-
1
-
-
84879866425
-
Joint learning of words and meaning representations for open-text semantic parsing
-
A. Bordes, X. Glorot, J. Weston, et al. Joint learning of words and meaning representations for open-text semantic parsing, in: Proceedings of the AISTATS, 2012.
-
(2012)
Proceedings of the AISTATS
-
-
Bordes, A.1
Glorot, X.2
Weston, J.3
-
3
-
-
84959922723
-
On vectorization of deep convolutional neural networks for vision tasks
-
J.S.J. Ren, L. Xu, On vectorization of deep convolutional neural networks for vision tasks, in: Proceedings of the AAAI, 2015.
-
(2015)
Proceedings of the AAAI
-
-
Ren, J.S.J.1
Xu, L.2
-
4
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, et al., Distributed representations of words and phrases and their compositionality, in: Proceedings of the NIPS, 2013.
-
(2013)
Proceedings of the NIPS
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
-
7
-
-
84961962818
-
-
http://www.image-net.org/challenges/LSVRC/2014/results.
-
-
-
-
8
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio Y. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2(1):1-127.
-
(2009)
Found. Trends® Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
9
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 2014, 3:e2.
-
(2014)
APSIPA Trans. Signal Inf. Process.
, vol.3
, pp. e2
-
-
Deng, L.1
-
10
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015, 61:85-117.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
15
-
-
84931584163
-
Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification
-
arXiv preprint, arXiv: 1412.4526
-
H. Li, R. Zhao, X. Wang, Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification, arXiv preprint, arXiv: 1412.4526, 2014.
-
(2014)
-
-
Li, H.1
Zhao, R.2
Wang, X.3
-
16
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan D., Bengio Y., Courville A., et al. Why does unsupervised pre-training help deep learning?. J. Mach. Learn. Res. 2010, 11:625-660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottou L., Bengio Y., et al. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86(11):2278-2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
-
18
-
-
84959197642
-
Convolutional neural networks at constrained time cost
-
K. He, J. Sun, Convolutional neural networks at constrained time cost, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
He, K.1
Sun, J.2
-
23
-
-
80054774972
-
Evaluation of pooling operations in convolutional architectures for object recognition
-
D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in: Proceedings of the ICANN, 2010.
-
(2010)
Proceedings of the ICANN
-
-
Scherer, D.1
Müller, A.2
Behnke, S.3
-
24
-
-
84961962796
-
High-performance neural networks for visual object classification
-
D.C. Cireşan, U. Meier, J. Masci, et al., High-performance neural networks for visual object classification, in: Proceedings of the IJCAI, 2011.
-
(2011)
Proceedings of the IJCAI
-
-
Cireşan, D.C.1
Meier, U.2
Masci, J.3
-
25
-
-
85083954484
-
Stochastic pooling for regularization of deep convolutional neural networks
-
M.D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks, in: Proceedings of the ICLR, 2013.
-
(2013)
Proceedings of the ICLR
-
-
Zeiler, M.D.1
Fergus, R.2
-
26
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, et al., Spatial pyramid pooling in deep convolutional networks for visual recognition, in: Proceedings of the ECCV, 2014.
-
(2014)
Proceedings of the ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
-
27
-
-
84948382785
-
DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection
-
W. Ouyang, P. Luo, X. Zeng, et al., DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Ouyang, W.1
Luo, P.2
Zeng, X.3
-
28
-
-
84938217896
-
Multi-scale orderless pooling of deep convolutional activation features
-
Y. Gong, L. Wang, R. Guo, et al., Multi-scale orderless pooling of deep convolutional activation features, in: Proceedings of the ECCV, 2014.
-
(2014)
Proceedings of the ECCV
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
-
29
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, et al., Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the CVPR, 2014.
-
(2014)
Proceedings of the CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
-
30
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, et al., Learning and transferring mid-level image representations using convolutional neural networks, in: Proceedings of the CVPR, 2014.
-
(2014)
Proceedings of the CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
-
31
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of the ICLR, 2015.
-
(2015)
Proceedings of the ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
32
-
-
84898828144
-
Multi-stage contextual deep learning for pedestrian detection
-
X. Zeng, W. Ouyang, X. Wang, Multi-stage contextual deep learning for pedestrian detection, in: Proceedings of the ICCV, 2013.
-
(2013)
Proceedings of the ICCV
-
-
Zeng, X.1
Ouyang, W.2
Wang, X.3
-
33
-
-
84887364811
-
Deep convolutional network cascade for facial point detection
-
Y. Sun, X. Wang, X. Tang, Deep convolutional network cascade for facial point detection, in: Proceedings of the CVPR, 2013.
-
(2013)
Proceedings of the CVPR
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
34
-
-
84908691516
-
Committees of deep feedforward networks trained with few data
-
Pattern Recognition, Springer International Publishing
-
B. Miclut, Committees of deep feedforward networks trained with few data, Pattern Recognition, Springer International Publishing, pp. 736-742, 2014.
-
(2014)
, pp. 736-742
-
-
Miclut, B.1
-
35
-
-
84872553130
-
Deep learning via semi-supervised embedding
-
Neural Networks: Tricks of the Trade, Springer, Berlin Heidelberg
-
J. Weston, F. Ratle, H. Mobahi. et al., Deep learning via semi-supervised embedding, Neural Networks: Tricks of the Trade, Springer, Berlin Heidelberg, pp. 639-655.
-
-
-
Weston, J.1
Ratle, F.2
Mobahi, H.3
-
38
-
-
84867720412
-
Improving neural networks by preventing co-adaptation of feature detectors
-
arXiv preprint, arXiv: 1207.0580
-
G.E. Hinton, N. Srivastava, A. Krizhevsky, et al., Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint, arXiv: 1207.0580, 2012.
-
(2012)
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
-
40
-
-
84896515095
-
Adaptive dropout for training deep neural networks
-
J. Ba, B. Frey, Adaptive dropout for training deep neural networks, in: Proceedings of the NIPS, 2013.
-
(2013)
Proceedings of the NIPS
-
-
Ba, J.1
Frey, B.2
-
41
-
-
84903702560
-
A PAC-Bayesian tutorial with a dropout bound
-
arXiv preprint, arXiv: 1307.2118
-
D. McAllester, A PAC-Bayesian tutorial with a dropout bound, arXiv preprint, arXiv: 1307.2118, 2013.
-
(2013)
-
-
McAllester, D.1
-
44
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N., Hinton G., Krizhevsky A., et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15(1):1929-1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
-
47
-
-
84906496000
-
Some improvements on deep convolutional neural network based image classification
-
arXiv preprint, arXiv: 1312.5402
-
A.G. Howard, Some improvements on deep convolutional neural network based image classification, arXiv preprint, arXiv: 1312.5402, 2013.
-
(2013)
-
-
Howard, A.G.1
-
48
-
-
84959202819
-
Unsupervised feature learning by augmenting single images
-
arXiv preprint, arXiv: 1312.5242
-
A. Dosovitskiy, J.T. Springenberg, T. Brox, Unsupervised feature learning by augmenting single images, arXiv preprint, arXiv: 1312.5242, 2013.
-
(2013)
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Brox, T.3
-
49
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G., Osindero S., Teh Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.W.3
-
50
-
-
85112276587
-
Efficient learning of sparse representations with an energy-based model
-
C. Poultney, S. Chopra, Y.L. Cun, Efficient learning of sparse representations with an energy-based model, in: Proceedings of the NIPS 2006.
-
(2006)
Proceedings of the NIPS
-
-
Poultney, C.1
Chopra, S.2
Cun, Y.L.3
-
52
-
-
84921476116
-
Visualizing and understanding convolutional neural networks
-
M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional neural networks, in: Proceedings of the ECCV, 2014.
-
(2014)
Proceedings of the ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
53
-
-
0003633343
-
-
4.2, MIT Press, Cambridge, MA
-
Hinton G.E., Sejnowski T.J. Learning and Relearning in Boltzmann Machines 1986, 1:4.2. MIT Press, Cambridge, MA.
-
(1986)
Learning and Relearning in Boltzmann Machines
, vol.1
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
55
-
-
84861125212
-
A practical guide to training restricted Boltzmann machines
-
Hinton G. A practical guide to training restricted Boltzmann machines. Momentum 2010, 9(1):926.
-
(2010)
Momentum
, vol.9
, Issue.1
, pp. 926
-
-
Hinton, G.1
-
56
-
-
80053444761
-
Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines
-
K.H. Cho, T. Raiko, A.T. Ihler, Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines, in: Proceedings of the ICML, 2011.
-
(2011)
Proceedings of the ICML
-
-
Cho, K.H.1
Raiko, T.2
Ihler, A.T.3
-
57
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the ICML, 2010.
-
(2010)
in: Proceedings of the ICML
-
-
Nair, V.1
Hinton, G.E.2
-
58
-
-
77958488310
-
Deep machine learning-a new frontier in artificial intelligence research [research frontier]
-
Arel I., Rose D.C., Karnowski T.P. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. Comput. Intell. Mag. IEEE 2010, 5(4):13-18.
-
(2010)
Comput. Intell. Mag. IEEE
, vol.5
, Issue.4
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
61
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, et al., Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the ICML, 2009.
-
(2009)
Proceedings of the ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
-
62
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Lee H., Grosse R., Ranganath R., et al. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 2011, 54(10):95-103.
-
(2011)
Commun. ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
-
64
-
-
84866691616
-
Learning hierarchical representations for face verification with convolutional deep belief networks
-
G.B. Huang, H. Lee, E. Learned-Miller, Learning hierarchical representations for face verification with convolutional deep belief networks, in: Proceedings of the CVPR, 2012.
-
(2012)
Proceedings of the CVPR
-
-
Huang, G.B.1
Lee, H.2
Learned-Miller, E.3
-
67
-
-
84874125782
-
An efficient learning procedure for deep Boltzmann machines
-
Salakhutdinov R., Hinton G. An efficient learning procedure for deep Boltzmann machines. Neural Comput. 2012, 24(8):1967-2006.
-
(2012)
Neural Comput.
, vol.24
, Issue.8
, pp. 1967-2006
-
-
Salakhutdinov, R.1
Hinton, G.2
-
70
-
-
84872571941
-
Deep Boltzmann machines and the centering trick, Neural Networks: Tricks of the Trade
-
Springer, Berlin Heidelberg
-
G. Montavon K.R. Müller, Deep Boltzmann machines and the centering trick, Neural Networks: Tricks of the Trade, Springer, Berlin Heidelberg 2012, pp. 621-637.
-
(2012)
, pp. 621-637
-
-
Montavon, G.1
Müller, K.R.2
-
71
-
-
85083952643
-
Joint training deep boltzmann machines for classification
-
arXiv preprint, arXiv: 1301.3568
-
I.J. Goodfellow, A. Courville, Y. Bengio, Joint training deep boltzmann machines for classification, arXiv preprint, arXiv: 1301.3568, 2013.
-
(2013)
-
-
Goodfellow, I.J.1
Courville, A.2
Bengio, Y.3
-
74
-
-
85027910492
-
Expected energy-based restricted Boltzmann machine for classification
-
Elfwing S., Uchibe E., Doya K. Expected energy-based restricted Boltzmann machine for classification. Neural Netw. 2014.
-
(2014)
Neural Netw.
-
-
Elfwing, S.1
Uchibe, E.2
Doya, K.3
-
76
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
77
-
-
84937556678
-
Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment
-
J. Zhang, S. Shan, M. Kan, et al., Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment, in: Proceedings of the ECCV, 2014.
-
(2014)
Proceedings of the ECCV
-
-
Zhang, J.1
Shan, S.2
Kan, M.3
-
79
-
-
84961936394
-
Is joint training better for deep auto-encoders?
-
arXiv preprint, arXiv: 1405,1380
-
Y. Zhou, D. Arpit, I. Nwogu, et al., Is joint training better for deep auto-encoders? arXiv preprint, arXiv: 1405,1380, 2014.
-
(2014)
-
-
Zhou, Y.1
Arpit, D.2
Nwogu, I.3
-
83
-
-
42149169237
-
4.7 Statistical Modeling of Photographic Images
-
Simoncelli E P. 4.7 Statistical Modeling of Photographic Images, 2005.
-
(2005)
-
-
Simoncelli, E.P.1
-
84
-
-
84890478042
-
Building high-level features using large scale unsupervised learning
-
Q.V. Le, Building high-level features using large scale unsupervised learning, in: Proceedings of the ICASSP, 2013.
-
(2013)
Proceedings of the ICASSP
-
-
Le, Q.V.1
-
86
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent P., Larochelle H., Lajoie I., et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11:3371-3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
-
87
-
-
80053460450
-
Contractive auto-encoders: explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, et al., Contractive auto-encoders: explicit invariance during feature extraction, in: Proceedings of the ICML, 2011.
-
(2011)
Proceedings of the ICML
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
-
88
-
-
85083953791
-
What regularized auto-encoders learn from the data generating distribution
-
G. Alain, Y. Bengio, What regularized auto-encoders learn from the data generating distribution, in: Proceedings of the ICLR, 2013.
-
(2013)
Proceedings of the ICLR
-
-
Alain, G.1
Bengio, Y.2
-
89
-
-
84906491858
-
Unsupervised and transfer learning challenge: a deep learning approach
-
G. Mesnil, Y. Dauphin, X. Glorot, et al., Unsupervised and transfer learning challenge: a deep learning approach, in: Proceedings of the ICML, 2012.
-
(2012)
Proceedings of the ICML
-
-
Mesnil, G.1
Dauphin, Y.2
Glorot, X.3
-
90
-
-
84876276096
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
J. Masci, U. Meier, D. Cireşan, et al., Stacked convolutional auto-encoders for hierarchical feature extraction, in: Proceedings of the ICANN, 2011.
-
(2011)
Proceedings of the ICANN
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
-
91
-
-
84898458880
-
Spatio-temporal convolutional sparse auto-encoder for sequence classification
-
M. Baccouche, F. Mamalet, C. Wolf, et al., Spatio-temporal convolutional sparse auto-encoder for sequence classification, in: Proceedings of the BMVC, 2012.
-
(2012)
Proceedings of the BMVC
-
-
Baccouche, M.1
Mamalet, F.2
Wolf, C.3
-
92
-
-
85027912009
-
3D object retrieval with stacked local convolutional autoencoder
-
Leng B., Guo S., Zhang X., et al. 3D object retrieval with stacked local convolutional autoencoder. Signal Process. 2014.
-
(2014)
Signal Process.
-
-
Leng, B.1
Guo, S.2
Zhang, X.3
-
94
-
-
0030779611
-
Sparse coding with an overcomplete basis set: a strategy employed by V1?
-
Olshausen B.A., Field D.J. Sparse coding with an overcomplete basis set: a strategy employed by V1?. Vis. Res. 1997, 37(23):3311-3325.
-
(1997)
Vis. Res.
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.A.1
Field, D.J.2
-
96
-
-
34547971961
-
Self-taught learning: transfer learning from unlabeled data
-
R. Raina, A. Battle, H. Lee, et al., Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the ICML, 2007.
-
(2007)
Proceedings of the ICML
-
-
Raina, R.1
Battle, A.2
Lee, H.3
-
97
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
J. Wang, J. Yang, K. Yu, et al., Locality-constrained linear coding for image classification, in: Proceedings of the CVPR, 2010.
-
(2010)
Proceedings of the CVPR
-
-
Wang, J.1
Yang, J.2
Yu, K.3
-
98
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
J. Yang, K. Yu, Y. Gong, et al., Linear spatial pyramid matching using sparse coding for image classification, in: Proceedings of the CVPR, 2009.
-
(2009)
Proceedings of the CVPR
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
-
99
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution
-
Donoho D.L. For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 2006, 59(6):797-829.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, Issue.6
, pp. 797-829
-
-
Donoho, D.L.1
-
100
-
-
0003495409
-
-
Oxford University Press, Oxford, United Kingdom
-
Censor Y. Parallel Optimization: Theory, Algorithms, and Applications 1997, Oxford University Press, Oxford, United Kingdom.
-
(1997)
Parallel Optimization: Theory, Algorithms, and Applications
-
-
Censor, Y.1
-
101
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
104
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
Mairal J., Bach F., Ponce J., et al. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 2010, 11:19-60.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
-
105
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman J., Hastie T., Höfling H., et al. Pathwise coordinate optimization. Ann. Appl. Stat. 2007, 1(2):302-332.
-
(2007)
Ann. Appl. Stat.
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
-
107
-
-
0032022704
-
Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage
-
Chambolle A., De Vore R.A., Lee N.Y., et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. Image Process. IEEE Trans. 1998, 7(3):319-335.
-
(1998)
Image Process. IEEE Trans.
, vol.7
, Issue.3
, pp. 319-335
-
-
Chambolle, A.1
De Vore, R.A.2
Lee, N.Y.3
-
108
-
-
70349452064
-
A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring
-
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring, in: Proceedings of the ICASSP, 2009.
-
(2009)
Proceedings of the ICASSP
-
-
Beck, A.1
Teboulle, M.2
-
109
-
-
70049083257
-
Fast inference in sparse coding algorithms with applications to object recognition
-
arXiv preprint, arXiv: 1010.3467
-
K. Kavukcuoglu, M.A. Ranzato, Y. LeCun, Fast inference in sparse coding algorithms with applications to object recognition, arXiv preprint, arXiv: 1010.3467, 2010.
-
(2010)
-
-
Kavukcuoglu, K.1
Ranzato, M.A.2
LeCun, Y.3
-
110
-
-
84897528758
-
Smooth sparse coding via marginal regression for learning sparse representations
-
K. Balasubramanian, K. Yu, G. Lebanon, Smooth sparse coding via marginal regression for learning sparse representations, in: Proceedings of the ICML, 2013.
-
(2013)
Proceedings of the ICML
-
-
Balasubramanian, K.1
Yu, K.2
Lebanon, G.3
-
111
-
-
33845572523
-
Beyond bags of features: spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: Proceedings of the CVPR, 2006.
-
(2006)
Proceedings of the CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
112
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
A. Coates, A.Y. Ng, The importance of encoding versus training with sparse coding and vector quantization, in: Proceedings of the ICML, 2011.
-
(2011)
Proceedings of the ICML
-
-
Coates, A.1
Ng, A.Y.2
-
113
-
-
77955994285
-
Local features are not lonely-Laplacian sparse coding for image classification
-
S. Gao, I.W. Tsang, L.T. Chia, et al., Local features are not lonely-Laplacian sparse coding for image classification, in: Proceedings of the CVPR, 2010.
-
(2010)
Proceedings of the CVPR
-
-
Gao, S.1
Tsang, I.W.2
Chia, L.T.3
-
114
-
-
84870191664
-
Laplacian sparse coding, hypergraph laplacian sparse coding, and applications
-
Gao S., Tsang I.W.H., Chia L.T. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. Pattern Anal. Mach. Intell. IEEE Trans. 2013, 35(1):92-104.
-
(2013)
Pattern Anal. Mach. Intell. IEEE Trans.
, vol.35
, Issue.1
, pp. 92-104
-
-
Gao, S.1
Tsang, I.W.H.2
Chia, L.T.3
-
115
-
-
80052889296
-
Learning image representations from the pixel level via hierarchical sparse coding
-
K. Yu, Y. Lin, J. Lafferty, Learning image representations from the pixel level via hierarchical sparse coding, in: Proceedings of the CVPR, 2011.
-
(2011)
Proceedings of the CVPR
-
-
Yu, K.1
Lin, Y.2
Lafferty, J.3
-
117
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
M.D. Zeile, G.W. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, in: Proceedings of the ICCV, 2011.
-
(2011)
Proceedings of the ICCV
-
-
Zeile, M.D.1
Taylor, G.W.2
Fergus, R.3
-
118
-
-
80052886214
-
Image classification using super-vector coding of local image descriptors
-
X. Zhou, K. Yu, T. Zhang, et al., Image classification using super-vector coding of local image descriptors, in: Proceedings of the ECCV, 2010.
-
(2010)
Proceedings of the ECCV
-
-
Zhou, X.1
Yu, K.2
Zhang, T.3
-
119
-
-
80052870284
-
Large-scale image classification: fast feature extraction and svm training
-
Y. Lin, F. Lv, S. Zhu, et al., Large-scale image classification: fast feature extraction and svm training, in: Proceedings of the CVPR, 2011.
-
(2011)
Proceedings of the CVPR
-
-
Lin, Y.1
Lv, F.2
Zhu, S.3
-
122
-
-
84973389608
-
Analyzing the performance of multilayer neural networks for object recognition
-
P. Agrawal, R. Girshick, J. Malik, Analyzing the performance of multilayer neural networks for object recognition, in: Proceedings of the ECCV, 2014.
-
(2014)
Proceedings of the ECCV
-
-
Agrawal, P.1
Girshick, R.2
Malik, J.3
-
123
-
-
84919607718
-
Deep neural networks rival the representation of primate IT cortex for core visual object recognition
-
Cadieu C.F., Hong H., Yamins D.L.K., et al. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PloS Comput. Biol. 2014, 10(12):e1003963.
-
(2014)
PloS Comput. Biol.
, vol.10
, Issue.12
, pp. e1003963
-
-
Cadieu, C.F.1
Hong, H.2
Yamins, D.L.K.3
-
124
-
-
84946206172
-
Deep neural networks are easily fooled: high confidence predictions for unrecognizable images
-
A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: high confidence predictions for unrecognizable images, in: Proceedings of the CVPR 2015.
-
(2015)
Proceedings of the CVPR
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
125
-
-
84961960147
-
Learning deep temporal representations for brain decoding
-
arXiv preprint, arXiv: 1412.7522
-
O. Firat, E. Aksan, I. Oztekin, et al., Learning deep temporal representations for brain decoding, arXiv preprint, arXiv: 1412.7522, 2014.
-
(2014)
-
-
Firat, O.1
Aksan, E.2
Oztekin, I.3
-
127
-
-
85119023842
-
-
S.K. Divvala, A. Farhadi, C. Guestrin, Learning everything about anything: webly-supervised visual concept learning, in: Proceedings of the CVPR, 2014.
-
S.K. Divvala, A. Farhadi, C. Guestrin, Learning everything about anything: webly-supervised visual concept learning, in: Proceedings of the CVPR, 2014.
-
-
-
-
128
-
-
84959187860
-
ConceptLearner: discovering visual concepts from weakly labeled image collections
-
B. Zhou, V. Jagadeesh, R. Piramuthu, ConceptLearner: discovering visual concepts from weakly labeled image collections, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Zhou, B.1
Jagadeesh, V.2
Piramuthu, R.3
-
131
-
-
0026966646
-
A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM
-
B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM, 1992.
-
(1992)
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
132
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
Proceedings of the CVPR
-
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the CVPR, 2005.
-
(2005)
-
-
Dalal, N.1
Triggs, B.2
-
133
-
-
85020603202
-
An HOG-LBP human detector with partial occlusion handling
-
X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in: Proceedings of the ICCV, 2009.
-
(2009)
Proceedings of the ICCV
-
-
Wang, X.1
Han, T.X.2
Yan, S.3
-
135
-
-
84898982939
-
Exploiting generative models in discriminative classifiers
-
T. Jaakkola, D. Haussler, Exploiting generative models in discriminative classifiers, in: Proceedings of the NIPS, 1999.
-
(1999)
Proceedings of the NIPS
-
-
Jaakkola, T.1
Haussler, D.2
-
137
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
140
-
-
84901663871
-
Analysis of feature maps selection in supervised learning using convolutional neural networks. Advances in Artificial Intelligence
-
J.L. Chu, A. Krzyz˙ak, Analysis of feature maps selection in supervised learning using convolutional neural networks. Advances in Artificial Intelligence, Springer International Publishing, 2014, pp. 59-70.
-
(2014)
Springer International Publishing
, pp. 59-70
-
-
Chu, J.L.1
Krzyzak, A.2
-
141
-
-
84961937140
-
Visualizing and comparing convolutional neural networks_afsta
-
arXiv preprint, arXiv: 1412.6631
-
W. Yu, K. Yang, Y. Bai, et al., Visualizing and comparing convolutional neural networks, arXiv preprint, arXiv: 1412.6631, 2014.
-
(2014)
-
-
Yu, W.1
Yang, K.2
Bai, Y.3
-
143
-
-
84961967833
-
From large-scale object classifiers to large-scale object detectors: an adaptation approach
-
J. Hoffman, S. Guadarrama, E. Tzeng, et al., From large-scale object classifiers to large-scale object detectors: an adaptation approach, 2014.
-
(2014)
-
-
Hoffman, J.1
Guadarrama, S.2
Tzeng, E.3
-
144
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
L.C. Chen, G. Papandreou, I. Kokkinos, et al., Semantic image segmentation with deep convolutional nets and fully connected CRFs, in: Proceedings of the ICLR, 2015.
-
(2015)
Proceedings of the ICLR
-
-
Chen, L.C.1
Papandreou, G.2
Kokkinos, I.3
-
145
-
-
85083951635
-
Overfeat: integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, et al., Overfeat: integrated recognition, localization and detection using convolutional networks, in: Proceedings of the ICLR, 2014.
-
(2014)
Proceedings of the ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
-
148
-
-
84959216100
-
Convolutional feature masking for joint object and stuff segmentation
-
J. Dai, K. He, J. Sun, Convolutional feature masking for joint object and stuff segmentation, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
149
-
-
84962446665
-
Deep index for accurate and efficient image retrieval
-
Y. Liu, Y. Guo, S. Wu, et al., Deep index for accurate and efficient image retrieval, in: Proceedings of the ICMR, 2015.
-
(2015)
Proceedings of the ICMR
-
-
Liu, Y.1
Guo, Y.2
Wu, S.3
-
151
-
-
84881160857
-
Selective search for object recognition
-
Uijlings J.R.R., van de Sande K.E.A., Gevers T., et al. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104(2):154-171.
-
(2013)
Int. J. Comput. Vis.
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.R.1
van de Sande, K.E.A.2
Gevers, T.3
-
153
-
-
84911456915
-
BING: binarized normed gradients for objectness estimation at 300fps
-
M.M. Cheng, Z. Zhang, W.Y. Lin, et al., BING: binarized normed gradients for objectness estimation at 300fps, in: Proceedings of the CVPR, 2014.
-
(2014)
Proceedings of the CVPR
-
-
Cheng, M.M.1
Zhang, Z.2
Lin, W.Y.3
-
155
-
-
85081111493
-
How good are detection proposals, really?
-
J. Hosang, R. Benenson, B. Schiele, How good are detection proposals, really?, in: Proceedings of the BMVC, 2014.
-
(2014)
Proceedings of the BMVC
-
-
Hosang, J.1
Benenson, R.2
Schiele, B.3
-
156
-
-
84962446665
-
DeepIndex for accurate and efficient image retrieval
-
Y. Liu, Y. Guo, S. Wu, M. Lew, DeepIndex for accurate and efficient image retrieval, in: Proceedings of the ICMR, 2015.
-
(2015)
Proceedings of the ICMR
-
-
Liu, Y.1
Guo, Y.2
Wu, S.3
Lew, M.4
-
157
-
-
84904293634
-
Seeing the big picture: deep embedding with contextual evidences
-
arXiv preprint, arXiv: 1406.0132
-
L. Zheng, S. Wang, F. He, Q. Tian, Seeing the big picture: deep embedding with contextual evidences, arXiv preprint, arXiv: 1406.0132, 2014.
-
(2014)
-
-
Zheng, L.1
Wang, S.2
He, F.3
Tian, Q.4
-
158
-
-
84986253708
-
HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification
-
Z. Yan, V. Jagadeesh, D. DeCoste, et al., HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
Yan, Z.1
Jagadeesh, V.2
DeCoste, D.3
-
159
-
-
84930572185
-
Deep image: scaling up image recognition
-
arXiv preprint, arXiv: 1501.02876
-
R. Wu, S. Yan, Y. Shan, et al., Deep image: scaling up image recognition, arXiv preprint, arXiv: 1501.02876, 2015.
-
(2015)
-
-
Wu, R.1
Yan, S.2
Shan, Y.3
-
161
-
-
33644756784
-
On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
Younes L. On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stoch.: Int. J. Probab. Stoch. Process. 1999, 65(3-4):177-228.
-
(1999)
Stoch.: Int. J. Probab. Stoch. Process.
, vol.65
, Issue.3-4
, pp. 177-228
-
-
Younes, L.1
-
162
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, et al., Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
-
163
-
-
84964923476
-
Batch normalization: accelerating deep network training by reducing internal covariate shift
-
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proceedings of the NIPS, 2015.
-
(2015)
Proceedings of the NIPS
-
-
Ioffe, S.1
Szegedy, C.2
-
165
-
-
84908537903
-
CNN features off-the-shelf an astounding baseline for recognition
-
A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf an astounding baseline for recognition, in: Proceedings of the CVPR Workshop, 2014.
-
(2014)
Proceedings of the CVPR Workshop
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
166
-
-
85050623736
-
Deep Learning for content-based image retrieval: a comprehensive study
-
J. Wan, D. Wang, S. Hoi, et al., Deep Learning for content-based image retrieval: a comprehensive study, in: Proceedings of the Multimedia, 2014.
-
(2014)
Proceedings of the Multimedia
-
-
Wan, J.1
Wang, D.2
Hoi, S.3
-
169
-
-
84887349828
-
Augmenting CRFs with Boltzmann machine shape priors for image labeling
-
A. Kae, K. Sohn, H. Lee, et al., Augmenting CRFs with Boltzmann machine shape priors for image labeling, in: Proceedings of the CVPR, 2013.
-
(2013)
Proceedings of the CVPR
-
-
Kae, A.1
Sohn, K.2
Lee, H.3
-
170
-
-
85162069624
-
Phone Recognition with the mean-covariance restricted Boltzmann machine
-
G.E. Dahl, M.A. Ranzato, A. Mohamed, et al., Phone Recognition with the mean-covariance restricted Boltzmann machine, in: Proceedings of the NIPS, 2010.
-
(2010)
Proceedings of the NIPS
-
-
Dahl, G.E.1
Ranzato, M.A.2
Mohamed, A.3
-
171
-
-
84946013967
-
Search by detection-object-level feature for image retrieval
-
S. Sun, W. Zhou, H. Li, et al., Search by detection-object-level feature for image retrieval, in: Proceedings of the ICIMCS, 2014.
-
(2014)
Proceedings of the ICIMCS
-
-
Sun, S.1
Zhou, W.2
Li, H.3
-
173
-
-
84953933150
-
Is object localization for free? - Weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, et al., Is object localization for free? - Weakly-supervised learning with convolutional neural networks, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
-
176
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb P.F., Girshick R.B., McAllester D., et al. Object detection with discriminatively trained part-based models. Pattern Anal. Mach. Intell. IEEE Trans. 2010, 32(9):1627-1645.
-
(2010)
Pattern Anal. Mach. Intell. IEEE Trans.
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
-
178
-
-
84960980241
-
Faster R-CNN: towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, et al., Faster R-CNN: towards real-time object detection with region proposal networks, in: Proceedings of the NIPS, 2015.
-
(2015)
Proceedings of the NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
-
179
-
-
84961917629
-
You only look once: unified, real-time object detection
-
arXiv preprint, arXiv: 1506.02640
-
J. Redmon, S. Divvala, R. Girshick, et al., You only look once: unified, real-time object detection, arXiv preprint, arXiv: 1506.02640, 2015.
-
(2015)
-
-
Redmon, J.1
Divvala, S.2
Girshick, R.3
-
182
-
-
84946737993
-
Towards unified object detection and semantic segmentation
-
J. Dong, Q. Chen, S. Yan, et al., Towards unified object detection and semantic segmentation, in: Proceedings of the ECCV, 2014.
-
(2014)
Proceedings of the ECCV
-
-
Dong, J.1
Chen, Q.2
Yan, S.3
-
183
-
-
84959233955
-
segDeepM: exploiting segmentation and context in deep neural networks for object detection
-
Y. Zhu, R. Urtasun, R. Salakhutdinov, et al., segDeepM: exploiting segmentation and context in deep neural networks for object detection, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Zhu, Y.1
Urtasun, R.2
Salakhutdinov, R.3
-
184
-
-
84973864191
-
Object detection via a multi-region and semantic segmentation-aware CNN model
-
S. Gidaris, N. Komodakis, Object detection via a multi-region and semantic segmentation-aware CNN model, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
Gidaris, S.1
Komodakis, N.2
-
185
-
-
84959196836
-
Improving object detection with deep convolutional networks via bayesian optimization and structured prediction
-
Y. Zhang, K. Sohn, R. Villegas, et al., Improving object detection with deep convolutional networks via bayesian optimization and structured prediction, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Zhang, Y.1
Sohn, K.2
Villegas, R.3
-
186
-
-
84961891410
-
Object detection networks on convolutional feature maps
-
arXiv preprint, arXiv: 1504.06066
-
S. Ren, K. He, R. Girshick, et al., Object detection networks on convolutional feature maps, arXiv preprint, arXiv: 1504.06066, 2015.
-
(2015)
-
-
Ren, S.1
He, K.2
Girshick, R.3
-
187
-
-
84973882796
-
Towards computational baby learning: a weakly-supervised approach for object detection
-
X. Liang, S. Liu, Y. Wei, et al., Towards computational baby learning: a weakly-supervised approach for object detection, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
Liang, X.1
Liu, S.2
Wei, Y.3
-
189
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O., Deng J., Su H., et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115(3):211-252.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
190
-
-
84937874239
-
Deep joint task learning for generic object extraction
-
X. Wang, L. Zhang, L. Lin, et al., Deep joint task learning for generic object extraction, in: Proceedings of the NIPS, 2014.
-
(2014)
Proceedings of the NIPS
-
-
Wang, X.1
Zhang, L.2
Lin, L.3
-
192
-
-
84977621671
-
Modeep: a deep learning framework using motion features for human pose estimation
-
A. Jain, J. Tompson, Y. LeCun, et al., Modeep: a deep learning framework using motion features for human pose estimation, in: Proceedings of the ACCV, 2014.
-
(2014)
Proceedings of the ACCV
-
-
Jain, A.1
Tompson, J.2
LeCun, Y.3
-
193
-
-
84989343117
-
Deep convolutional neural networks for efficient pose estimation in gesture videos
-
T. Pfister, K. Simonyan, J. Charles, et al., Deep convolutional neural networks for efficient pose estimation in gesture videos, in: Proceedings of the ACCV, 2015.
-
(2015)
Proceedings of the ACCV
-
-
Pfister, T.1
Simonyan, K.2
Charles, J.3
-
195
-
-
84931563436
-
Human pose recovery by supervised spectral embedding
-
Yu J., Guo Y., Tao D., et al. Human pose recovery by supervised spectral embedding. Neurocomputing 2015, 166:301-308.
-
(2015)
Neurocomputing
, vol.166
, pp. 301-308
-
-
Yu, J.1
Guo, Y.2
Tao, D.3
-
198
-
-
84887367149
-
Beyond physical connections: tree models in human pose estimation
-
F. Wang, Y. Li, Beyond physical connections: tree models in human pose estimation, in: Proceedings of the CVPR, 2013.
-
(2013)
Proceedings of the CVPR
-
-
Wang, F.1
Li, Y.2
-
200
-
-
84887344431
-
Human pose estimation using body parts dependent joint regressors
-
M. Dantone, J. Gall, C. Leistner, et al., Human pose estimation using body parts dependent joint regressors, in: Proceedings of the CVPR, 2013.
-
(2013)
Proceedings of the CVPR
-
-
Dantone, M.1
Gall, J.2
Leistner, C.3
-
201
-
-
84887370243
-
Modec: multimodal decomposable models for human pose estimation
-
B. Sapp, B. Taskar, Modec: multimodal decomposable models for human pose estimation, in: Proceedings of the CVPR, 2013.
-
(2013)
Proceedings of the CVPR
-
-
Sapp, B.1
Taskar, B.2
-
202
-
-
84898472539
-
Clustered pose and nonlinear appearance models for human pose estimation
-
S. Johnson, M. Everingham, Clustered pose and nonlinear appearance models for human pose estimation, in: Proceedings of the BMVC, 2010.
-
(2010)
Proceedings of the BMVC
-
-
Johnson, S.1
Everingham, M.2
-
203
-
-
84863625140
-
2d articulated human pose estimation and retrieval in (almost) unconstrained still images
-
Eichner M., Marin-Jimenez M., Zisserman A., et al. 2d articulated human pose estimation and retrieval in (almost) unconstrained still images. Int. J. Comput. Vis. 2012, 99(2):190-214.
-
(2012)
Int. J. Comput. Vis.
, vol.99
, Issue.2
, pp. 190-214
-
-
Eichner, M.1
Marin-Jimenez, M.2
Zisserman, A.3
-
204
-
-
84911381180
-
Deeppose: human pose estimation via deep neural networks
-
A. Toshev, C. Szegedy, Deeppose: human pose estimation via deep neural networks, in: Proceedings of the CVPR, 2014.
-
(2014)
Proceedings of the CVPR
-
-
Toshev, A.1
Szegedy, C.2
-
205
-
-
84937873698
-
Articulated pose estimation by a graphical model with image dependent pairwise relations
-
X. Chen, A.L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, in: Proceedings of the NIPS, 2014.
-
(2014)
Proceedings of the NIPS
-
-
Chen, X.1
Yuille, A.L.2
-
206
-
-
85083953149
-
Learning human pose estimation features with convolutional networks
-
A. Jain, J. Tompson, M. Andriluka, et al., Learning human pose estimation features with convolutional networks, in: Proceedings of the ICLR, 2014.
-
(2014)
Proceedings of the ICLR
-
-
Jain, A.1
Tompson, J.2
Andriluka, M.3
-
207
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
J.J. Tompson, A. Jain, Y. LeCun, et al., Joint training of a convolutional network and a graphical model for human pose estimation, in: Proceedings of the NIPS, 2014.
-
(2014)
Proceedings of the NIPS
-
-
Tompson, J.J.1
Jain, A.2
LeCun, Y.3
-
210
-
-
84959205097
-
Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation
-
X. Fan, K. Zheng, Y. Lin, et al., Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation, in: Proceedings of the CVPR, 2015.
-
(2015)
Proceedings of the CVPR
-
-
Fan, X.1
Zheng, K.2
Lin, Y.3
-
211
-
-
84961895391
-
Human pose estimation with iterative error feedback
-
arXiv preprint, arXiv: 1507.06550
-
J. Carreira, P. Agrawal, K. Fragkiadaki, et al., Human pose estimation with iterative error feedback, arXiv preprint, arXiv: 1507.06550, 2015.
-
(2015)
-
-
Carreira, J.1
Agrawal, P.2
Fragkiadaki, K.3
-
213
-
-
84961893158
-
Efficient piecewise training of deep structured models for semantic segmentation
-
arXiv preprint, arXiv: 1504.01013
-
G. Lin, C. Shen, I. Reid, et al., Efficient piecewise training of deep structured models for semantic segmentation, arXiv preprint, arXiv: 1504.01013, 2015.
-
(2015)
-
-
Lin, G.1
Shen, C.2
Reid, I.3
-
215
-
-
85041932110
-
Weakly- and semi-supervised learning of a DCNN for semantic image segmentation
-
G. Papandreou, L. Chen, K. Murphy, et al., Weakly- and semi-supervised learning of a DCNN for semantic image segmentation, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
Papandreou, G.1
Chen, L.2
Murphy, K.3
-
216
-
-
84973890848
-
Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, J. Sun, Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation, in: Proceedings of the ICCV, 2015.
-
(2015)
Proceedings of the ICCV
-
-
Dai, J.1
He, K.2
Sun, J.3
|