
-
-
Floreano, D.1
Mattiussi, C.2
-
71
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
72
-
-
0020331278
-
Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
-
Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 15(6), 455-469
-
(1982)
Pattern Recognition
, vol.15
, Issue.6
, pp. 455-469
-
-
Fukushima, K.1
Miyake, S.2
-
74
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Red Hook, NY: Curran
-
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587). Red Hook, NY: Curran
-
(2014)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
77
-
-
84940682866
-
-
Gong, Y., Liu, L., Yang, M., & Bourdev, L. (2014). Compressing deep convolutional networks using vector quantization. arXiv 1412.6115
-
(2014)
Compressing deep convolutional networks using vector quantization
-
-
Gong, Y.1
Liu, L.2
Yang, M.3
Bourdev, L.4
-
78
-
-
84906352772
-
Multi-scale orderless pooling of deep convolutional activation features
-
September. Berlin: Springer
-
Gong, Y., Wang, L., Guo, R., & Lazebnik, S. (2014, September). Multi-scale orderless pooling of deep convolutional activation features. In Proceedings of the European Conference on Computer Vision (pp. 392-407). Berlin: Springer
-
(2014)
Proceedings of the European Conference on Computer Vision
, pp. 392-407
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
79
-
-
84944735469
-
-
Cambridge, MA: MIT Press
-
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press
-
(2016)
Deep learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
80
-
-
84937849144
-
Generative adversarial nets
-
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q.Weinberger (Eds.), Red Hook, NY: Curran
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q.Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 2672-2680). Red Hook, NY: Curran
-
(2014)
Advances in neural information processing systems
, vol.27
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
. Bengio, Y.7
-
82
-
-
84893710272
-
Maxout networks
-
N.p.: International Machine Learning Society
-
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., & Bengio, Y. (2013). Maxout networks. In Proceedings of the 30th International ConferenceMachine Learning (pp. 1319-1327). N.p.: International Machine Learning Society
-
(2013)
In Proceedings of the 30th International ConferenceMachine Learning
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
86
-
-
84978483293
-
-
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., .Wang, G. (2015). Recent advances in convolutional neural networks. arXiv 1512.07108
-
(2015)
Recent advances in convolutional neural networks
-
-
Gu, J.1
Wang, Z.2
Kuen, J.3
Ma, L.4
Shahroudy, A.5
Shuai B.Wang, G.6
-
88
-
-
84907016671
-
Learned-norm pooling for deep feedforward and recurrent neural networks
-
New York: Springer-Verlag
-
Gulcehre, C., Cho, K., Pascanu, R., & Bengio, Y. (2014). Learned-norm pooling for deep feedforward and recurrent neural networks. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (pp. 530-546). New York: Springer-Verlag
-
(2014)
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
, pp. 530-546
-
-
Gulcehre, C.1
Cho, K.2
Pascanu, R.3
Bengio, Y.4
-
89
-
-
84957837518
-
Deep learning for visual understanding: Areview
-
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: Areview. Neurocomputing, 187, 27-48
-
(2016)
Neurocomputing
, vol.187
, pp. 27-48
-
-
Guo, Y.1
Liu, Y.2
Oerlemans, A.3
Lao, S.4
Wu, S.5
Lew, M.S.6
-
90
-
-
33845594569
-
Dimensionality reduction by learning an invariant mapping
-
Los Alamitos, CA: IEEE Computer Society
-
Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1735-1742). Los Alamitos, CA: IEEE Computer Society
-
(2006)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1735-1742
-
-
Hadsell, R.1
Chopra, S.2
Lecun, Y.3
-
91
-
-
67649219352
-
Learning long-range vision for autonomous off-road driving
-
Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., . LeCun, Y. (2009). Learning long-range vision for autonomous off-road driving. Journal of Field Robotics, 26(2), 120-144
-
(2009)
Journal of Field Robotics
, vol.26
, Issue.2
, pp. 120-144
-
-
Hadsell, R.1
Sermanet, P.2
Ben, J.3
Erkan, A.4
Scoffier, M.5
Kavukcuoglu, K.6
. Lecun, Y.7
-
92
-
-
85013194611
-
-
Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., & Dally, W. J. (2016). EIE: Efficient inference engine on compressed deep neural network. arXiv 1602.01528
-
(2016)
EIE: Efficient inference engine on compressed deep neural network
-
-
Han, S.1
Liu, X.2
Mao, H.3
Pu, J.4
Pedram, A.5
Horowitz, M.A.6
Dally, W.J.7
-
93
-
-
85083950579
-
Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding
-
N.p.: Computational and Biological Learning Society
-
Han, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. In Proceedings of the 3rd International Conference on Learning Representations (pp. 1-14).N.p.: Computational and Biological Learning Society
-
(2016)
Proceedings of the 3rd International Conference on Learning Representations
, pp. 1-14
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
95
-
-
84923096391
-
The neocortical circuit: Themes and variations
-
Harris, K. D., & Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18(2), 170-181
-
(2015)
Nature Neuroscience
, vol.18
, Issue.2
, pp. 170-181
-
-
Harris, K.D.1
Shepherd, G.M.2
-
97
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Berlin: Springer
-
He, K., Zhang, X., Ren, S., & Sun, J. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. In Proceedings of the European Conference on Computer Vision (pp. 346-361). Berlin: Springer
-
(2014)
In Proceedings of the European Conference on Computer Vision
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
98
-
-
84958589374
-
-
He, K., Zhang, X., Ren, S., & Sun, J. (2015a). Deep residual learning for image recognition. arXiv 1512.03385
-
(2015)
Deep residual learning for image recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
99
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
Red Hook, NY: Curran
-
He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034). Red Hook, NY: Curran
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
100
-
-
84990068011
-
-
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. arXiv 1603.05027
-
(2016)
Identity mappings in deep residual networks
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
101
-
-
0024732792
-
Connectionist learning procedures
-
Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40(1), 185-234
-
(1989)
Artificial Intelligence
, vol.40
, Issue.1
, pp. 185-234
-
-
Hinton, G.E.1
-
102
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771-1800
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
103
-
-
33745805403
-
Afast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. (2006). Afast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
104
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
105
-
-
84867720412
-
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv 1207.0580
-
(2012)
Improving neural networks by preventing co-adaptation of feature detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
107
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
109
-
-
51849117118
-
-
1, p. 3) (Technical Report 07-49). Amherst: University of Massachusetts
-
Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments (vol. 1, p. 3) (Technical Report 07-49). Amherst: University of Massachusetts
-
(2007)
Labeled faces in the wild: A database for studying face recognition in unconstrained environments (vol
-
-
Huang, G.B.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
-
110
-
-
85013999932
-
-
Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2016). Densely connected convolutional networks. arXiv 1608.06993
-
(2016)
Densely connected convolutional networks
-
-
Huang, G.1
Liu, Z.2
Weinberger, K.Q.3
Van Der Maaten, L.4
-
111
-
-
84990052802
-
Deep networks with stochastic depth
-
Heidelberg, Berlin: Springer
-
Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic depth. In Proceedings of the European Conference on Computer Vision (pp. 646-661). Heidelberg, Berlin: Springer
-
(2016)
In Proceedings of the European Conference on Computer Vision
, pp. 646-661
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.Q.5
-
112
-
-
85016032110
-
-
Huang, R., Xu, B., Schuurmans, D., & Szepesvári, C. (2016). Learning with a strong adversary. arXiv 1511.03034v6
-
(2016)
Learning with a strong adversary
-
-
Huang, R.1
Xu, B.2
Schuurmans, D.3
Szepesvári, C.4
-
113
-
-
70449311374
-
Receptive fields of single neurones in the cat's striate cortex
-
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology, 148(1), 574-591
-
(1959)
Journal of Physiology
, vol.148
, Issue.1
, pp. 574-591
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
114
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160(1), 106-154
-
(1962)
Journal of Physiology
, vol.160
, Issue.1
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
115
-
-
35649018818
-
Complex cell pooling and the statistics of natural images
-
Hyvärinen, A., & Köster, U. (2007). Complex cell pooling and the statistics of natural images. Network: Computation in Neural Systems, 18(2), 81-100
-
(2007)
Network: Computation in Neural Systems
, vol.18
, Issue.2
, pp. 81-100
-
-
Hyvärinen, A.1
Köster, U.2
-
116
-
-
84988340112
-
-
Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. arXiv 1602.07360
-
(2016)
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size
-
-
Iandola, F.N.1
Moskewicz, M.W.2
Ashraf, K.3
Han, S.4
Dally, W.J.5
Keutzer, K.6
-
118
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
N.p.: International Machine Learning Society
-
Ioffe, S., &Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference Machine Learning (pp. 448-456). N.p.: International Machine Learning Society
-
(2015)
In Proceedings of the 32nd International Conference Machine Learning
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
120
-
-
84965096967
-
Spatial transformer networks
-
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
-
Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2017-2025). Red Hook, NY: Curran
-
(2015)
Advances in neural information processing systems
, vol.28
, pp. 2017-2025
-
-
Jaderberg, M.1
Simonyan, K.2
Zisserman, A.3
-
121
-
-
85062833929
-
Speeding up convolutional neural networks with low rank expansions
-
Durham, UK: BMVAPress
-
Jaderberg, M., Vedaldi, A., &Zisserman, A. (2014). Speeding up convolutional neural networks with low rank expansions. In Proceedings of the British Machine Vision Conference (pp. 1-12). Durham, UK: BMVAPress
-
(2014)
In Proceedings of the British Machine Vision Conference
, pp. 1-12
-
-
Jaderberg, M.1
Vedaldi, A.2
Zisserman, A.3
-
122
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Red Hook, NY: Curran
-
Jarrett, K., Kavukcuoglu, K., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In Proceedings of the IEEE International Conference on Computer Vision (pp. 2146-2153). Red Hook, NY: Curran
-
(2009)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Lecun, Y.3
-
123
-
-
84865584175
-
Aggregating local image descriptors into compact codes
-
Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., & Schmid, C. (2012). Aggregating local image descriptors into compact codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1704-1716
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.9
, pp. 1704-1716
-
-
Jegou, H.1
Perronnin, F.2
Douze, M.3
Sánchez, J.4
Perez, P.5
Schmid, C.6
-
124
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
New York: ACM
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., . Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM International Conference on Multimedia (pp. 675-678). New York: ACM
-
(2014)
Proceedings of the 22nd ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
. Darrell, T.7
-
126
-
-
84990051924
-
-
Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., & Yan, S. (2015). Deep learning with S-shaped rectified linear activation units. arXiv 1512.07030
-
(2015)
Deep learning with S-shaped rectified linear activation units
-
-
Jin, X.1
Xu, C.2
Feng, J.3
Wei, Y.4
Xiong, J.5
Yan, S.6
-
128
-
-
85021676739
-
-
Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A. V. D., Graves, A., & Kavukcuoglu, K. (2016). Neural machine translation in linear time. arXiv 1610.10099
-
(2016)
Neural machine translation in linear time
-
-
Kalchbrenner, N.1
Espeholt, L.2
Simonyan, K.3
Oord, A.V.D.4
Graves, A.5
Kavukcuoglu, K.6
-
131
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
Red Hook, NY: Curran
-
Kavukcuoglu, K., Ranzato, M., Fergus, R., & LeCun, Y. (2009). Learning invariant features through topographic filter maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1605-1612). Red Hook, NY: Curran
-
(2009)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1605-1612
-
-
Kavukcuoglu, K.1
Ranzato, M.2
Fergus, R.3
Lecun, Y.4
-
135
-
-
84994596967
-
-
Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., & Shin, D. (2015). Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv 1511.06530
-
(2015)
Compression of deep convolutional neural networks for fast and low power mobile applications
-
-
Kim, Y.1
Park, E.2
Yoo, S.3
Choi, T.4
Yang, L.5
Shin, D.6
-
141
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1097-1105). Red Hook, NY: Curran
-
(2012)
Advances in neural information processing systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
142
-
-
84965156877
-
Deep convolutional inverse graphics network
-
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
-
Kulkarni, T. D., Whitney, W. F., Kohli, P., & Tenenbaum, J. (2015). Deep convolutional inverse graphics network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systemsm, 28 (pp. 2539-2547). Red Hook, NY: Curran
-
(2015)
Advances in neural information processing systemsm
, vol.28
, pp. 2539-2547
-
-
Kulkarni, T.D.1
Whitney, W.F.2
Kohli, P.3
Tenenbaum, J.4
-
143
-
-
77953185711
-
Attribute and simile classifiers for face verification
-
Red Hook, NY: Curran
-
Kumar, N., Berg, A. C., Belhumeur, P. N., & Nayar, S. K. (2009). Attribute and simile classifiers for face verification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 365-372). Red Hook, NY: Curran
-
(2009)
In Proceedings of the IEEE International Conference on Computer Vision
, pp. 365-372
-
-
Kumar, N.1
Berg, A.C.2
Belhumeur, P.N.3
Nayar, S.K.4
-
144
-
-
85013658363
-
-
Laptev, D., Savinov, N., Buhmann, J. M., & Pollefeys, M. (2016). TI-POOLING: Transformation-invariant pooling for feature learning in convolutional neural networks. arXiv 1604.06318
-
(2016)
TI-POOLING: Transformation-invariant pooling for feature learning in convolutional neural networks
-
-
Laptev, D.1
Savinov, N.2
Buhmann, J.M.3
Pollefeys, M.4
-
145
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
N.p.: International Machine Learning Society
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th International Conference on Machine Learning (pp. 473-480). N.p.: International Machine Learning Society
-
(2007)
In Proceedings of the 24th International Conference on Machine Learning
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
147
-
-
0030737097
-
Face recognition: A convolutional neural-network approach
-
Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98-113
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.1
, pp. 98-113
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
Back, A.D.4
-
148
-
-
24344452988
-
A sparse texture representation using local affine regions
-
Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1265-1278
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1265-1278
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
149
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
Red Hook, NY: Curran
-
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2169-2178). Red Hook, NY: Curran
-
(2006)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
150
-
-
84978312779
-
Labeled faces in thewild:Asurvey
-
In M. Kawulok, M. E. Celebi, &B. Smolka (Eds.)
-
Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., & Hua, G. (2016). Labeled faces in thewild:Asurvey. In M. Kawulok, M. E. Celebi, &B. Smolka (Eds.), Advances in face detection and facial image analysis (pp. 189-248). Cham, Switzerland: Springer
-
(2016)
Advances in face detection and facial image analysis
, pp. 189-248
-
-
Learned-Miller, E.1
Huang, G.B.2
Roychowdhury, A.3
Li, H.4
Hua, G.5
-
151
-
-
84965159681
-
-
Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., & Lempitsky, V. (2014). Speedingup convolutional neural networks using fine-tuned CP-decomposition. arXiv 1412.6553
-
(2014)
Speedingup convolutional neural networks using fine-tuned CP-decomposition
-
-
Lebedev, V.1
Ganin, Y.2
Rakhuba, M.3
Oseledets, I.4
Lempitsky, V.5
-
152
-
-
0002291365
-
Generalization and network design strategies
-
In R. Pfeifer, Z. Schreter, F. Fogelman, & L. Steels (Eds.)
-
LeCun, Y. (1989). Generalization and network design strategies. In R. Pfeifer, Z. Schreter, F. Fogelman, & L. Steels (Eds.), Connections in perspective (pp. 143-155). Zurich, Switzerland: Elsevier
-
(1989)
Connections in perspective
, pp. 143-155
-
-
Lecun, Y.1
-
153
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
154
-
-
0000494466
-
Handwritten digit recognition with a back-propagation network
-
D. S. Touretzky (Ed.). Cambridge, MA: MIT Press
-
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989a). Handwritten digit recognition with a back-propagation network. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 396-404). Cambridge, MA: MIT Press
-
(1989)
Advances in neural information processing systems
, vol.2
, pp. 396-404
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
155
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989b). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541-551
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
156
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
157
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
Red Hook, NY: Curran
-
LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 97-104). Red Hook, NY: Curran
-
(2004)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 97-104
-
-
Lecun, Y.1
Huang, F.J.2
Bottou, L.3
-
158
-
-
77955998889
-
Convolutional networks and applications in vision
-
Red Hook, NY: Curran
-
LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and applications in vision. In Proceedings of the IEEE International Symposium on Circuits and Systems (pp. 253-256). Red Hook, NY: Curran
-
(2010)
In Proceedings of the IEEE International Symposium on Circuits and Systems
, pp. 253-256
-
-
Lecun, Y.1
Kavukcuoglu, K.2
Farabet, C.3
-
159
-
-
85067565710
-
Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
-
Lee, C., Gallagher, P. W., & Tu, Z. (2016). Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (pp. 464-472). www.jmlr.org/proceedings/papers/v51/lee16a.pdf
-
(2016)
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
, pp. 464-472
-
-
Lee, C.1
Gallagher, P.W.2
Tu, Z.3
-
160
-
-
84954314676
-
Deeply-supervised nets
-
jmlr.org/proceedings/papers/v38/lee15a.pdf
-
Lee, C., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-supervised nets. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (pp. 562-570). jmlr.org/proceedings/papers/v38/lee15a.pdf
-
(2015)
In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics
, pp. 562-570
-
-
Lee, C.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
161
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
N.p.: International Machine Learning Society
-
Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th International ConferenceMachine Learning (pp. 609-616).N.p.: International Machine Learning Society
-
(2009)
Proceedings of the 26th International ConferenceMachine Learning
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
162
-
-
85162478810
-
Why the brain separates face recognition from object recognition
-
In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Leibo, J. Z., Mutch, J., & Poggio, T. (2011). Why the brain separates face recognition from object recognition. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 24 (pp. 711-719). Red Hook, NY: Curran
-
(2011)
Advances in neural information processing systems
, vol.24
, pp. 711-719
-
-
Leibo, J.Z.1
Mutch, J.2
Poggio, T.3
-
163
-
-
84979924150
-
End-to-end training of deep visuomotor policies
-
Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, 17(39), 1-40
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.39
, pp. 1-40
-
-
Levine, S.1
Finn, C.2
Darrell, T.3
Abbeel, P.4
-
165
-
-
85040961635
-
-
Li, S., Jiao, J., Han, Y., &Weissman, T. (2016). Demystifying ResNet. arXiv 1611.01186
-
(2016)
Demystifying ResNet
-
-
Li, S.1
Jiao, J.2
Han, Y.3
Weissman, T.4
-
166
-
-
85018878306
-
Improved dropout for shallow and deep learning
-
In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.)
-
Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep learning. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systemsm (pp. 1-9). N.p.: Preproceedings
-
(2016)
Advances in neural information processing systemsm
, pp. 1-9
-
-
Li, Z.1
Gong, B.2
Yang, T.3
-
169
-
-
84956658467
-
-
Lin, J., Morere, O., Chandrasekhar, V., Veillard, A., & Goh, H. (2015). Deephash: Getting regularization, depth and fine-tuning right. arXiv 1501.04711
-
(2015)
Deephash: Getting regularization, depth and fine-tuning right
-
-
Lin, J.1
Morere, O.2
Chandrasekhar, V.3
Veillard, A.4
Goh, H.5
-
171
-
-
80052870284
-
Large-scale image classification: Fast feature extraction and SVM training
-
Red Hook, NY: Curran
-
Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., . Huang, T. (2011). Large-scale image classification: Fast feature extraction and SVM training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1689-1696). Red Hook, NY: Curran
-
(2011)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1689-1696
-
-
Lin, Y.1
Lv, F.2
Zhu, S.3
Yang, M.4
Cour, T.5
Yu, K.6
. Huang, T.7
-
174
-
-
84986278256
-
Deep relative distance learning: Tell the difference between similar vehicles
-
Red Hook, NY: Curran
-
Liu, H., Tian, Y., Yang, Y., Pang, L., & Huang, T. (2016). Deep relative distance learning: Tell the difference between similar vehicles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2167-2175). Red Hook, NY: Curran
-
(2016)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2167-2175
-
-
Liu, H.1
Tian, Y.2
Yang, Y.3
Pang, L.4
Huang, T.5
-
175
-
-
85028395688
-
Large-margin softmax loss for convolutional neural networks
-
N.p.: International Machine Learning Society
-
Liu, W., Wen, Y., Scut, M., Yu, Z., & Yang, M. (2016). Large-margin softmax loss for convolutional neural networks. In Proceedings of the 33rd International Conference Machine Learning (pp. 507-516). N.p.: International Machine Learning Society
-
(2016)
In Proceedings of the 33rd International Conference Machine Learning
, pp. 507-516
-
-
Liu, W.1
Wen, Y.2
Scut, M.3
Yu, Z.4
Yang, M.5
-
178
-
-
51949103923
-
Discriminative learned dictionaries for local image analysis
-
Red Hook, NY: Curran
-
Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2008). Discriminative learned dictionaries for local image analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). Red Hook, NY: Curran
-
(2008)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
181
-
-
79959353548
-
Stacked convolutional autoencoders for hierarchical feature extraction
-
Berlin: Springer
-
Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked convolutional autoencoders for hierarchical feature extraction. In Proceedings of the 21th International Conference on Artificial Neural Networks (pp. 52-59). Berlin: Springer
-
(2011)
In Proceedings of the 21th International Conference on Artificial Neural Networks
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
184
-
-
85083953825
-
Distributional smoothing with virtual adversarial training
-
N.p.: Computational and Biological Learning Society
-
Miyato, T., Maeda, S., Koyama, M., Nakae, K., & Ishii, S. (2016). Distributional smoothing with virtual adversarial training. In Proceedings of the 5th International Conference on Learning Representations (pp. 1-12). N.p.: Computational and Biological Learning Society
-
(2016)
In Proceedings of the 5th International Conference on Learning Representations
, pp. 1-12
-
-
Miyato, T.1
Maeda, S.2
Koyama, M.3
Nakae, K.4
Ishii, S.5
-
186
-
-
34247492317
-
Off-road obstacle avoidance through end-to-end learning
-
In Y.Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Cambridge, MA: MIT Press
-
Muller, U., Ben, J., Cosatto, E., Flepp, B., & LeCun, Y. (2005). Off-road obstacle avoidance through end-to-end learning. In Y.Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 739-746). Cambridge, MA: MIT Press
-
(2005)
Advances in neural information processing systems
, vol.18
, pp. 739-746
-
-
Muller, U.1
Ben, J.2
Cosatto, E.3
Flepp, B.4
Lecun, Y.5
-
187
-
-
84873606887
-
Convolutional neural support vector machines: Hybrid visual pattern classifiers for multi-robot systems
-
Los Alamitos, CA: IEEE Computer Society
-
Nagi, J., Di Caro, G. A., Giusti, A., Nagi, F., & Gambardella, L. M. (2012). Convolutional neural support vector machines: Hybrid visual pattern classifiers for multi-robot systems. In Proceedings of the 11th International Conference on Machine Learning and Applications (pp. 27-32). Los Alamitos, CA: IEEE Computer Society
-
(2012)
In Proceedings of the 11th International Conference on Machine Learning and Applications
, pp. 27-32
-
-
Nagi, J.1
Di Caro, G.A.2
Giusti, A.3
Nagi, F.4
Gambardella, L.M.5
-
188
-
-
84857496797
-
Max-pooling convolutional neural networks for visionbased hand gesture recognition
-
Red Hook, NY: Curran
-
Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., . Gambardella, L. M. (2011). Max-pooling convolutional neural networks for visionbased hand gesture recognition. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications (pp. 342-347). Red Hook, NY: Curran
-
(2011)
In Proceedings of the IEEE International Conference on Signal and Image Processing Applications
, pp. 342-347
-
-
Nagi, J.1
Ducatelle, F.2
Di Caro, G.A.3
Cireşan, D.4
Meier, U.5
Giusti, A.6
. Gambardella, L.M.7
-
189
-
-
78149306047
-
3D object recognition with deep belief nets
-
In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Nair, V., & Hinton, G. E. (2009). 3D object recognition with deep belief nets. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1339-1347). Red Hook, NY: Curran
-
(2009)
Advances in neural information processing systems
, vol.22
, pp. 1339-1347
-
-
Nair, V.1
Hinton, G.E.2
-
192
-
-
85047227405
-
-
National Data Science Bowl | Kaggle. (2016). Kaggle.com. https://www.kaggle.com/c/datasciencebowl
-
(2016)
Kaggle.com
-
-
-
193
-
-
84865114495
-
Reading digits in natural imageswith unsupervised feature learning
-
(NIPS)Workshop on Deep Learning and Unsupervised Feature Learning Red Hook, NY: Curran
-
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural imageswith unsupervised feature learning. In Advances in neural information processing systems, 24 (NIPS)Workshop on Deep Learning and Unsupervised Feature Learning (pp. 1-9). Red Hook, NY: Curran
-
(2011)
In Advances in neural information processing systems
, vol.24
, pp. 1-9
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
194
-
-
85161972005
-
Tiled convolutional neural networks
-
In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., & Ng, A. Y. (2010). Tiled convolutional neural networks. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 1279-1287). Red Hook, NY: Curran
-
(2010)
Advances in neural information processing systems
, vol.23
, pp. 1279-1287
-
-
Ngiam, J.1
Chen, Z.2
Chia, D.3
Koh, P.W.4
Le, Q.V.5
Ng, A.Y.6
-
195
-
-
84946206172
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
Los Alamitos, CA: IEEE Computer Society
-
Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 427-436). Los Alamitos, CA: IEEE Computer Society
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 427-436
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
196
-
-
26444512083
-
Toward automatic phenotyping of developing embryos from videos
-
Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., & Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 14(9), 1360-1371
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.9
, pp. 1360-1371
-
-
Ning, F.1
Delhomme, D.2
Lecun, Y.3
Piano, F.4
Bottou, L.5
Barbano, P.E.6
-
197
-
-
84965128773
-
Tensorizing neural networks
-
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
-
Novikov, A., Podoprikhin, D., Osokin, A., & Vetrov, D. P. (2015). Tensorizing neural networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 442-450). Red Hook, NY: Curran
-
(2015)
Advances in neural information processing systems
, vol.28
, pp. 442-450
-
-
Novikov, A.1
Podoprikhin, D.2
Osokin, A.3
Vetrov, D.P.4
-
198
-
-
0001765492
-
Simplifying neural networks by soft weightsharing
-
Nowlan, S. J., & Hinton, G. E. (1992). Simplifying neural networks by soft weightsharing. Neural Computation, 4(4), 473-493
-
(1992)
Neural Computation
, vol.4
, Issue.4
, pp. 473-493
-
-
Nowlan, S.J.1
Hinton, G.E.2
-
199
-
-
2142662996
-
GPU implementation of neural networks
-
Oh, K., & Jung, K. (2004). GPU implementation of neural networks. Pattern Recognition, 37(6), 1311-1314
-
(2004)
Pattern Recognition
, vol.37
, Issue.6
, pp. 1311-1314
-
-
Oh, K.1
Jung, K.2
-
200
-
-
85011070895
-
-
CoRR abs/1609.03499
-
Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. CoRR abs/1609.03499
-
(2016)
Wavenet: A generative model for raw audio
-
-
Oord, A.1
Dieleman, S.2
Zen, H.3
Simonyan, K.4
Vinyals, O.5
Graves, A.6
. Kavukcuoglu, K.7
-
204
-
-
84906870318
-
-
Paine, T., Jin, H., Yang, J., Lin, Z., & Huang, T. (2013). GPU asynchronous stochastic gradient descent to speed up neural network training. arXiv 1312.6186
-
(2013)
GPU asynchronous stochastic gradient descent to speed up neural network training
-
-
Paine, T.1
Jin, H.2
Yang, J.3
Lin, Z.4
Huang, T.5
-
205
-
-
84987680683
-
Distillation as a defense to adversarial perturbations against deep neural networks
-
Los Alamitos, CA: IEEE Computer Society
-
Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial perturbations against deep neural networks. In Proceedings of the 37th IEEE Symposium on Security and Privacy (pp. 1-16). Los Alamitos, CA: IEEE Computer Society
-
(2016)
In Proceedings of the 37th IEEE Symposium on Security and Privacy
, pp. 1-16
-
-
Papernot, N.1
Mcdaniel, P.2
Wu, X.3
Jha, S.4
Swami, A.5
-
206
-
-
85135124091
-
-
Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., & Hinton, G. (2017). Regularizing neural networks by penalizing confident output distributions. arXiv 1701.06548v1
-
(2017)
Regularizing neural networks by penalizing confident output distributions
-
-
Pereyra, G.1
Tucker, G.2
Chorowski, J.3
Kaiser, L.4
Hinton, G.5
-
209
-
-
84966447574
-
-
Concurrency and Computation: Practice and Experience. doi:10.1002/cpe.3850
-
Qiao, Y., Shen, J., Xiao, T., Yang, Q., Wen, M., & Zhang, C. (2016). FPGA-accelerated deep convolutional neural networks for high throughput and energy efficiency. Concurrency and Computation: Practice and Experience. doi:10.1002/cpe.3850
-
(2016)
FPGA-accelerated deep convolutional neural networks for high throughput and energy efficiency
-
-
Qiao, Y.1
Shen, J.2
Xiao, T.3
Yang, Q.4
Wen, M.5
Zhang, C.6
-
210
-
-
0032983160
-
On the momentum term in gradient descent learning algorithms
-
Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12, 145-150
-
(1999)
Neural Networks
, vol.12
, pp. 145-150
-
-
Qian, N.1
-
211
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
Los Alamitos, CA: IEEE Computer Society
-
Ranzato, M. A., Huang, F. J., Boureau, Y., & LeCun, Y. (2007). Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). Los Alamitos, CA: IEEE Computer Society
-
(2007)
In Proceedings IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Ranzato, M.A.1
Huang, F.J.2
Boureau, Y.3
Lecun, Y.4
-
212
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
In P. B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
-
Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In P. B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 1137-1144). Cambridge, MA: MIT Press
-
(2006)
Advances in neural information processing systems
, vol.19
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
213
-
-
56449123056
-
Semi-supervised learning of compact document representations with deep networks
-
N.p.: International Machine Learning Society
-
Ranzato, M. A., & Szummer, M. (2008). Semi-supervised learning of compact document representations with deep networks. In Proceedings of the 25th International Conference on Machine Learning (pp. 792-799). N.p.: International Machine Learning Society
-
(2008)
In Proceedings of the 25th International Conference on Machine Learning
, pp. 792-799
-
-
Ranzato, M.A.1
Szummer, M.2
-
214
-
-
84990055874
-
Xnor-net: Imagenet classification using binary convolutional neural networks
-
Berlin: Springer
-
Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using binary convolutional neural networks. In Proceedings of the European Conference on Computer Vision (pp. 525-542). Berlin: Springer
-
(2016)
In Proceedings of the European Conference on Computer Vision
, pp. 525-542
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
-
215
-
-
84908537903
-
CNN features off-theshelf: An astounding baseline for recognition
-
Los Alamitos, CA: IEEE Computer Society
-
Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-theshelf: An astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionWorkshops (pp. 806-813). Los Alamitos, CA: IEEE Computer Society
-
(2014)
In Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionWorkshops
, pp. 806-813
-
-
Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
216
-
-
85162467517
-
Hogwild: Alock-free approach to parallelizing stochastic gradient descent
-
In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q.Weinberger (Eds.), Red Hook, NY: Curran
-
Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild: Alock-free approach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q.Weinberger (Eds.), Advances in neural information processing systems, 24 (pp. 693-701). Red Hook, NY: Curran
-
(2011)
Advances in neural information processing systems
, vol.24
, pp. 693-701
-
-
Recht, B.1
Re, C.2
Wright, S.3
Niu, F.4
-
218
-
-
84965137166
-
Spectral representations for convolutional neural networks
-
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Red Hook, NY: Curran
-
Rippel, O., Snoek, J., & Adams, R. P. (2015). Spectral representations for convolutional neural networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2449-2457). Red Hook, NY: Curran
-
(2015)
Advances in neural information processing systems
, vol.28
, pp. 2449-2457
-
-
Rippel, O.1
Snoek, J.2
Adams, R.P.3
-
219
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
N.p.: Computational and Biological Learning Society
-
Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2015). Fitnets: Hints for thin deep nets. In Proceedings of the 3rd International Conference on Learning Representations (pp. 1-13). N.p.: Computational and Biological Learning Society
-
(2015)
In Proceedings of the 3rd International Conference on Learning Representations
, pp. 1-13
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
220
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E., Hinton, G. E., &Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
221
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . Bernstein, M. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
. Bernstein, M.7
-
222
-
-
85083951731
-
Adversarial manipulation of deep representations
-
N.p.: Computational and Biological Learning Society
-
Sabour, S., Cao, Y., Faghri, F., & Fleet, D. J. (2016). Adversarial manipulation of deep representations. In Proceedings of the 4th International Conference on Learning Representations (pp. 1-18). N.p.: Computational and Biological Learning Society
-
(2016)
In Proceedings of the 4th International Conference on Learning Representations
, pp. 1-18
-
-
Sabour, S.1
Cao, Y.2
Faghri, F.3
Fleet, D.J.4
-
223
-
-
84893654379
-
Improvements to deep convolutional neural networks for LVCSR
-
Red Hook, NY: Curran
-
Sainath, T.N., Kingsbury, B., Mohamed, A., Dahl, G. E., Saon, G., Soltau, H., . Ramabhadran, B. (2013). Improvements to deep convolutional neural networks for LVCSR. In 2013 IEEEWorkshop on Automatic Speech Recognition and Understanding (pp. 315-320). Red Hook, NY: Curran
-
(2013)
In 2013 IEEEWorkshop on Automatic Speech Recognition and Understanding
, pp. 315-320
-
-
Sainath, T.N.1
Kingsbury, B.2
Mohamed, A.3
Dahl, G.E.4
Saon, G.5
Soltau, H.6
Ramabhadran, B.7
-
224
-
-
84890454527
-
Low-rank matrix factorization for deep neural network training with highdimensional output targets
-
N.p.: IEEE Signal Processing Society)
-
Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., & Ramabhadran, B. (2013). Low-rank matrix factorization for deep neural network training with highdimensional output targets. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 6655-6659. N.p.: IEEE Signal Processing Society)
-
(2013)
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
, pp. 6655-6659
-
-
Sainath, T.N.1
Kingsbury, B.2
Sindhwani, V.3
Arisoy, E.4
Ramabhadran, B.5
-
230
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
231
-
-
84946751287
-
Facenet: A unified embedding for face recognition and clustering
-
Los Alamitos, CA: IEEE Computer Society
-
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 815-823). Los Alamitos, CA: IEEE Computer Society
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
232
-
-
84874575248
-
Convolutional neural networks applied to house numbers digit classification
-
Red Hook, NY: Curran
-
Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied to house numbers digit classification. In Proceedings of the 21st International Conference on Pattern Recognition (pp. 3288-3291). Red Hook, NY: Curran
-
(2012)
In Proceedings of the 21st International Conference on Pattern Recognition
, pp. 3288-3291
-
-
Sermanet, P.1
Chintala, S.2
Lecun, Y.3
-
233
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysi
-
Washington, DC: IEEE Computer Society
-
Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003, August). Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 7th International Conference on Document Analysis and Recognition (vol. 3, pp. 958-963). Washington, DC: IEEE Computer Society
-
(2003)
In Proceedings of the 7th International Conference on Document Analysis and Recognition
, vol.3
, pp. 958-963
-
-
Simard, P.Y.1
Steinkraus, D.2
Platt, J.C.3
-
234
-
-
0032031687
-
Amodel of neuronal responses in visual area MT
-
Simoncelli, E. P., & Heeger, D. J. (1998). Amodel of neuronal responses in visual area MT. Vision Research, 38(5), 743-761
-
(1998)
Vision Research
, vol.38
, Issue.5
, pp. 743-761
-
-
Simoncelli, E.P.1
Heeger, D.J.2
-
236
-
-
84937413702
-
Comparison of regularization methods for ImageNet classification with deep convolutional neural networks
-
Smirnov, E. A., Timoshenko, D. M., & Andrianov, S. N. (2014). Comparison of regularization methods for ImageNet classification with deep convolutional neural networks. AASRI Procedia, 6, 89-94
-
(2014)
AASRI Procedia
, vol.6
, pp. 89-94
-
-
Smirnov, E.A.1
Timoshenko, D.M.2
Andrianov, S.N.3
-
237
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 2951-2959). Red Hook, NY: Curran
-
(2012)
Advances in neural information processing systems
, vol.25
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
239
-
-
84962006941
-
-
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv 1412.6806
-
(2014)
Striving for simplicity: The all convolutional net
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
241
-
-
85016416443
-
-
Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., & Babu, R. V. (2016). A taxonomy of deep convolutional neural nets for computer vision. arXiv 1601.06615
-
(2016)
A taxonomy of deep convolutional neural nets for computer vision
-
-
Srinivas, S.1
Sarvadevabhatla, R.K.2
Mopuri, K.R.3
Prabhu, N.4
Kruthiventi, S.S.5
Babu, R.V.6
-
242
-
-
84904163933
-
Dropout: Asimple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: Asimple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929-1958
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
243
-
-
84898957541
-
Discriminative transfer learning with tree-based priors
-
In C. J. C. Burges, L. Bottou, M.Welling, Z. Ghahramani, &K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Srivastava, N., & Salakhutdinov, R. R. (2013). Discriminative transfer learning with tree-based priors. In C. J. C. Burges, L. Bottou, M.Welling, Z. Ghahramani, &K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 2094-2102). Red Hook, NY: Curran
-
(2013)
Advances in neural information processing systems
, vol.26
, pp. 2094-2102
-
-
Srivastava, N.1
Salakhutdinov, R.R.2
-
244
-
-
84965164720
-
Training very deep networks
-
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), . Red Hook, NY: Curran
-
Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015a). Training very deep networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems, 28 (pp. 2377-2385). Red Hook, NY: Curran
-
(2015)
Advances in neural information processing systems
, vol.28
, pp. 2377-2385
-
-
Srivastava, R.K.1
Greff, K.2
Schmidhuber, J.3
-
246
-
-
80054726665
-
The German traffic sign recognition benchmark: A multi-class classification competition
-
July Red Hook, NY: Curran
-
Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011, July). The German traffic sign recognition benchmark: A multi-class classification competition. In Proceedings of the IEEE International Joint Conference on Neural Networks (pp. 1453-1460). Red Hook, NY: Curran
-
(2011)
Proceedings of the IEEE International Joint Conference on Neural Networks
, pp. 1453-1460
-
-
Stallkamp, J.1
Schlipsing, M.2
Salmen, J.3
Igel, C.4
-
247
-
-
33947399325
-
Using GPUs for machine learning algorithms
-
Washington, DC: IEEE Computer Society
-
Steinkrau, D., Simard, P. Y., & Buck, I. (2005). Using GPUs for machine learning algorithms. In Proceedings of the 8th International Conference on Document Analysis and Recognition (pp. 1115-1119).Washington, DC: IEEE Computer Society
-
(2005)
Proceedings of the 8th International Conference on Document Analysis and Recognition
, pp. 1115-1119
-
-
Steinkrau, D.1
Simard, P.Y.2
Buck, I.3
-
248
-
-
84937961845
-
Deep networks with internal selective attention through feedback connections
-
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Stollenga, M. F., Masci, J., Gomez, F., & Schmidhuber, J. (2014). Deep networks with internal selective attention through feedback connections. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 3545-3553). Red Hook, NY: Curran
-
(2014)
Advances in neural information processing systems
, vol.27
, pp. 3545-3553
-
-
Stollenga, M.F.1
Masci, J.2
Gomez, F.3
Schmidhuber, J.4
-
249
-
-
84937852544
-
Deep learning face representation by joint identification-verification
-
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representation by joint identification-verification. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 27 (pp. 1988-1996). Red Hook, NY: Curran
-
(2014)
Advances in neural information processing systems
, vol.27
, pp. 1988-1996
-
-
Sun, Y.1
Chen, Y.2
Wang, X.3
Tang, X.4
-
250
-
-
84931584166
-
-
Sun, Y., Liang, D., Wang, X., & Tang, X. (2015). Deepid3: Face recognition with very deep neural networks. arXiv 1502.00873
-
(2015)
Deepid3: Face recognition with very deep neural networks
-
-
Sun, Y.1
Liang, D.2
Wang, X.3
Tang, X.4
-
251
-
-
84911126535
-
Deep learning face representation from predicting 10, 000 classes
-
Los Alamitos, CA: IEEE Computer Society
-
Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10, 000 classes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1891-1898). Los Alamitos, CA: IEEE Computer Society
-
(2014)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1891-1898
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
252
-
-
84946769681
-
Deeply learned face representations are sparse, selective, and robust
-
Los Alamitos, CA: IEEE Computer Society
-
Sun, Y., Wang, X., & Tang, X. (2015). Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2892-2900). Los Alamitos, CA: IEEE Computer Society
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2892-2900
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
254
-
-
84892623436
-
On the importance of initialization and momentum in deep learning
-
N.p.: International Machine Learning Society
-
Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference Machine Learning (pp. 1139-1147). N.p.: International Machine Learning Society
-
(2013)
In Proceedings of the 30th International Conference Machine Learning
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
255
-
-
84983383396
-
-
Szegedy, C., Ioffe, S., & Vanhoucke, V. (2016). Inception-v4, Inception-Resnet and the impact of residual connections on learning. arXiv 1602.07261
-
(2016)
Inception-v4, Inception-Resnet and the impact of residual connections on learning
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
-
256
-
-
84937522268
-
Going deeper with convolutions
-
Los Alamitos, CA: IEEE Computer Society
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9). Los Alamitos, CA: IEEE Computer Society
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
. Rabinovich, A.7
-
257
-
-
84990032289
-
-
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception architecture for computer vision. arXiv 1512.00567
-
(2015)
Rethinking the Inception architecture for computer vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
258
-
-
85083953343
-
Intriguing properties of neural networks
-
N.p.: Computational and Biological Learning Society
-
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., &Fergus, R. (2014). Intriguing properties of neural networks. In Proceedings of the 1st International Conference on Learning Representations (pp. 1-10). N.p.: Computational and Biological Learning Society
-
(2014)
In Proceedings of the 1st International Conference on Learning Representations
, pp. 1-10
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
260
-
-
84911198048
-
Deepface: Closing the gap to human-level performance in face verification
-
Los Alamitos, CA: IEEE Computer Society
-
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708). Los Alamitos, CA: IEEE Computer Society
-
(2014)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
262
-
-
84959240338
-
Efficient object localization using convolutional networks
-
Los Alamitos, CA: IEEE Computer Society
-
Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 648-656). Los Alamitos, CA: IEEE Computer Society
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 648-656
-
-
Tompson, J.1
Goroshin, R.2
Jain, A.3
Lecun, Y.4
Bregler, C.5
-
263
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279-311
-
(1966)
Psychometrika
, vol.31
, Issue.3
, pp. 279-311
-
-
Tucker, L.R.1
-
264
-
-
77649302828
-
Convolutional networks can learn to generate affinity graphs for image segmentation
-
Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., . Seung, H. S. (2010). Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22(2), 511-538
-
(2010)
Neural Computation
, vol.22
, Issue.2
, pp. 511-538
-
-
Turaga, S.C.1
Murray, J.F.2
Jain, V.3
Roth, F.4
Helmstaedter, M.5
Briggman, K.6
. Seung, H.S.7
-
266
-
-
0002696801
-
The art of data augmentation
-
Van Dyk, D. A., & Meng, X. (2012). The art of data augmentation. Journal of Computational and Graphical Statistics, 10(1), 1-50
-
(2012)
Journal of Computational and Graphical Statistics
, vol.10
, Issue.1
, pp. 1-50
-
-
Van Dyk, D.A.1
Meng, X.2
-
268
-
-
84955753712
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications. 16(2), 11-30
-
(1971)
Theory of Probability and Its Applications
, vol.16
, Issue.2
, pp. 11-30
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
269
-
-
84946747440
-
Show and tell: Aneural image caption generator
-
Red Hook, NY: Curran
-
Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: Aneural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3156-3164). Red Hook, NY: Curran
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
270
-
-
84896538964
-
Dropout training as adaptive regularization
-
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Red Hook, NY: Curran
-
Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adaptive regularization. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 351-359). Red Hook, NY: Curran
-
(2013)
Advances in neural information processing systems
, vol.26
, pp. 351-359
-
-
Wager, S.1
Wang, S.2
Liang, P.S.3
-
271
-
-
84899064374
-
Regularization of neural networks using Dropconnect
-
N.p.: International Machine Learning Society
-
Wan, L., Zeiler, M., Zhang, S., LeCun, Y., & Fergus, R. (2013). Regularization of neural networks using Dropconnect. In Proceedings of the 30th International Conference Machine Learning (pp. 1058-1066). N.p.: International Machine Learning Society
-
(2013)
In Proceedings of the 30th International Conference Machine Learning
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Lecun, Y.4
Fergus, R.5
-
272
-
-
84994569606
-
-
Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). CNN-RNN: A unified framework for multi-label image classification. arXiv 1604.04573
-
(2016)
CNN-RNN: A unified framework for multi-label image classification
-
-
Wang, J.1
Yang, Y.2
Mao, J.3
Huang, Z.4
Huang, C.5
Xu, W.6
-
274
-
-
85021105662
-
CNNpack: Packing convolutional neural networks in the frequency domain
-
D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), . N.p.: Preproceedings
-
Wang, Y., Xu, C., You, S., Tao, D., & Xu, C. (2016). CNNpack: Packing convolutional neural networks in the frequency domain. InD. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 1-9). N.p.: Preproceedings
-
(2016)
Advances in neural information processing systems
, vol.29
, pp. 1-9
-
-
Wang, Y.1
Xu, C.2
You, S.3
Tao, D.4
Xu, C.5
-
275
-
-
84964663150
-
Encoding time series as images for visual inspection and classification using tiled convolutional neural networks
-
Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 40-46)
-
(2015)
Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence
, pp. 40-46
-
-
Wang, Z.1
Oates, T.2
-
276
-
-
84959169867
-
-
Warde-Farley, D., Goodfellow, I. J., Courville, A., & Bengio, Y. (2013). An empirical analysis of dropout in piecewise linear networks. arXiv 1312.6197
-
(2013)
An empirical analysis of dropout in piecewise linear networks
-
-
Warde-Farley, D.1
Goodfellow, I.J.2
Courville, A.3
Bengio, Y.4
-
277
-
-
33749257955
-
Distance metric learning for large margin nearest neighbor classification
-
In Y. Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Cambridge, MA: MIT Press
-
Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2005). Distance metric learning for large margin nearest neighbor classification. In Y. Weiss, P. B. Schölkopf, & J. C. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1473-1480). Cambridge, MA: MIT Press
-
(2005)
Advances in neural information processing systems
, vol.18
, pp. 1473-1480
-
-
Weinberger, K.Q.1
Blitzer, J.2
Saul, L.K.3
-
279
-
-
0001773535
-
Applications of advances in nonlinear sensitivity analysis
-
In R. F. Drenick & F. Kozin (Eds.)
-
Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In R. F. Drenick & F. Kozin (Eds.), System modeling and optimization (pp. 762-770). Berlin: Springer
-
(1982)
System modeling and optimization
, pp. 762-770
-
-
Werbos, P.J.1
-
280
-
-
56449119888
-
Deep learning via semisupervised embedding
-
N.p.: International Machine Learning Society
-
Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2008). Deep learning via semisupervised embedding. In Proceedings of the 25th International Conference onMachine Learning (pp. 1168-1175). N.p.: International Machine Learning Society
-
(2008)
In Proceedings of the 25th International Conference onMachine Learning
, pp. 1168-1175
-
-
Weston, J.1
Ratle, F.2
Mobahi, H.3
Collobert, R.4
-
283
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
Red Hook, NY: Curran
-
Wolf, L., Hassner, T., &Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 529-534). Red Hook, NY: Curran
-
(2011)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 529-534
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
-
285
-
-
84955184649
-
Deep multiple instance learning for image classification and auto-annotation
-
Red Hook, NY: Curran
-
Wu, J., Yu, Y., Huang, C., & Yu, K. (2015). Deep multiple instance learning for image classification and auto-annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3460-3469). Red Hook, NY: Curran
-
(2015)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3460-3469
-
-
Wu, J.1
Yu, Y.2
Huang, C.3
Yu, K.4
-
286
-
-
85009885109
-
DisturbLabel: Regularizing CNN on the loss layer
-
Red Hook, NY: Curran
-
Xie, L., Wang, J., Wei, Z., Wang, M., & Tian, Q. (2016). DisturbLabel: Regularizing CNN on the loss layer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4753-4762). Red Hook, NY: Curran
-
(2016)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4753-4762
-
-
Xie, L.1
Wang, J.2
Wei, Z.3
Wang, M.4
Tian, Q.5
-
287
-
-
85027970290
-
-
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2016). Aggregated residual transformations for deep neural networks. arXiv 1611.05431
-
(2016)
Aggregated residual transformations for deep neural networks
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
-
288
-
-
84960920723
-
-
Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv 1505.00853v2
-
(2015)
Empirical evaluation of rectified activations in convolutional network
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
289
-
-
84965152937
-
-
Yadan, O., Adams, K., Taigman, Y., & Ranzato, M. (2014). Multi-GPU training of convnets. arXiv 1312.5853v4
-
(2014)
Multi-GPU training of convnets
-
-
Yadan, O.1
Adams, K.2
Taigman, Y.3
Ranzato, M.4
-
290
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
Red Hook, NY: Curran
-
Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1794-1801). Red Hook, NY: Curran
-
(2009)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1794-1801
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
291
-
-
84908696009
-
Mixed pooling for convolutional neural networks
-
Berlin: Springer
-
Yu, D., Wang, H., Chen, P., & Wei, Z. (2014). Mixed pooling for convolutional neural networks. In Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology (pp. 364-375). Berlin: Springer
-
(2014)
In Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology
, pp. 364-375
-
-
Yu, D.1
Wang, H.2
Chen, P.3
Wei, Z.4
-
293
-
-
85088348690
-
DNN flow: DNN feature pyramid based image matching
-
Durham, UK: BMVA Press
-
Yu, W., Yang, K., Bai, Y., Yao, H., & Rui, Y. (2014a). DNN flow: DNN feature pyramid based image matching. In Proceedings of the British Machine Vision Conference (pp. 1-10). Durham, UK: BMVA Press
-
(2014)
Proceedings of the British Machine Vision Conference
, pp. 1-10
-
-
Yu, W.1
Yang, K.2
Bai, Y.3
Yao, H.4
Rui, Y.5
-
294
-
-
84961937140
-
-
Yu, W., Yang, K., Bai, Y., Yao, H., & Rui, Y. (2014b). Visualizing and comparing convolutional neural networks. arXiv 1412.6631
-
(2014)
Visualizing and comparing convolutional neural networks
-
-
Yu, W.1
Yang, K.2
Bai, Y.3
Yao, H.4
Rui, Y.5
-
299
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
Red Hook, NY: Curran
-
Zeiler, M. D., Taylor, G.W., & Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2018-2025). Red Hook, NY: Curran
-
(2011)
In Proceedings of the IEEE International Conference on Computer Vision
, pp. 2018-2025
-
-
Zeiler, M.D.1
Taylor, G.W.2
Fergus, R.3
-
300
-
-
85019232787
-
Doubly convolutional neural networks
-
In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), N.p.: Preproceedings
-
Zhai, S., Cheng, Y., & Zhang, Z. M. (2016). Doubly convolutional neural networks. In D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 1-9). N.p.: Preproceedings
-
(2016)
Advances in neural information processing systems
, vol.29
, pp. 1-9
-
-
Zhai, S.1
Cheng, Y.2
Zhang, Z.M.3
-
301
-
-
33845566162
-
SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
-
Red Hook, NY: Curran
-
Zhang, H., Berg, A. C., Maire, M., &Malik, J. (2006). SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2126-2136). Red Hook, NY: Curran
-
(2006)
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2126-2136
-
-
Zhang, H.1
Berg, A.C.2
Maire, M.3
Malik, J.4
-
304
-
-
84906338500
-
-
Zhu, Z., Luo, P., Wang, X., & Tang, X. (2014). Recover canonical-view faces in the wild with deep neural networks. arXiv 1404.3543
-
(2014)
Recover canonical-view faces in the wild with deep neural networks
-
-
Zhu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
305
-
-
84887588556
-
A fast parallel SGD for matrix factorization in shared memory systems
-
New York: ACM
-
Zhuang, Y., Chin, W., Juan, Y., & Lin, C. (2013). A fast parallel SGD for matrix factorization in shared memory systems. Proceedings of the 7th ACM Conference on Recommender Systems (pp. 249-256). New York: ACM
-
(2013)
Proceedings of the 7th ACM Conference on Recommender Systems
, pp. 249-256
-
-
Zhuang, Y.1
Chin, W.2
Juan, Y.3
Lin, C.4
-
306
-
-
85161967549
-
Parallelized stochastic gradient descent
-
In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran
-
Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic gradient descent. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systemsm, 23 (pp. 2595-2603). Red Hook, NY: Curran
-
(2010)
Advances in neural information processing systemsm
, vol.23
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Li, L.3
Smola, A.J.4
|