메뉴 건너뛰기




Volumn 187, Issue , 2016, Pages 27-48

Deep learning for visual understanding: A review

Author keywords

Applications; Challenges; Computer vision; Deep learning; Developments; Trends

Indexed keywords

ALGORITHMS; APPLICATIONS; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; GESTURE RECOGNITION; IMAGE CLASSIFICATION; IMAGE SEGMENTATION; LEARNING SYSTEMS; MOTION ESTIMATION; OBJECT DETECTION; SEMANTICS;

EID: 84957837518     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.09.116     Document Type: Article
Times cited : (1965)

References (216)
  • 1
    • 84879866425 scopus 로고    scopus 로고
    • Joint learning of words and meaning representations for open-text semantic parsing
    • A. Bordes, X. Glorot, J. Weston, et al. Joint learning of words and meaning representations for open-text semantic parsing, in: Proceedings of the AISTATS, 2012.
    • (2012) Proceedings of the AISTATS
    • Bordes, A.1    Glorot, X.2    Weston, J.3
  • 2
    • 84865094974 scopus 로고    scopus 로고
    • Transfer learning for Latin and Chinese characters with deep neural networks
    • D.C. Ciresan, U. Meier, J. Schmidhuber, Transfer learning for Latin and Chinese characters with deep neural networks, in: Proceedings of the IJCNN, 2012.
    • (2012) Proceedings of the IJCNN
    • Ciresan, D.C.1    Meier, U.2    Schmidhuber, J.3
  • 3
    • 84959922723 scopus 로고    scopus 로고
    • On vectorization of deep convolutional neural networks for vision tasks
    • J.S.J. Ren, L. Xu, On vectorization of deep convolutional neural networks for vision tasks, in: Proceedings of the AAAI, 2015.
    • (2015) Proceedings of the AAAI
    • Ren, J.S.J.1    Xu, L.2
  • 4
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, et al., Distributed representations of words and phrases and their compositionality, in: Proceedings of the NIPS, 2013.
    • (2013) Proceedings of the NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3
  • 7
    • 84961962818 scopus 로고    scopus 로고
    • http://www.image-net.org/challenges/LSVRC/2014/results.
  • 8
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends® Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 9
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 2014, 3:e2.
    • (2014) APSIPA Trans. Signal Inf. Process. , vol.3 , pp. e2
    • Deng, L.1
  • 10
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015, 61:85-117.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 15
    • 84931584163 scopus 로고    scopus 로고
    • Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification
    • arXiv preprint, arXiv: 1412.4526
    • H. Li, R. Zhao, X. Wang, Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification, arXiv preprint, arXiv: 1412.4526, 2014.
    • (2014)
    • Li, H.1    Zhao, R.2    Wang, X.3
  • 16
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-training help deep learning?
    • Erhan D., Bengio Y., Courville A., et al. Why does unsupervised pre-training help deep learning?. J. Mach. Learn. Res. 2010, 11:625-660.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 625-660
    • Erhan, D.1    Bengio, Y.2    Courville, A.3
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., et al. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86(11):2278-2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3
  • 18
    • 84959197642 scopus 로고    scopus 로고
    • Convolutional neural networks at constrained time cost
    • K. He, J. Sun, Convolutional neural networks at constrained time cost, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • He, K.1    Sun, J.2
  • 22
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Y.L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling in visual recognition, in: Proceedings of the ICML, 2010.
    • (2010) Proceedings of the ICML
    • Boureau, Y.L.1    Ponce, J.2    LeCun, Y.3
  • 23
    • 80054774972 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in: Proceedings of the ICANN, 2010.
    • (2010) Proceedings of the ICANN
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 24
    • 84961962796 scopus 로고    scopus 로고
    • High-performance neural networks for visual object classification
    • D.C. Cireşan, U. Meier, J. Masci, et al., High-performance neural networks for visual object classification, in: Proceedings of the IJCAI, 2011.
    • (2011) Proceedings of the IJCAI
    • Cireşan, D.C.1    Meier, U.2    Masci, J.3
  • 25
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • M.D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks, in: Proceedings of the ICLR, 2013.
    • (2013) Proceedings of the ICLR
    • Zeiler, M.D.1    Fergus, R.2
  • 26
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, et al., Spatial pyramid pooling in deep convolutional networks for visual recognition, in: Proceedings of the ECCV, 2014.
    • (2014) Proceedings of the ECCV
    • He, K.1    Zhang, X.2    Ren, S.3
  • 27
    • 84948382785 scopus 로고    scopus 로고
    • DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection
    • W. Ouyang, P. Luo, X. Zeng, et al., DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Ouyang, W.1    Luo, P.2    Zeng, X.3
  • 28
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, et al., Multi-scale orderless pooling of deep convolutional activation features, in: Proceedings of the ECCV, 2014.
    • (2014) Proceedings of the ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3
  • 29
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, et al., Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the CVPR, 2014.
    • (2014) Proceedings of the CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3
  • 30
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, et al., Learning and transferring mid-level image representations using convolutional neural networks, in: Proceedings of the CVPR, 2014.
    • (2014) Proceedings of the CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3
  • 31
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of the ICLR, 2015.
    • (2015) Proceedings of the ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 32
    • 84898828144 scopus 로고    scopus 로고
    • Multi-stage contextual deep learning for pedestrian detection
    • X. Zeng, W. Ouyang, X. Wang, Multi-stage contextual deep learning for pedestrian detection, in: Proceedings of the ICCV, 2013.
    • (2013) Proceedings of the ICCV
    • Zeng, X.1    Ouyang, W.2    Wang, X.3
  • 33
    • 84887364811 scopus 로고    scopus 로고
    • Deep convolutional network cascade for facial point detection
    • Y. Sun, X. Wang, X. Tang, Deep convolutional network cascade for facial point detection, in: Proceedings of the CVPR, 2013.
    • (2013) Proceedings of the CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 34
    • 84908691516 scopus 로고    scopus 로고
    • Committees of deep feedforward networks trained with few data
    • Pattern Recognition, Springer International Publishing
    • B. Miclut, Committees of deep feedforward networks trained with few data, Pattern Recognition, Springer International Publishing, pp. 736-742, 2014.
    • (2014) , pp. 736-742
    • Miclut, B.1
  • 35
    • 84872553130 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • Neural Networks: Tricks of the Trade, Springer, Berlin Heidelberg
    • J. Weston, F. Ratle, H. Mobahi. et al., Deep learning via semi-supervised embedding, Neural Networks: Tricks of the Trade, Springer, Berlin Heidelberg, pp. 639-655.
    • Weston, J.1    Ratle, F.2    Mobahi, H.3
  • 37
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • Q. Chen, Z. Song, Z. Huang, et al., Contextualizing object detection and classification, in: Proceedings of the CVPR, 2011.
    • (2011) Proceedings of the CVPR
    • Chen, Q.1    Song, Z.2    Huang, Z.3
  • 38
    • 84867720412 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors
    • arXiv preprint, arXiv: 1207.0580
    • G.E. Hinton, N. Srivastava, A. Krizhevsky, et al., Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint, arXiv: 1207.0580, 2012.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3
  • 40
    • 84896515095 scopus 로고    scopus 로고
    • Adaptive dropout for training deep neural networks
    • J. Ba, B. Frey, Adaptive dropout for training deep neural networks, in: Proceedings of the NIPS, 2013.
    • (2013) Proceedings of the NIPS
    • Ba, J.1    Frey, B.2
  • 41
    • 84903702560 scopus 로고    scopus 로고
    • A PAC-Bayesian tutorial with a dropout bound
    • arXiv preprint, arXiv: 1307.2118
    • D. McAllester, A PAC-Bayesian tutorial with a dropout bound, arXiv preprint, arXiv: 1307.2118, 2013.
    • (2013)
    • McAllester, D.1
  • 44
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: a simple way to prevent neural networks from overfitting
    • Srivastava N., Hinton G., Krizhevsky A., et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15(1):1929-1958.
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3
  • 47
    • 84906496000 scopus 로고    scopus 로고
    • Some improvements on deep convolutional neural network based image classification
    • arXiv preprint, arXiv: 1312.5402
    • A.G. Howard, Some improvements on deep convolutional neural network based image classification, arXiv preprint, arXiv: 1312.5402, 2013.
    • (2013)
    • Howard, A.G.1
  • 48
    • 84959202819 scopus 로고    scopus 로고
    • Unsupervised feature learning by augmenting single images
    • arXiv preprint, arXiv: 1312.5242
    • A. Dosovitskiy, J.T. Springenberg, T. Brox, Unsupervised feature learning by augmenting single images, arXiv preprint, arXiv: 1312.5242, 2013.
    • (2013)
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 49
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.W.3
  • 50
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • C. Poultney, S. Chopra, Y.L. Cun, Efficient learning of sparse representations with an energy-based model, in: Proceedings of the NIPS 2006.
    • (2006) Proceedings of the NIPS
    • Poultney, C.1    Chopra, S.2    Cun, Y.L.3
  • 51
    • 84937853706 scopus 로고    scopus 로고
    • Weakly-supervised discovery of visual pattern configurations
    • H.O. Song, Y.J. Lee, S. Jegelka, et al., Weakly-supervised discovery of visual pattern configurations, in: Proceedings of the NIPS, 2014.
    • (2014) Proceedings of the NIPS
    • Song, H.O.1    Lee, Y.J.2    Jegelka, S.3
  • 52
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional neural networks
    • M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional neural networks, in: Proceedings of the ECCV, 2014.
    • (2014) Proceedings of the ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 55
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton G. A practical guide to training restricted Boltzmann machines. Momentum 2010, 9(1):926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1
  • 56
    • 80053444761 scopus 로고    scopus 로고
    • Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines
    • K.H. Cho, T. Raiko, A.T. Ihler, Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines, in: Proceedings of the ICML, 2011.
    • (2011) Proceedings of the ICML
    • Cho, K.H.1    Raiko, T.2    Ihler, A.T.3
  • 57
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the ICML, 2010.
    • (2010) in: Proceedings of the ICML
    • Nair, V.1    Hinton, G.E.2
  • 58
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-a new frontier in artificial intelligence research [research frontier]
    • Arel I., Rose D.C., Karnowski T.P. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. Comput. Intell. Mag. IEEE 2010, 5(4):13-18.
    • (2010) Comput. Intell. Mag. IEEE , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 61
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, et al., Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the ICML, 2009.
    • (2009) Proceedings of the ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3
  • 62
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee H., Grosse R., Ranganath R., et al. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 2011, 54(10):95-103.
    • (2011) Commun. ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3
  • 64
    • 84866691616 scopus 로고    scopus 로고
    • Learning hierarchical representations for face verification with convolutional deep belief networks
    • G.B. Huang, H. Lee, E. Learned-Miller, Learning hierarchical representations for face verification with convolutional deep belief networks, in: Proceedings of the CVPR, 2012.
    • (2012) Proceedings of the CVPR
    • Huang, G.B.1    Lee, H.2    Learned-Miller, E.3
  • 67
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • Salakhutdinov R., Hinton G. An efficient learning procedure for deep Boltzmann machines. Neural Comput. 2012, 24(8):1967-2006.
    • (2012) Neural Comput. , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 69
    • 84893358740 scopus 로고    scopus 로고
    • A two-stage pretraining algorithm for deep boltzmann machines
    • K.H. Cho, T. Raiko, A. Ilin, et al., A two-stage pretraining algorithm for deep boltzmann machines, in: Proceedings of the ICANN, 2013.
    • (2013) in: Proceedings of the ICANN
    • Cho, K.H.1    Raiko, T.2    Ilin, A.3
  • 70
    • 84872571941 scopus 로고    scopus 로고
    • Deep Boltzmann machines and the centering trick, Neural Networks: Tricks of the Trade
    • Springer, Berlin Heidelberg
    • G. Montavon K.R. Müller, Deep Boltzmann machines and the centering trick, Neural Networks: Tricks of the Trade, Springer, Berlin Heidelberg 2012, pp. 621-637.
    • (2012) , pp. 621-637
    • Montavon, G.1    Müller, K.R.2
  • 71
    • 85083952643 scopus 로고    scopus 로고
    • Joint training deep boltzmann machines for classification
    • arXiv preprint, arXiv: 1301.3568
    • I.J. Goodfellow, A. Courville, Y. Bengio, Joint training deep boltzmann machines for classification, arXiv preprint, arXiv: 1301.3568, 2013.
    • (2013)
    • Goodfellow, I.J.1    Courville, A.2    Bengio, Y.3
  • 74
    • 85027910492 scopus 로고    scopus 로고
    • Expected energy-based restricted Boltzmann machine for classification
    • Elfwing S., Uchibe E., Doya K. Expected energy-based restricted Boltzmann machine for classification. Neural Netw. 2014.
    • (2014) Neural Netw.
    • Elfwing, S.1    Uchibe, E.2    Doya, K.3
  • 76
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 77
    • 84937556678 scopus 로고    scopus 로고
    • Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment
    • J. Zhang, S. Shan, M. Kan, et al., Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment, in: Proceedings of the ECCV, 2014.
    • (2014) Proceedings of the ECCV
    • Zhang, J.1    Shan, S.2    Kan, M.3
  • 78
    • 84896333951 scopus 로고    scopus 로고
    • A novel sparse auto-encoder for deep unsupervised learning
    • X. Jiang, Y. Zhang, W. Zhang, et al., A novel sparse auto-encoder for deep unsupervised learning, in: Proceedings of the ICACI, 2013.
    • (2013) Proceedings of the ICACI
    • Jiang, X.1    Zhang, Y.2    Zhang, W.3
  • 79
    • 84961936394 scopus 로고    scopus 로고
    • Is joint training better for deep auto-encoders?
    • arXiv preprint, arXiv: 1405,1380
    • Y. Zhou, D. Arpit, I. Nwogu, et al., Is joint training better for deep auto-encoders? arXiv preprint, arXiv: 1405,1380, 2014.
    • (2014)
    • Zhou, Y.1    Arpit, D.2    Nwogu, I.3
  • 82
    • 84872523448 scopus 로고    scopus 로고
    • Unsupervised learning of visual invariance with temporal coherence
    • W.Y. Zou, A.Y. Ng, K. Yu, Unsupervised learning of visual invariance with temporal coherence, in: Proceedings of the NIPS workshop, 2011.
    • (2011) Proceedings of the NIPS workshop
    • Zou, W.Y.1    Ng, A.Y.2    Yu, K.3
  • 83
    • 42149169237 scopus 로고    scopus 로고
    • 4.7 Statistical Modeling of Photographic Images
    • Simoncelli E P. 4.7 Statistical Modeling of Photographic Images, 2005.
    • (2005)
    • Simoncelli, E.P.1
  • 84
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q.V. Le, Building high-level features using large scale unsupervised learning, in: Proceedings of the ICASSP, 2013.
    • (2013) Proceedings of the ICASSP
    • Le, Q.V.1
  • 85
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, et al., Extracting and composing robust features with denoising autoencoders, in: Proceedings of the ICML, 2008.
    • (2008) Proceedings of the ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3
  • 86
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P., Larochelle H., Lajoie I., et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11:3371-3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3
  • 87
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: explicit invariance during feature extraction
    • S. Rifai, P. Vincent, X. Muller, et al., Contractive auto-encoders: explicit invariance during feature extraction, in: Proceedings of the ICML, 2011.
    • (2011) Proceedings of the ICML
    • Rifai, S.1    Vincent, P.2    Muller, X.3
  • 88
    • 85083953791 scopus 로고    scopus 로고
    • What regularized auto-encoders learn from the data generating distribution
    • G. Alain, Y. Bengio, What regularized auto-encoders learn from the data generating distribution, in: Proceedings of the ICLR, 2013.
    • (2013) Proceedings of the ICLR
    • Alain, G.1    Bengio, Y.2
  • 89
    • 84906491858 scopus 로고    scopus 로고
    • Unsupervised and transfer learning challenge: a deep learning approach
    • G. Mesnil, Y. Dauphin, X. Glorot, et al., Unsupervised and transfer learning challenge: a deep learning approach, in: Proceedings of the ICML, 2012.
    • (2012) Proceedings of the ICML
    • Mesnil, G.1    Dauphin, Y.2    Glorot, X.3
  • 90
    • 84876276096 scopus 로고    scopus 로고
    • Stacked convolutional auto-encoders for hierarchical feature extraction
    • J. Masci, U. Meier, D. Cireşan, et al., Stacked convolutional auto-encoders for hierarchical feature extraction, in: Proceedings of the ICANN, 2011.
    • (2011) Proceedings of the ICANN
    • Masci, J.1    Meier, U.2    Cireşan, D.3
  • 91
    • 84898458880 scopus 로고    scopus 로고
    • Spatio-temporal convolutional sparse auto-encoder for sequence classification
    • M. Baccouche, F. Mamalet, C. Wolf, et al., Spatio-temporal convolutional sparse auto-encoder for sequence classification, in: Proceedings of the BMVC, 2012.
    • (2012) Proceedings of the BMVC
    • Baccouche, M.1    Mamalet, F.2    Wolf, C.3
  • 92
    • 85027912009 scopus 로고    scopus 로고
    • 3D object retrieval with stacked local convolutional autoencoder
    • Leng B., Guo S., Zhang X., et al. 3D object retrieval with stacked local convolutional autoencoder. Signal Process. 2014.
    • (2014) Signal Process.
    • Leng, B.1    Guo, S.2    Zhang, X.3
  • 94
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: a strategy employed by V1?
    • Olshausen B.A., Field D.J. Sparse coding with an overcomplete basis set: a strategy employed by V1?. Vis. Res. 1997, 37(23):3311-3325.
    • (1997) Vis. Res. , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 96
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, et al., Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the ICML, 2007.
    • (2007) Proceedings of the ICML
    • Raina, R.1    Battle, A.2    Lee, H.3
  • 97
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, et al., Locality-constrained linear coding for image classification, in: Proceedings of the CVPR, 2010.
    • (2010) Proceedings of the CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3
  • 98
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, et al., Linear spatial pyramid matching using sparse coding for image classification, in: Proceedings of the CVPR, 2009.
    • (2009) Proceedings of the CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3
  • 99
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution
    • Donoho D.L. For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 2006, 59(6):797-829.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 101
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 104
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mairal J., Bach F., Ponce J., et al. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 2010, 11:19-60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3
  • 105
  • 106
  • 107
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage
    • Chambolle A., De Vore R.A., Lee N.Y., et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. Image Process. IEEE Trans. 1998, 7(3):319-335.
    • (1998) Image Process. IEEE Trans. , vol.7 , Issue.3 , pp. 319-335
    • Chambolle, A.1    De Vore, R.A.2    Lee, N.Y.3
  • 108
    • 70349452064 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring
    • A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring, in: Proceedings of the ICASSP, 2009.
    • (2009) Proceedings of the ICASSP
    • Beck, A.1    Teboulle, M.2
  • 109
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition
    • arXiv preprint, arXiv: 1010.3467
    • K. Kavukcuoglu, M.A. Ranzato, Y. LeCun, Fast inference in sparse coding algorithms with applications to object recognition, arXiv preprint, arXiv: 1010.3467, 2010.
    • (2010)
    • Kavukcuoglu, K.1    Ranzato, M.A.2    LeCun, Y.3
  • 110
    • 84897528758 scopus 로고    scopus 로고
    • Smooth sparse coding via marginal regression for learning sparse representations
    • K. Balasubramanian, K. Yu, G. Lebanon, Smooth sparse coding via marginal regression for learning sparse representations, in: Proceedings of the ICML, 2013.
    • (2013) Proceedings of the ICML
    • Balasubramanian, K.1    Yu, K.2    Lebanon, G.3
  • 111
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: Proceedings of the CVPR, 2006.
    • (2006) Proceedings of the CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 112
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A. Coates, A.Y. Ng, The importance of encoding versus training with sparse coding and vector quantization, in: Proceedings of the ICML, 2011.
    • (2011) Proceedings of the ICML
    • Coates, A.1    Ng, A.Y.2
  • 113
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely-Laplacian sparse coding for image classification
    • S. Gao, I.W. Tsang, L.T. Chia, et al., Local features are not lonely-Laplacian sparse coding for image classification, in: Proceedings of the CVPR, 2010.
    • (2010) Proceedings of the CVPR
    • Gao, S.1    Tsang, I.W.2    Chia, L.T.3
  • 114
    • 84870191664 scopus 로고    scopus 로고
    • Laplacian sparse coding, hypergraph laplacian sparse coding, and applications
    • Gao S., Tsang I.W.H., Chia L.T. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. Pattern Anal. Mach. Intell. IEEE Trans. 2013, 35(1):92-104.
    • (2013) Pattern Anal. Mach. Intell. IEEE Trans. , vol.35 , Issue.1 , pp. 92-104
    • Gao, S.1    Tsang, I.W.H.2    Chia, L.T.3
  • 115
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • K. Yu, Y. Lin, J. Lafferty, Learning image representations from the pixel level via hierarchical sparse coding, in: Proceedings of the CVPR, 2011.
    • (2011) Proceedings of the CVPR
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 117
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M.D. Zeile, G.W. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, in: Proceedings of the ICCV, 2011.
    • (2011) Proceedings of the ICCV
    • Zeile, M.D.1    Taylor, G.W.2    Fergus, R.3
  • 118
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, et al., Image classification using super-vector coding of local image descriptors, in: Proceedings of the ECCV, 2010.
    • (2010) Proceedings of the ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3
  • 119
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: fast feature extraction and svm training
    • Y. Lin, F. Lv, S. Zhu, et al., Large-scale image classification: fast feature extraction and svm training, in: Proceedings of the CVPR, 2011.
    • (2011) Proceedings of the CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3
  • 122
    • 84973389608 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • P. Agrawal, R. Girshick, J. Malik, Analyzing the performance of multilayer neural networks for object recognition, in: Proceedings of the ECCV, 2014.
    • (2014) Proceedings of the ECCV
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 123
    • 84919607718 scopus 로고    scopus 로고
    • Deep neural networks rival the representation of primate IT cortex for core visual object recognition
    • Cadieu C.F., Hong H., Yamins D.L.K., et al. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PloS Comput. Biol. 2014, 10(12):e1003963.
    • (2014) PloS Comput. Biol. , vol.10 , Issue.12 , pp. e1003963
    • Cadieu, C.F.1    Hong, H.2    Yamins, D.L.K.3
  • 124
    • 84946206172 scopus 로고    scopus 로고
    • Deep neural networks are easily fooled: high confidence predictions for unrecognizable images
    • A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: high confidence predictions for unrecognizable images, in: Proceedings of the CVPR 2015.
    • (2015) Proceedings of the CVPR
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 125
    • 84961960147 scopus 로고    scopus 로고
    • Learning deep temporal representations for brain decoding
    • arXiv preprint, arXiv: 1412.7522
    • O. Firat, E. Aksan, I. Oztekin, et al., Learning deep temporal representations for brain decoding, arXiv preprint, arXiv: 1412.7522, 2014.
    • (2014)
    • Firat, O.1    Aksan, E.2    Oztekin, I.3
  • 127
    • 85119023842 scopus 로고    scopus 로고
    • S.K. Divvala, A. Farhadi, C. Guestrin, Learning everything about anything: webly-supervised visual concept learning, in: Proceedings of the CVPR, 2014.
    • S.K. Divvala, A. Farhadi, C. Guestrin, Learning everything about anything: webly-supervised visual concept learning, in: Proceedings of the CVPR, 2014.
  • 128
    • 84959187860 scopus 로고    scopus 로고
    • ConceptLearner: discovering visual concepts from weakly labeled image collections
    • B. Zhou, V. Jagadeesh, R. Piramuthu, ConceptLearner: discovering visual concepts from weakly labeled image collections, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Zhou, B.1    Jagadeesh, V.2    Piramuthu, R.3
  • 131
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM
    • B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM, 1992.
    • (1992)
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 132
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Proceedings of the CVPR
    • N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the CVPR, 2005.
    • (2005)
    • Dalal, N.1    Triggs, B.2
  • 133
    • 85020603202 scopus 로고    scopus 로고
    • An HOG-LBP human detector with partial occlusion handling
    • X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proceedings of the ICCV, 2009.
    • (2009) Proceedings of the ICCV
    • Wang, X.1    Han, T.X.2    Yan, S.3
  • 135
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • T. Jaakkola, D. Haussler, Exploiting generative models in discriminative classifiers, in: Proceedings of the NIPS, 1999.
    • (1999) Proceedings of the NIPS
    • Jaakkola, T.1    Haussler, D.2
  • 136
  • 137
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 140
    • 84901663871 scopus 로고    scopus 로고
    • Analysis of feature maps selection in supervised learning using convolutional neural networks. Advances in Artificial Intelligence
    • J.L. Chu, A. Krzyz˙ak, Analysis of feature maps selection in supervised learning using convolutional neural networks. Advances in Artificial Intelligence, Springer International Publishing, 2014, pp. 59-70.
    • (2014) Springer International Publishing , pp. 59-70
    • Chu, J.L.1    Krzyzak, A.2
  • 141
    • 84961937140 scopus 로고    scopus 로고
    • Visualizing and comparing convolutional neural networks_afsta
    • arXiv preprint, arXiv: 1412.6631
    • W. Yu, K. Yang, Y. Bai, et al., Visualizing and comparing convolutional neural networks, arXiv preprint, arXiv: 1412.6631, 2014.
    • (2014)
    • Yu, W.1    Yang, K.2    Bai, Y.3
  • 143
    • 84961967833 scopus 로고    scopus 로고
    • From large-scale object classifiers to large-scale object detectors: an adaptation approach
    • J. Hoffman, S. Guadarrama, E. Tzeng, et al., From large-scale object classifiers to large-scale object detectors: an adaptation approach, 2014.
    • (2014)
    • Hoffman, J.1    Guadarrama, S.2    Tzeng, E.3
  • 144
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • L.C. Chen, G. Papandreou, I. Kokkinos, et al., Semantic image segmentation with deep convolutional nets and fully connected CRFs, in: Proceedings of the ICLR, 2015.
    • (2015) Proceedings of the ICLR
    • Chen, L.C.1    Papandreou, G.2    Kokkinos, I.3
  • 145
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, et al., Overfeat: integrated recognition, localization and detection using convolutional networks, in: Proceedings of the ICLR, 2014.
    • (2014) Proceedings of the ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3
  • 148
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, J. Sun, Convolutional feature masking for joint object and stuff segmentation, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 149
    • 84962446665 scopus 로고    scopus 로고
    • Deep index for accurate and efficient image retrieval
    • Y. Liu, Y. Guo, S. Wu, et al., Deep index for accurate and efficient image retrieval, in: Proceedings of the ICMR, 2015.
    • (2015) Proceedings of the ICMR
    • Liu, Y.1    Guo, Y.2    Wu, S.3
  • 153
    • 84911456915 scopus 로고    scopus 로고
    • BING: binarized normed gradients for objectness estimation at 300fps
    • M.M. Cheng, Z. Zhang, W.Y. Lin, et al., BING: binarized normed gradients for objectness estimation at 300fps, in: Proceedings of the CVPR, 2014.
    • (2014) Proceedings of the CVPR
    • Cheng, M.M.1    Zhang, Z.2    Lin, W.Y.3
  • 157
    • 84904293634 scopus 로고    scopus 로고
    • Seeing the big picture: deep embedding with contextual evidences
    • arXiv preprint, arXiv: 1406.0132
    • L. Zheng, S. Wang, F. He, Q. Tian, Seeing the big picture: deep embedding with contextual evidences, arXiv preprint, arXiv: 1406.0132, 2014.
    • (2014)
    • Zheng, L.1    Wang, S.2    He, F.3    Tian, Q.4
  • 158
    • 84986253708 scopus 로고    scopus 로고
    • HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification
    • Z. Yan, V. Jagadeesh, D. DeCoste, et al., HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • Yan, Z.1    Jagadeesh, V.2    DeCoste, D.3
  • 159
    • 84930572185 scopus 로고    scopus 로고
    • Deep image: scaling up image recognition
    • arXiv preprint, arXiv: 1501.02876
    • R. Wu, S. Yan, Y. Shan, et al., Deep image: scaling up image recognition, arXiv preprint, arXiv: 1501.02876, 2015.
    • (2015)
    • Wu, R.1    Yan, S.2    Shan, Y.3
  • 161
    • 33644756784 scopus 로고    scopus 로고
    • On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • Younes L. On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stoch.: Int. J. Probab. Stoch. Process. 1999, 65(3-4):177-228.
    • (1999) Stoch.: Int. J. Probab. Stoch. Process. , vol.65 , Issue.3-4 , pp. 177-228
    • Younes, L.1
  • 162
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • K. He, X. Zhang, S. Ren, et al., Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • He, K.1    Zhang, X.2    Ren, S.3
  • 163
    • 84964923476 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift
    • S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proceedings of the NIPS, 2015.
    • (2015) Proceedings of the NIPS
    • Ioffe, S.1    Szegedy, C.2
  • 166
    • 85050623736 scopus 로고    scopus 로고
    • Deep Learning for content-based image retrieval: a comprehensive study
    • J. Wan, D. Wang, S. Hoi, et al., Deep Learning for content-based image retrieval: a comprehensive study, in: Proceedings of the Multimedia, 2014.
    • (2014) Proceedings of the Multimedia
    • Wan, J.1    Wang, D.2    Hoi, S.3
  • 168
    • 84866707640 scopus 로고    scopus 로고
    • The shape Boltzmann machine: a strong model of object shape
    • A. Eslami, N. Heess, J. Winn, The shape Boltzmann machine: a strong model of object shape, in: Proceedings of the CVPR, 2012.
    • (2012) Proceedings of the CVPR
    • Eslami, A.1    Heess, N.2    Winn, J.3
  • 169
    • 84887349828 scopus 로고    scopus 로고
    • Augmenting CRFs with Boltzmann machine shape priors for image labeling
    • A. Kae, K. Sohn, H. Lee, et al., Augmenting CRFs with Boltzmann machine shape priors for image labeling, in: Proceedings of the CVPR, 2013.
    • (2013) Proceedings of the CVPR
    • Kae, A.1    Sohn, K.2    Lee, H.3
  • 170
    • 85162069624 scopus 로고    scopus 로고
    • Phone Recognition with the mean-covariance restricted Boltzmann machine
    • G.E. Dahl, M.A. Ranzato, A. Mohamed, et al., Phone Recognition with the mean-covariance restricted Boltzmann machine, in: Proceedings of the NIPS, 2010.
    • (2010) Proceedings of the NIPS
    • Dahl, G.E.1    Ranzato, M.A.2    Mohamed, A.3
  • 171
    • 84946013967 scopus 로고    scopus 로고
    • Search by detection-object-level feature for image retrieval
    • S. Sun, W. Zhou, H. Li, et al., Search by detection-object-level feature for image retrieval, in: Proceedings of the ICIMCS, 2014.
    • (2014) Proceedings of the ICIMCS
    • Sun, S.1    Zhou, W.2    Li, H.3
  • 173
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? - Weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, et al., Is object localization for free? - Weakly-supervised learning with convolutional neural networks, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3
  • 178
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, et al., Faster R-CNN: towards real-time object detection with region proposal networks, in: Proceedings of the NIPS, 2015.
    • (2015) Proceedings of the NIPS
    • Ren, S.1    He, K.2    Girshick, R.3
  • 179
    • 84961917629 scopus 로고    scopus 로고
    • You only look once: unified, real-time object detection
    • arXiv preprint, arXiv: 1506.02640
    • J. Redmon, S. Divvala, R. Girshick, et al., You only look once: unified, real-time object detection, arXiv preprint, arXiv: 1506.02640, 2015.
    • (2015)
    • Redmon, J.1    Divvala, S.2    Girshick, R.3
  • 182
    • 84946737993 scopus 로고    scopus 로고
    • Towards unified object detection and semantic segmentation
    • J. Dong, Q. Chen, S. Yan, et al., Towards unified object detection and semantic segmentation, in: Proceedings of the ECCV, 2014.
    • (2014) Proceedings of the ECCV
    • Dong, J.1    Chen, Q.2    Yan, S.3
  • 183
    • 84959233955 scopus 로고    scopus 로고
    • segDeepM: exploiting segmentation and context in deep neural networks for object detection
    • Y. Zhu, R. Urtasun, R. Salakhutdinov, et al., segDeepM: exploiting segmentation and context in deep neural networks for object detection, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Zhu, Y.1    Urtasun, R.2    Salakhutdinov, R.3
  • 184
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware CNN model
    • S. Gidaris, N. Komodakis, Object detection via a multi-region and semantic segmentation-aware CNN model, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • Gidaris, S.1    Komodakis, N.2
  • 185
    • 84959196836 scopus 로고    scopus 로고
    • Improving object detection with deep convolutional networks via bayesian optimization and structured prediction
    • Y. Zhang, K. Sohn, R. Villegas, et al., Improving object detection with deep convolutional networks via bayesian optimization and structured prediction, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Zhang, Y.1    Sohn, K.2    Villegas, R.3
  • 186
    • 84961891410 scopus 로고    scopus 로고
    • Object detection networks on convolutional feature maps
    • arXiv preprint, arXiv: 1504.06066
    • S. Ren, K. He, R. Girshick, et al., Object detection networks on convolutional feature maps, arXiv preprint, arXiv: 1504.06066, 2015.
    • (2015)
    • Ren, S.1    He, K.2    Girshick, R.3
  • 187
    • 84973882796 scopus 로고    scopus 로고
    • Towards computational baby learning: a weakly-supervised approach for object detection
    • X. Liang, S. Liu, Y. Wei, et al., Towards computational baby learning: a weakly-supervised approach for object detection, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • Liang, X.1    Liu, S.2    Wei, Y.3
  • 189
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O., Deng J., Su H., et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115(3):211-252.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 190
    • 84937874239 scopus 로고    scopus 로고
    • Deep joint task learning for generic object extraction
    • X. Wang, L. Zhang, L. Lin, et al., Deep joint task learning for generic object extraction, in: Proceedings of the NIPS, 2014.
    • (2014) Proceedings of the NIPS
    • Wang, X.1    Zhang, L.2    Lin, L.3
  • 191
    • 84952053193 scopus 로고    scopus 로고
    • Multi-scale pyramid pooling for deep convolutional representation
    • D. Yoo, S. Park, J.Y. Lee, et al., Multi-scale pyramid pooling for deep convolutional representation, in: Proceedings of the CVPR Workshop, 2015.
    • (2015) Proceedings of the CVPR Workshop
    • Yoo, D.1    Park, S.2    Lee, J.Y.3
  • 192
    • 84977621671 scopus 로고    scopus 로고
    • Modeep: a deep learning framework using motion features for human pose estimation
    • A. Jain, J. Tompson, Y. LeCun, et al., Modeep: a deep learning framework using motion features for human pose estimation, in: Proceedings of the ACCV, 2014.
    • (2014) Proceedings of the ACCV
    • Jain, A.1    Tompson, J.2    LeCun, Y.3
  • 193
    • 84989343117 scopus 로고    scopus 로고
    • Deep convolutional neural networks for efficient pose estimation in gesture videos
    • T. Pfister, K. Simonyan, J. Charles, et al., Deep convolutional neural networks for efficient pose estimation in gesture videos, in: Proceedings of the ACCV, 2015.
    • (2015) Proceedings of the ACCV
    • Pfister, T.1    Simonyan, K.2    Charles, J.3
  • 195
    • 84931563436 scopus 로고    scopus 로고
    • Human pose recovery by supervised spectral embedding
    • Yu J., Guo Y., Tao D., et al. Human pose recovery by supervised spectral embedding. Neurocomputing 2015, 166:301-308.
    • (2015) Neurocomputing , vol.166 , pp. 301-308
    • Yu, J.1    Guo, Y.2    Tao, D.3
  • 196
    • 84961955116 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • Felzenszwalb P.F., Huttenlocher D.P., et al. Pictorial structures for object recognition. Int. J. Comput. Vis. 2005, 99(2):190-214.
    • (2005) Int. J. Comput. Vis. , vol.99 , Issue.2 , pp. 190-214
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 197
    • 84887323389 scopus 로고    scopus 로고
    • Exploring the spatial hierarchy of mixture models for human pose estimation
    • Y. Tian, C.L. Zitnick, S.G. Narasimhan, Exploring the spatial hierarchy of mixture models for human pose estimation, in: Proceedings of the ECCV, 2012.
    • (2012) Proceedings of the ECCV
    • Tian, Y.1    Zitnick, C.L.2    Narasimhan, S.G.3
  • 198
    • 84887367149 scopus 로고    scopus 로고
    • Beyond physical connections: tree models in human pose estimation
    • F. Wang, Y. Li, Beyond physical connections: tree models in human pose estimation, in: Proceedings of the CVPR, 2013.
    • (2013) Proceedings of the CVPR
    • Wang, F.1    Li, Y.2
  • 200
    • 84887344431 scopus 로고    scopus 로고
    • Human pose estimation using body parts dependent joint regressors
    • M. Dantone, J. Gall, C. Leistner, et al., Human pose estimation using body parts dependent joint regressors, in: Proceedings of the CVPR, 2013.
    • (2013) Proceedings of the CVPR
    • Dantone, M.1    Gall, J.2    Leistner, C.3
  • 201
    • 84887370243 scopus 로고    scopus 로고
    • Modec: multimodal decomposable models for human pose estimation
    • B. Sapp, B. Taskar, Modec: multimodal decomposable models for human pose estimation, in: Proceedings of the CVPR, 2013.
    • (2013) Proceedings of the CVPR
    • Sapp, B.1    Taskar, B.2
  • 202
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson, M. Everingham, Clustered pose and nonlinear appearance models for human pose estimation, in: Proceedings of the BMVC, 2010.
    • (2010) Proceedings of the BMVC
    • Johnson, S.1    Everingham, M.2
  • 203
    • 84863625140 scopus 로고    scopus 로고
    • 2d articulated human pose estimation and retrieval in (almost) unconstrained still images
    • Eichner M., Marin-Jimenez M., Zisserman A., et al. 2d articulated human pose estimation and retrieval in (almost) unconstrained still images. Int. J. Comput. Vis. 2012, 99(2):190-214.
    • (2012) Int. J. Comput. Vis. , vol.99 , Issue.2 , pp. 190-214
    • Eichner, M.1    Marin-Jimenez, M.2    Zisserman, A.3
  • 204
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: human pose estimation via deep neural networks
    • A. Toshev, C. Szegedy, Deeppose: human pose estimation via deep neural networks, in: Proceedings of the CVPR, 2014.
    • (2014) Proceedings of the CVPR
    • Toshev, A.1    Szegedy, C.2
  • 205
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the NIPS, 2014.
    • (2014) Proceedings of the NIPS
    • Chen, X.1    Yuille, A.L.2
  • 206
    • 85083953149 scopus 로고    scopus 로고
    • Learning human pose estimation features with convolutional networks
    • A. Jain, J. Tompson, M. Andriluka, et al., Learning human pose estimation features with convolutional networks, in: Proceedings of the ICLR, 2014.
    • (2014) Proceedings of the ICLR
    • Jain, A.1    Tompson, J.2    Andriluka, M.3
  • 207
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J.J. Tompson, A. Jain, Y. LeCun, et al., Joint training of a convolutional network and a graphical model for human pose estimation, in: Proceedings of the NIPS, 2014.
    • (2014) Proceedings of the NIPS
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3
  • 208
  • 209
  • 210
    • 84959205097 scopus 로고    scopus 로고
    • Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation
    • X. Fan, K. Zheng, Y. Lin, et al., Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation, in: Proceedings of the CVPR, 2015.
    • (2015) Proceedings of the CVPR
    • Fan, X.1    Zheng, K.2    Lin, Y.3
  • 211
    • 84961895391 scopus 로고    scopus 로고
    • Human pose estimation with iterative error feedback
    • arXiv preprint, arXiv: 1507.06550
    • J. Carreira, P. Agrawal, K. Fragkiadaki, et al., Human pose estimation with iterative error feedback, arXiv preprint, arXiv: 1507.06550, 2015.
    • (2015)
    • Carreira, J.1    Agrawal, P.2    Fragkiadaki, K.3
  • 213
    • 84961893158 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • arXiv preprint, arXiv: 1504.01013
    • G. Lin, C. Shen, I. Reid, et al., Efficient piecewise training of deep structured models for semantic segmentation, arXiv preprint, arXiv: 1504.01013, 2015.
    • (2015)
    • Lin, G.1    Shen, C.2    Reid, I.3
  • 215
    • 85041932110 scopus 로고    scopus 로고
    • Weakly- and semi-supervised learning of a DCNN for semantic image segmentation
    • G. Papandreou, L. Chen, K. Murphy, et al., Weakly- and semi-supervised learning of a DCNN for semantic image segmentation, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • Papandreou, G.1    Chen, L.2    Murphy, K.3
  • 216
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, J. Sun, Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation, in: Proceedings of the ICCV, 2015.
    • (2015) Proceedings of the ICCV
    • Dai, J.1    He, K.2    Sun, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.