메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Unsupervised learning of invariant feature hierarchies with applications to object recognition

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CONTROL NONLINEARITIES; CONVOLUTION; FEATURE EXTRACTION; INVARIANCE; PARAMETERIZATION; UNSUPERVISED LEARNING;

EID: 34948870900     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383157     Document Type: Conference Paper
Times cited : (943)

References (21)
  • 1
    • 34948832696 scopus 로고    scopus 로고
    • http://yann.lecun.com/exdb/mnist/.
  • 2
    • 33745813032 scopus 로고    scopus 로고
    • Pop: Patchwork of parts models for object recognition
    • Technical report, The Univ. of Chicago
    • A. Amit and A. Trouve. Pop: Patchwork of parts models for object recognition. Technical report, The Univ. of Chicago, 2005.
    • (2005)
    • Amit, A.1    Trouve, A.2
  • 4
    • 24644502276 scopus 로고    scopus 로고
    • Shape matching and object recognition using low distortion correspondences
    • A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. In CVPR, 2005.
    • (2005) CVPR
    • Berg, A.C.1    Berg, T.L.2    Malik, J.3
  • 5
    • 56449113213 scopus 로고    scopus 로고
    • A theoretical analysis of robust coding over noisy overcomplete channels
    • MIT Press
    • E. Doi, D. C. Balcan, and M. S. Lewicki. A theoretical analysis of robust coding over noisy overcomplete channels. In NIPS. MIT Press, 2006.
    • (2006) NIPS
    • Doi, E.1    Balcan, D.C.2    Lewicki, M.S.3
  • 6
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPR Workshop, 2004.
    • (2004) CVPR Workshop
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 7
    • 0020331278 scopus 로고
    • Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
    • K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 1982.
    • (1982) Pattern Recognition
    • Fukushima, K.1    Miyake, S.2
  • 8
    • 38349061181 scopus 로고    scopus 로고
    • The caltech 256
    • Technical report, Caltech, 2006
    • G. Griffin, A. Holub, and P. Perona. The caltech 256. Technical report, Caltech, 2006.
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 33845597145 scopus 로고    scopus 로고
    • Large-scale learning with svm and convolutional nets for generic object categorization
    • IEEE Press
    • F.-J. Huang and Y. LeCun. Large-scale learning with svm and convolutional nets for generic object categorization. In CVPR. IEEE Press, 2006.
    • (2006) CVPR
    • Huang, F.-J.1    LeCun, Y.2
  • 11
    • 33646505098 scopus 로고    scopus 로고
    • Semi-local affine parts for object recognition
    • S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts for object recognition. In BMVC, 2004.
    • (2004) BMVC
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 12
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 15
    • 0029215139 scopus 로고
    • Probabilistic visual learning for object detection
    • IEEE, June
    • B. Moghaddam and A. Pentland. Probabilistic visual learning for object detection. In ICCV. IEEE, June 1995.
    • (1995) ICCV
    • Moghaddam, B.1    Pentland, A.2
  • 17
    • 33845569574 scopus 로고    scopus 로고
    • Multiclass object recognition with sparse, localized features
    • J. Mutch and D. Lowe. Multiclass object recognition with sparse, localized features. In CVPR, 2006.
    • (2006) CVPR
    • Mutch, J.1    Lowe, D.2
  • 18
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37':3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 19
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • MIT Press
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS. MIT Press, 2006.
    • (2006) NIPS
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 20
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. In CVPR, 2005.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 21
    • 33845566162 scopus 로고    scopus 로고
    • Svm-knn: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.C.2    Maire, M.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.