메뉴 건너뛰기




Volumn , Issue , 2014, Pages 512-519

CNN features off-the-shelf: An astounding baseline for recognition

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; CONVOLUTION; DEEP LEARNING; IMAGE RETRIEVAL; SUPPORT VECTOR MACHINES;

EID: 84908537903     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2014.131     Document Type: Conference Paper
Times cited : (3889)

References (52)
  • 1
    • 84908534273 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge 2013 (ilsvrc2013)
    • Imagenet large scale visual recognition challenge 2013 (ilsvrc2013). http://www. imagenet. org/challenges/LSVRC/2013/.
  • 2
    • 84887340679 scopus 로고    scopus 로고
    • Efficient object detection and segmentation for fine-grained recognition
    • A. Angelova and S. Zhu. Efficient object detection and segmentation for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Angelova, A.1    Zhu, S.2
  • 3
    • 84856650008 scopus 로고    scopus 로고
    • Smooth object retrieval using a bag of boundaries
    • R. Arandjelovíc and A. Zisserman. Smooth object retrieval using a bag of boundaries. In ICCV, 2011.
    • (2011) ICCV
    • Arandjelovíc, R.1    Zisserman, A.2
  • 5
    • 84887356895 scopus 로고    scopus 로고
    • Poof Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. Poof: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 6
    • 84856647890 scopus 로고    scopus 로고
    • Describing people: A poselet-based approach to attribute classification
    • L. D. Bourdev, S. Maji, and J. Malik. Describing people: A poselet-based approach to attribute classification. In ICCV, 2011.
    • (2011) ICCV
    • Bourdev, L.D.1    Maji, S.2    Malik, J.3
  • 7
    • 84856668103 scopus 로고    scopus 로고
    • Bicos: A bilevel co-segmentation method for image classification
    • Y. Chai, V. S. Lempitsky, and A. Zisserman. Bicos: A bilevel co-segmentation method for image classification. In ICCV, 2011.
    • (2011) ICCV
    • Chai, Y.1    Lempitsky, V.S.2    Zisserman, A.3
  • 8
    • 84866694025 scopus 로고    scopus 로고
    • Hierarchical matching with side information for image classification
    • Q. Chen, Z. Song, Y. Hua, Z. Huang, and S. Yan. Hierarchical matching with side information for image classification. In CVPR, 2012.
    • (2012) CVPR
    • Chen, Q.1    Song, Z.2    Hua, Y.3    Huang, Z.4    Yan, S.5
  • 9
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013.
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 16
    • 84906331878 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. CoRR, 2014.
    • (2014) CoRR
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 17
    • 84455168944 scopus 로고    scopus 로고
    • Asymmetric hamming embedding: Taking the best of our bits for large scale image search
    • M. Jain, H. Jégou, and P. Gros. Asymmetric hamming embedding: taking the best of our bits for large scale image search. In ACM Multimedia, pages 1441-1444, 2011.
    • (2011) ACM Multimedia , pp. 1441-1444
    • Jain, M.1    Jégou, H.2    Gros, P.3
  • 18
    • 84867857457 scopus 로고    scopus 로고
    • Negative evidences and cooccurences in image retrieval: The benefit of pca and whitening
    • H. Jégou and O. Chum. Negative evidences and cooccurences in image retrieval: The benefit of pca and whitening. In ECCV, pages 774-787, 2012.
    • (2012) ECCV , pp. 774-787
    • Jégou, H.1    Chum, O.2
  • 19
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008.
    • (2008) ECCV
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 21
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A highlevel image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, E. P. Xing, and F.-F. Li. Object bank: A highlevel image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.P.3    Li, F.-F.4
  • 25
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013.
    • (2013) CVPR
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 28
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006.
    • (2006) CVPR
    • Nistér, D.1    Stewénius, H.2
  • 29
    • 84908539410 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. Technical Report HAL-00911179, INRIA, 2013.
    • (2013) Technical Report HAL-00911179, INRIA
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 30
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011.
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 33
    • 77955992063 scopus 로고    scopus 로고
    • Large-scale image retrieval with compressed fisher vectors
    • F. Perronnin, Y. Liu, J. ͆anchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Liu, Y.2    ͆anchez, J.3    Poirier, H.4
  • 34
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 35
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, 2008.
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 36
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 37
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activities
    • M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity detection of cooking activities. In CVPR, 2012.
    • (2012) CVPR
    • Rohrbach, M.1    Amin, S.2    Andriluka, M.3    Schiele, B.4
  • 38
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    Lecun, Y.6
  • 39
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011.
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 40
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013.
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 41
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 42
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • G. Tolias, Y. S. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, pages 1401-1408, 2013.
    • (2013) ICCV , pp. 1401-1408
    • Tolias, G.1    Avrithis, Y.S.2    Jégou, H.3
  • 43
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 44
    • 84908547637 scopus 로고    scopus 로고
    • Sparse representations and distance learning for attribute based category recognition
    • G. Tsagkatakis and A. E. Savakis. Sparse representations and distance learning for attribute based category recognition. In ECCV Workshops (1), pages 29-42, 2010.
    • (2010) ECCV Workshops , Issue.1 , pp. 29-42
    • Tsagkatakis, G.1    Savakis, A.E.2
  • 46
    • 80052913382 scopus 로고    scopus 로고
    • A discriminative latent model of object classes and attributes
    • Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV, 2010.
    • (2010) ECCV
    • Wang, Y.1    Mori, G.2
  • 47
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • B. Yao, A. Khosla, and F.-F. Li. Combining randomization and discrimination for fine-grained image categorization. In CVPR, 2011.
    • (2011) CVPR
    • Yao, B.1    Khosla, A.2    Li, F.-F.3
  • 48
    • 84906341064 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • abs/1311
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311. 2901, 2013.
    • (2013) CoRR, 2901
    • Zeiler, M.D.1    Fergus, R.2
  • 49
    • 84866662426 scopus 로고    scopus 로고
    • Pose pooling kernels for sub-category recognition
    • N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-category recognition. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, N.1    Farrell, R.2    Darrell, T.3
  • 50
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, N.1    Farrell, R.2    Iandola, F.3    Darrell, T.4
  • 52
    • 84929481075 scopus 로고    scopus 로고
    • Oriented pooling for dense and non-dense rotation-invariant feature
    • W.-L. Zhao, H. Jégou, G. Gravier, et al. Oriented pooling for dense and non-dense rotation-invariant features. In BMVC, 2013.
    • (2013) BMVC
    • Zhao, W.-L.1    Jégou, H.2    Gravier, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.