-
3
-
-
84937522268
-
Going deeper with convolutions
-
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
5
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
7
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pages 675-678. ACM, 2014.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
8
-
-
84892421248
-
-
arXiv preprint arXiv:1302.4389
-
Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.
-
(2013)
Maxout Networks
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
15
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
CVPR 2009. IEEE Conference on IEEE
-
Koray Kavukcuoglu, Rob Fergus, Yann LeCun, et al. Learning invariant features through topographic filter maps. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1605-1612. IEEE, 2009.
-
(2009)
Computer Vision and Pattern Recognition, 2009
, pp. 1605-1612
-
-
Kavukcuoglu, K.1
Fergus, R.2
LeCun, Y.3
-
16
-
-
84965177696
-
Structured transforms for small-footprint deep learning
-
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors Curran Associates, Inc.
-
Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint deep learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 3088-3096. Curran Associates, Inc., 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 3088-3096
-
-
Sindhwani, V.1
Sainath, T.2
Kumar, S.3
-
17
-
-
84973890879
-
An exploration of parameter redundancy in deep networks with circulant projections
-
Yu Cheng, Felix X. Yu, Rogerio Feris, Sanjiv Kumar, and Shih-Fu Chang. An exploration of parameter redundancy in deep networks with circulant projections. In International Conference on Computer Vision (ICCV), 2015.
-
(2015)
International Conference on Computer Vision (ICCV)
-
-
Cheng, Y.1
Yu, F.X.2
Feris, R.3
Kumar, S.4
Shih, F.-C.5
-
18
-
-
84973904224
-
Deep fried convnets
-
Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, and Ziyu Wang. Deep fried convnets. In International Conference on Computer Vision (ICCV), 2015.
-
(2015)
International Conference on Computer Vision (ICCV)
-
-
Yang, Z.1
Moczulski, M.2
Denil, M.3
De Freitas, N.4
Smola, A.5
Song, L.6
Wang, Z.7
-
22
-
-
85019184647
-
-
arXiv preprint arXiv:1409.5185
-
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised nets. arXiv preprint arXiv:1409.5185, 2014.
-
(2014)
Deeply-supervised Nets
-
-
Chen, Y.-L.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
23
-
-
84964687855
-
Learning activation functions to improve deep neural networks
-
Forest Agostinelli, Matthew Hoffman, Peter J. Sadowski, and Pierre Baldi. Learning activation functions to improve deep neural networks. CoRR, abs/1412.6830, 2014.
-
(2014)
CoRR
-
-
Agostinelli, F.1
Hoffman, M.2
Sadowski, P.J.3
Baldi, P.4
|