-
3
-
-
77955993281
-
Learning mid-level features for recognition
-
Y-L. Boureau, F. Bach, Y LeCun, and J. Ponce. Learning mid-level features for recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2559-2566, 2010
-
(2010)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2559-2566
-
-
Boureau, Y.-L.1
Bach, F.2
LeCun, Y.3
Ponce, J.4
-
4
-
-
0021776661
-
A massively parallel architecture for a self-organizing neural pattern recognition machine
-
G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1):54-115, 1987
-
(1987)
Computer Vision, Graphics, and Image Processing
, vol.37
, Issue.1
, pp. 54-115
-
-
Carpenter, G.A.1
Grossberg, S.2
-
7
-
-
4344643549
-
The role of early visual cortex in visual integration: A neural model of recurrent interaction
-
G. Deco and T. S. Lee. The role of early visual cortex in visual integration: a neural model of recurrent interaction. European Journal of Neuroscience, 20(4): 1089-1100, 2004
-
(2004)
European Journal of Neuroscience
, vol.20
, Issue.4
, pp. 1089-1100
-
-
Deco, G.1
Lee, T.S.2
-
8
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 248-255, 2009
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
FeiFei, L.6
-
10
-
-
26444565569
-
Finding structure in time
-
J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179-211, 1990
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
12
-
-
84979100423
-
A new visual illusion of direction
-
J. Fraser. A new visual illusion of direction. British Journal of Psychiatry, 2: 307-320, 1908
-
(1908)
British Journal of Psychiatry
, vol.2
, pp. 307-320
-
-
Fraser, J.1
-
13
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202, 1980
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
14
-
-
84862294866
-
Deep sparse rectifier networks
-
X. Glorot, A. Bordes, and Y Bengio. Deep sparse rectifier networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, volume 15, pages 315-323, 2011
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
16
-
-
85083953281
-
Multi-digit number recognition from street view imagery using deep convolutional neural networks
-
I. J. Goodfellow, Y Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit number recognition from street view imagery using deep convolutional neural networks. In International Conference on Learning Representations (ICLR), 2014
-
(2014)
International Conference on Learning Representations (ICLR)
-
-
Goodfellow, I.J.1
Bulatov, Y.2
Ibarz, J.3
Arnoud, S.4
Shet, V.5
-
17
-
-
84897543523
-
Maxout networks
-
I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y Bengio. Maxout networks. In Proceedings of the 30th International Conference on Machine Learning (ICML), pages 1319-1327, 2013
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML)
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
18
-
-
64849110608
-
A novel connectionist system for unconstrained handwriting recognition
-
A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAM!), 31(5):855-868, 2009
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAM!)
, vol.31
, Issue.5
, pp. 855-868
-
-
Graves, A.1
Liwicki, M.2
Fernandez, S.3
Bertolami, R.4
Bunke, H.5
Schmidhuber, J.6
-
19
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6645-6649, 2013
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.-R.2
Hinton, G.3
-
21
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8): 2554-2558, 1982
-
(1982)
Proceedings of the National Academy of Sciences
, vol.79
, Issue.8
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
22
-
-
70449311374
-
Receptive fields of single neurones in the cat's striate cortex
-
D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat's striate cortex. The Journal of physiology, 148(3):574, 1959
-
(1959)
The Journal of Physiology
, vol.148
, Issue.3
, pp. 574
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
23
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1): 106, 1962
-
(1962)
The Journal of Physiology
, vol.160
, Issue.1
, pp. 106
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
27
-
-
0000494467
-
Handwritten digit recognition with a back-propagation network
-
Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems (NIPS), pages 396-404, 1990
-
(1990)
Advances in Neural Information Processing Systems (NIPS)
, pp. 396-404
-
-
LeCun, Y.1
Boser, B.2
Denker, J.3
Henderson, D.4
Howard, R.5
Hubbard, W.6
Jackel, L.7
-
28
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541-551, 1989
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
29
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
30
-
-
84943645147
-
Deeplysupervised nets
-
c.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. In Advances in neural information processing systems (NIPS), Deep Learning and Representation Learning Workshop, 2014
-
(2014)
Advances in Neural Information Processing Systems (NIPS), Deep Learning and Representation Learning Workshop
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
31
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML), pages 609-616, 2009
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning (ICML)
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
34
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
w. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943
-
(1943)
Bulletin of Mathematical Biophysics
, vol.5
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
35
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on Deep Learning and Unsupervised Feature Learning, volume 2011, page 4, 2011
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
, vol.2011
, pp. 4
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
37
-
-
0028401031
-
Neurocontrol of nonlinear dynamical systems with kalman filter trained recurrent networks
-
G. Y. Puskorius and L. A. Feldkamp. Neurocontrol of nonlinear dynamical systems with kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2):279-297, 1994
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 279-297
-
-
Puskorius, G.Y.1
Feldkamp, L.A.2
-
38
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2: 1019-1025, 1999
-
(1999)
Nature Neuroscience
, vol.2
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
40
-
-
0000646059
-
Parallel distributed processing: Explorations in the microstructure of cognition
-
MIT Press
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal Representations by Error Propagation, pages 318-362. MIT Press, 1986
-
(1986)
Chapter Learning Internal Representations by Error Propagation
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
41
-
-
80053448548
-
On random weights and unsupervised feature learning
-
A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng. On random weights and unsupervised feature learning. In Proceedings of the 28th International Conference on Machine Learning (ICML), pages 1089-1096, 2011
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML)
, pp. 1089-1096
-
-
Saxe, A.1
Koh, P.W.2
Chen, Z.3
Bhand, M.4
Suresh, B.5
Ng, A.Y.6
-
42
-
-
1842454989
-
The silent surround of v 1 receptive fields: Theory and experiments
-
P. Series, J. Lorenceau, and Y. Fregnac. The silent surround of V 1 receptive fields: theory and experiments. Journal of physiology-Paris, 97(4):453-474, 2003
-
(2003)
Journal of Physiology-Paris
, vol.97
, Issue.4
, pp. 453-474
-
-
Series, P.1
Lorenceau, J.2
Fregnac, Y.3
-
45
-
-
80053438267
-
Parsing natural scenes and natural language with recursive neural networks
-
R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natural language with recursive neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML), pages 129-136, 2011
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML)
, pp. 129-136
-
-
Socher, R.1
Lin, C.C.2
Manning, C.3
Ng, A.Y.4
-
46
-
-
80053234189
-
Learning continuous phrase representations and syntactic parsing with recursive neural networks
-
R. Socher, C. D. Manning, and A. Y. Ng. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In Advances in neural information processing systems (NIPS), Deep Learning and Representation Learning Workshop, pages 1-9, 2010
-
(2010)
Advances in Neural Information Processing Systems (NIPS), Deep Learning and Representation Learning Workshop
, pp. 1-9
-
-
Socher, R.1
Manning, C.D.2
Ng, A.Y.3
-
48
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
50
-
-
84917742909
-
-
arXiv preprint arXiv: 1409. 4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, Y. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv: 1409. 4842, 2014
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, Y.8
Rabinovich, A.9
-
51
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning (ICML), pages 1058-1066, 2013
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML)
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
52
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10): 1550-1560, 1990
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
54
-
-
84883386670
-
Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system
-
M. Zhu and C. Rozell. Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system. PLOS Computational Biology, 9(8): e1003191, 2013.
-
(2013)
PLOS Computational Biology
, vol.9
, Issue.8
, pp. e1003191
-
-
Zhu, M.1
Rozell, C.2
|