메뉴 건너뛰기




Volumn 210, Issue 1, 2014, Pages 78-122

The dropout learning algorithm

Author keywords

Backpropagation; Ensemble; Geometric mean; Machine learning; Neural networks; Regularization; Sparse representations; Stochastic gradient descent; Stochastic neurons; Variance minimization

Indexed keywords

BACKPROPAGATION; COMPUTATIONAL FLUID DYNAMICS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; TIME VARYING NETWORKS;

EID: 84896507538     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2014.02.004     Document Type: Article
Times cited : (292)

References (43)
  • 1
    • 75349108004 scopus 로고    scopus 로고
    • Self improvement of the inequality between arithmetic and geometric means
    • J. Aldaz Self improvement of the inequality between arithmetic and geometric means J. Math. Inequal. 3 2 2009 213 216
    • (2009) J. Math. Inequal. , vol.3 , Issue.2 , pp. 213-216
    • Aldaz, J.1
  • 4
    • 0031327350 scopus 로고    scopus 로고
    • A new refinement of the arithmetic mean geometric mean inequality
    • H. Alzer A new refinement of the arithmetic mean geometric mean inequality J. Math. 27 3 1997
    • (1997) J. Math. , vol.27 , Issue.3
    • Alzer, H.1
  • 5
    • 33746685712 scopus 로고    scopus 로고
    • Some inequalities for arithmetic and geometric means
    • H. Alzer Some inequalities for arithmetic and geometric means Proc. R. Soc. Edinb., Sect. A, Math. 129 02 1999 221 228
    • (1999) Proc. R. Soc. Edinb., Sect. A, Math. , vol.129 , Issue.2 , pp. 221-228
    • Alzer, H.1
  • 6
    • 2342565172 scopus 로고    scopus 로고
    • The effects of adding noise during backpropagation training on a generalization performance
    • G. An The effects of adding noise during backpropagation training on a generalization performance Neural Comput. 8 3 1996 643 674
    • (1996) Neural Comput. , vol.8 , Issue.3 , pp. 643-674
    • An, G.1
  • 7
    • 84896515095 scopus 로고    scopus 로고
    • Adaptive dropout for training deep neural networks
    • C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger
    • J. Ba, and B. Frey Adaptive dropout for training deep neural networks C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger, Advances in Neural Information Processing Systems vol. 26 2013 3084 3092
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 3084-3092
    • Ba, J.1    Frey, B.2
  • 8
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi, and K. Hornik Neural networks and principal component analysis: Learning from examples without local minima Neural Netw. 2 1 1988 53 58
    • (1988) Neural Netw. , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 9
    • 0029343566 scopus 로고
    • Learning in linear networks: A survey
    • P. Baldi, and K. Hornik Learning in linear networks: a survey IEEE Trans. Neural Netw. 6 4 1994 837 858
    • (1994) IEEE Trans. Neural Netw. , vol.6 , Issue.4 , pp. 837-858
    • Baldi, P.1    Hornik, K.2
  • 12
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C.M. Bishop Training with noise is equivalent to Tikhonov regularization Neural Comput. 7 1 1995 108 116
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 13
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • D. Saad, Cambridge University Press Cambridge, UK
    • L. Bottou Online algorithms and stochastic approximations D. Saad, Online Learning and Neural Networks 1998 Cambridge University Press Cambridge, UK
    • (1998) Online Learning and Neural Networks
    • Bottou, L.1
  • 14
    • 33947180792 scopus 로고    scopus 로고
    • Stochastic learning
    • O. Bousquet, U. von Luxburg, Lecture Notes in Artificial Intelligence Springer Verlag Berlin
    • L. Bottou Stochastic learning O. Bousquet, U. von Luxburg, Advanced Lectures on Machine Learning Lecture Notes in Artificial Intelligence vol. 3176 2004 Springer Verlag Berlin 146 168
    • (2004) Advanced Lectures on Machine Learning , vol.3176 , pp. 146-168
    • Bottou, L.1
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 18
    • 0025499292 scopus 로고
    • A circuit for detection of interaural time differences in the brain stem of the barn owl
    • C. Carr, and M. Konishi A circuit for detection of interaural time differences in the brain stem of the barn owl J. Neurosci. 10 10 1990 3227 3246
    • (1990) J. Neurosci. , vol.10 , Issue.10 , pp. 3227-3246
    • Carr, C.1    Konishi, M.2
  • 19
    • 0342364227 scopus 로고
    • Axonal delay lines for time measurement in the owl's brainstem
    • C.E. Carr, and M. Konishi Axonal delay lines for time measurement in the owl's brainstem Proc. Natl. Acad. Sci. 85 21 1988 8311 8315
    • (1988) Proc. Natl. Acad. Sci. , vol.85 , Issue.21 , pp. 8311-8315
    • Carr, C.E.1    Konishi, M.2
  • 20
    • 84966217022 scopus 로고
    • A refinement of the arithmetic mean-geometric mean inequality
    • D. Cartwright, and M. Field A refinement of the arithmetic mean-geometric mean inequality Proc. Am. Math. Soc. 1978 36 38
    • (1978) Proc. Am. Math. Soc. , pp. 36-38
    • Cartwright, D.1    Field, M.2
  • 24
    • 0024774286 scopus 로고
    • Noise modulation of synaptic weights in a biological neural network
    • D. Gardner Noise modulation of synaptic weights in a biological neural network Neural Netw. 2 1 1989 69 76
    • (1989) Neural Netw. , vol.2 , Issue.1 , pp. 69-76
    • Gardner, D.1
  • 25
    • 0039521491 scopus 로고
    • A stochastic version of the delta rule
    • S.J. Hanson A stochastic version of the delta rule Physica D 42 1 1990 265 272
    • (1990) Physica D , vol.42 , Issue.1 , pp. 265-272
    • Hanson, S.J.1
  • 26
    • 0021966903 scopus 로고
    • Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat molossus ater
    • G. Harnischfeger, G. Neuweiler, and P. Schlegel Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat molossus ater J. Neurophysiol. 53 1 1985 89 109
    • (1985) J. Neurophysiol. , vol.53 , Issue.1 , pp. 89-109
    • Harnischfeger, G.1    Neuweiler, G.2    Schlegel, P.3
  • 28
    • 0040203314 scopus 로고
    • Generalization of an inequality of Ky Fan
    • N. Levinson Generalization of an inequality of Ky Fan J. Math. Anal. Appl. 8 1 1964 133 134
    • (1964) J. Math. Anal. Appl. , vol.8 , Issue.1 , pp. 133-134
    • Levinson, N.1
  • 30
    • 0026858102 scopus 로고
    • Noise injection into inputs in back-propagation learning
    • K. Matsuoka Noise injection into inputs in back-propagation learning IEEE Trans. Syst. Man Cybern. 22 3 1992 436 440
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.3 , pp. 436-440
    • Matsuoka, K.1
  • 31
    • 0035536101 scopus 로고    scopus 로고
    • Improved upper and lower bounds for the difference an-gn
    • A.M. Mercer Improved upper and lower bounds for the difference an-gn J. Math. 31 2 2001
    • (2001) J. Math. , vol.31 , Issue.2
    • Mercer, A.M.1
  • 32
    • 2442440086 scopus 로고    scopus 로고
    • Refined arithmetic, geometric and harmonic mean inequalities
    • P.R. Mercer Refined arithmetic, geometric and harmonic mean inequalities J. Math. 33 4 2003
    • (2003) J. Math. , vol.33 , Issue.4
    • Mercer, P.R.1
  • 34
    • 0028494739 scopus 로고
    • Enhanced mlp performance and fault tolerance resulting from synaptic weight noise during training
    • A.F. Murray, and P.J. Edwards Enhanced mlp performance and fault tolerance resulting from synaptic weight noise during training IEEE Trans. Neural Netw. 5 5 1994 792 802
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.5 , pp. 792-802
    • Murray, A.F.1    Edwards, P.J.2
  • 35
    • 0036001635 scopus 로고    scopus 로고
    • On the Ky Fan inequality and related inequalities i
    • E. Neuman, and J. Sándor On the Ky Fan inequality and related inequalities i Math. Inequal. Appl 5 2002 49 56
    • (2002) Math. Inequal. Appl , vol.5 , pp. 49-56
    • Neuman, E.1    Sándor, J.2
  • 36
    • 27144449921 scopus 로고    scopus 로고
    • On the Ky Fan inequality and related inequalities ii
    • E. Neuman, and J. Sandor On the Ky Fan inequality and related inequalities ii Bull. Aust. Math. Soc. 72 1 2005 87 108
    • (2005) Bull. Aust. Math. Soc. , vol.72 , Issue.1 , pp. 87-108
    • Neuman, E.1    Sandor, J.2
  • 37
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: An effective regularization technique
    • Y. Raviv, and N. Intrator Bootstrapping with noise: An effective regularization technique Connect. Sci. 8 3-4 1996 355 372
    • (1996) Connect. Sci. , vol.8 , Issue.34 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 38
    • 0002686402 scopus 로고
    • A convergence theorem for non negative almost supermartingales and some applications
    • H. Robbins, and D. Siegmund A convergence theorem for non negative almost supermartingales and some applications Optimizing Methods in Statistics 1971 233 257
    • (1971) Optimizing Methods in Statistics , pp. 233-257
    • Robbins, H.1    Siegmund, D.2
  • 40
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. Rumelhart, G. Hintont, and R. Williams Learning representations by back-propagating errors Nature 323 6088 1986 533 536
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hintont, G.2    Williams, R.3
  • 41
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • D.J. Spiegelhalter, and S.L. Lauritzen Sequential updating of conditional probabilities on directed graphical structures Networks 20 5 1990 579 605
    • (1990) Networks , vol.20 , Issue.5 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 43
    • 84896538964 scopus 로고    scopus 로고
    • Dropout training as adaptive regularization
    • C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger
    • S. Wager, S. Wang, and P. Liang Dropout training as adaptive regularization C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger, Advances in Neural Information Processing Systems vol. 26 2013 351 359
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 351-359
    • Wager, S.1    Wang, S.2    Liang, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.