-
2
-
-
0037262814
-
An introduction to MCMC for machine learning
-
Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. (2003). An introduction to MCMC for machine learning. Machine Learning, 50, 5-43.
-
(2003)
Machine Learning
, vol.50
, pp. 5-43
-
-
Andrieu, C.1
de Freitas, N.2
Doucet, A.3
Jordan, M.4
-
3
-
-
84989277664
-
-
arXiv:1511.05653
-
Arora, S., Liang, Y., & Ma, T. (2015). Why are deep nets reversible? A simple theory, with implications for training (Technical Report). arXiv:1511.05653
-
(2015)
Why are deep nets reversible? A simple theory, with implications for training (Technical Report)
-
-
Arora, S.1
Liang, Y.2
Ma, T.3
-
4
-
-
78650972934
-
Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment
-
Berkes, P., Orban, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331, 83-87.
-
(2011)
Science
, vol.331
, pp. 83-87
-
-
Berkes, P.1
Orban, G.2
Lengyel, M.3
Fiser, J.4
-
5
-
-
0032535029
-
Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
-
Bi, G.-q., & Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464-10472.
-
(1998)
Journal of Neuroscience
, vol.18
, Issue.24
, pp. 10464-10472
-
-
Bi, G.-Q.1
Poo, M.-M.2
-
6
-
-
0034928712
-
Synaptic modification by correlated activity: Hebb's postulate revisited
-
Bi, G., & Poo, M. (2001). Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci., 24, 139-166.
-
(2001)
Annu. Rev. Neurosci
, vol.24
, pp. 139-166
-
-
Bi, G.1
Poo, M.2
-
7
-
-
0020074887
-
Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
-
Bienenstock, E. L., Cooper, L. N., & Munro, P.W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32-48.
-
(1982)
Journal of Neuroscience
, vol.2
, pp. 32-48
-
-
Bienenstock, E.L.1
Cooper, L.N.2
Munro, P.W.3
-
8
-
-
84865401265
-
The spike timing dependence of plasticity
-
Feldman, D. E. (2012). The spike timing dependence of plasticity. Neuron, 75(4), 556-571.
-
(2012)
Neuron
, vol.75
, Issue.4
, pp. 556-571
-
-
Feldman, D.E.1
-
9
-
-
33746652644
-
Gradient learning in spiking neural networks by dynamic perturbations of conductances
-
Fiete, I. R., & Seung, H. S. (2006). Gradient learning in spiking neural networks by dynamic perturbations of conductances. Physical Review Letters, 97(4), 048104.
-
(2006)
Physical Review Letters
, vol.97
, Issue.4
-
-
Fiete, I.R.1
Seung, H.S.2
-
10
-
-
36148995068
-
Free-energy and the brain
-
Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159, 417-458.
-
(2007)
Synthese
, vol.159
, pp. 417-458
-
-
Friston, K.J.1
Stephan, K.E.2
-
11
-
-
0037187567
-
Spike-timing-dependent synaptic modification induced by natural spike trains
-
Froemke, R. C., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416(6879), 433-438.
-
(2002)
Nature
, vol.416
, Issue.6879
, pp. 433-438
-
-
Froemke, R.C.1
Dan, Y.2
-
12
-
-
0029821128
-
Aneuronal learning rule for sub-millisecond temporal coding
-
Gerstner, W., Kempter, R., vanHemmen, J., & Wagner, H. (1996).Aneuronal learning rule for sub-millisecond temporal coding. Nature, 386, 76-78.
-
(1996)
Nature
, vol.386
, pp. 76-78
-
-
Gerstner, W.1
Kempter, R.2
van Hemmen, J.3
Wagner, H.4
-
13
-
-
82755167950
-
A triplet spike-timing dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations
-
Gjorgjievaa, J., Clopath, C., Audet, J., & Pfister, J.-P. (2011). A triplet spike-timing dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proceedings of the National Academy of Sciences, USA, 108(48), 19383-19388.
-
(2011)
Proceedings of the National Academy of Sciences, USA
, vol.108
, Issue.48
, pp. 19383-19388
-
-
Gjorgjievaa, J.1
Clopath, C.2
Audet, J.3
Pfister, J.-P.4
-
16
-
-
0001504852
-
Learning representations by recirculation
-
D. Z. Anderson (Ed.), College Park, MD: American Institute of Physics
-
Hinton, G. E., & McClelland, J. L. (1988). Learning representations by recirculation. In D. Z. Anderson (Ed.), Neural information processing systems (pp. 358-366). College Park, MD: American Institute of Physics.
-
(1988)
Neural information processing systems
, pp. 358-366
-
-
Hinton, G.E.1
McClelland, J.L.2
-
17
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
D. E. Rumelhart & J. L.McClelland (Eds.), Cambridge, MA: MIT Press
-
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L.McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations (pp. 282-317). Cambridge, MA: MIT Press.
-
(1986)
Parallel distributed processing: Explorations in the microstructure of cognition: Foundations
, vol.1
, pp. 282-317
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
18
-
-
0004469897
-
Neurons with graded responses have collective computational properties like those of two-state neurons
-
Hopfield, J. J. (1984). Neurons with graded responses have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, USA, 81, 3088-3092.
-
(1984)
Proceedings of the National Academy of Sciences, USA
, vol.81
, pp. 3088-3092
-
-
Hopfield, J.J.1
-
19
-
-
85013626529
-
Binarized neural networks
-
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Red Hook, NY: Curran
-
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, 29 (pp. 4107-4115). Red Hook, NY: Curran.
-
(2016)
Advances in neural information processing systems
, vol.29
, pp. 4107-4115
-
-
Hubara, I.1
Courbariaux, M.2
Soudry, D.3
El-Yaniv, R.4
Bengio, Y.5
-
20
-
-
0026436313
-
Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions
-
Intrator, N., & Cooper, L. N. (1992). Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks, 5, 3-17.
-
(1992)
Neural Networks
, vol.5
, pp. 3-17
-
-
Intrator, N.1
Cooper, L.N.2
-
21
-
-
84925826565
-
-
arXiv:1411.0247
-
Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2014). Random feedback weights support learning in deep neural networks. arXiv:1411.0247
-
(2014)
Random feedback weights support learning in deep neural networks
-
-
Lillicrap, T.P.1
Cownden, D.2
Tweed, D.B.3
Akerman, C.J.4
-
22
-
-
84864756338
-
Spike-timing-dependent plasticity: A comprehensive overview
-
Markram, H., Gerstner, W., & Sjöström, P. (2012). Spike-timing-dependent plasticity: A comprehensive overview. Frontiers in Synaptic Plasticity, 4(2), 8.
-
(2012)
Frontiers in Synaptic Plasticity
, vol.4
, Issue.2
, pp. 8
-
-
Markram, H.1
Gerstner, W.2
Sjöström, P.3
-
23
-
-
0031012615
-
Regulation of synaptic efficacy by coincidence of postsynaptic aps and EPSPS
-
Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic aps and EPSPS. Science, 275(5297), 213-215.
-
(1997)
Science
, vol.275
, Issue.5297
, pp. 213-215
-
-
Markram, H.1
Lübke, J.2
Frotscher, M.3
Sakmann, B.4
-
24
-
-
0011293089
-
Action potentials propagating back into dendrites triggers changes in efficacy
-
Markram, H., & Sakmann, B. (1995). Action potentials propagating back into dendrites triggers changes in efficacy. Soc. Neurosci. Abs., 21, 2007.
-
(1995)
Soc. Neurosci. Abs
, vol.21
, pp. 2007
-
-
Markram, H.1
Sakmann, B.2
-
25
-
-
43949102027
-
Phenomenological models of synaptic plasticity based on spike timing
-
Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459-478.
-
(2008)
Biological Cybernetics
, vol.98
, Issue.6
, pp. 459-478
-
-
Morrison, A.1
Diesmann, M.2
Gerstner, W.3
-
29
-
-
0034551719
-
Stable Hebbian learning fromspike timing-dependent plasticity
-
Van Rossum, M. C., Bi, G. Q., & Turrigiano, G. G. (2000). Stable Hebbian learning fromspike timing-dependent plasticity. Journal of Neuroscience, 20(23), 8812-8821.
-
(2000)
Journal of Neuroscience
, vol.20
, Issue.23
, pp. 8812-8821
-
-
Van Rossum, M.C.1
Bi, G.Q.2
Turrigiano, G.G.3
-
30
-
-
79959575293
-
A connection between score matching and denoising autoencoders
-
Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural Computation, 23(7), 1661-1674.
-
(2011)
Neural Computation
, vol.23
, Issue.7
, pp. 1661-1674
-
-
Vincent, P.1
-
31
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Machine Learning Res., 11, 3371-3408.
-
(2010)
J. Machine Learning Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
32
-
-
0000337576
-
Simple statistical gradient-following algorithms connectionist reinforcement learning
-
Williams, R. J. (1992). Simple statistical gradient-following algorithms connectionist reinforcement learning. Machine Learning, 8, 229-256.
-
(1992)
Machine Learning
, vol.8
, pp. 229-256
-
-
Williams, R.J.1
-
33
-
-
84899019829
-
Spike-based learning rules and stabilization of persistent neural activity
-
S. Solla, T. Leen, & K. Müller (Eds.), Cambridge, MA: MIT Press
-
Xie, X., & Seung, H. S. (2000). Spike-based learning rules and stabilization of persistent neural activity. In S. Solla, T. Leen, & K. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 199-208). Cambridge, MA: MIT Press.
-
(2000)
Advances in neural information processing systems
, vol.12
, pp. 199-208
-
-
Xie, X.1
Seung, H.S.2
|