-
1
-
-
84911409986
-
Seeing 3d chairs: Exemplar partbased 2d-3d alignment using a large dataset of cad models
-
M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3d chairs: exemplar partbased 2d-3d alignment using a large dataset of cad models. In CVPR, 2014.
-
(2014)
CVPR
-
-
Aubry, M.1
Maturana, D.2
Efros, A.3
Russell, B.4
Sivic, J.5
-
3
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1798-1828, 2013.
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
7
-
-
84860644702
-
Measuring invariances in deep networks
-
I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng. Measuring invariances in deep networks. In Advances in neural information processing systems, pages 646-654, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 646-654
-
-
Goodfellow, I.1
Lee, H.2
Le, Q.V.3
Saxe, A.4
Ng, A.Y.5
-
8
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
84959185016
-
Picture: A probabilistic programming language for scene perception
-
T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mansinghka. Picture: A probabilistic programming language for scene perception. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4390-4399, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4390-4399
-
-
Kulkarni, T.D.1
Kohli, P.2
Tenenbaum, J.B.3
Mansinghka, V.4
-
14
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
ACM
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 609-616. ACM, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
15
-
-
84898942632
-
Approximate Bayesian image interpretation using generative probabilistic graphics programs
-
V. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum. Approximate bayesian image interpretation using generative probabilistic graphics programs. In Advances in Neural Information Processing Systems, pages 1520-1528, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1520-1528
-
-
Mansinghka, V.1
Kulkarni, T.D.2
Perov, Y.N.3
Tenenbaum, J.4
-
16
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
17
-
-
84880810100
-
-
Genova, Italy, IEEE
-
P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model for pose and illumination invariant face recognition. Genova, Italy, 2009. IEEE.
-
(2009)
A 3d Face Model for Pose and Illumination Invariant Face Recognition
-
-
Paysan, P.1
Knothe, R.2
Amberg, B.3
Romdhani, S.4
Vetter, T.5
-
18
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
IEEE
-
M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Le Cun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1-8. IEEE, 2007.
-
(2007)
Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on
, pp. 1-8
-
-
Ranzato, M.1
Huang, F.J.2
Boureau, Y.-L.3
Le Cun, Y.4
-
23
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11:3371-3408, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
|