메뉴 건너뛰기




Volumn , Issue , 2010, Pages 177-186

Large-scale machine learning with stochastic gradient descent

Author keywords

Efficiency; Online learning; Stochastic gradient descent

Indexed keywords

EFFICIENCY; GRADIENT METHODS; MACHINE LEARNING; OPTIMIZATION;

EID: 84904136037     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-7908-2604-3_16     Document Type: Conference Paper
Times cited : (5711)

References (24)
  • 1
    • 68949096711 scopus 로고    scopus 로고
    • SGD-QN: Careful quasi- newton stochastic gradient descent
    • With Erratum (to appear
    • BORDES, A., BOTTOU, L., and GALLINARI, P. (2009): SGD-QN: Careful Quasi- Newton Stochastic Gradient Descent. Journal of Machine Learning Research, 10:1737-1754. With Erratum (to appear).
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1737-1754
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • CORTES, C. and VAPNIK, V. N. (1995): Support Vector Networks, Machine Learning, 20:273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 8
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Morgan Kaufman
    • LAFFERTY, J. D., MCCALLUM, A., and PEREIRA, F. (2001): Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of ICML 2001, 282-289, Morgan Kaufman.
    • (2001) Proceedings of ICML 2001 , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.3
  • 11
    • 34547982357 scopus 로고    scopus 로고
    • Trust region newton methods for large-scale logistic regression
    • ACM Press
    • LIN, C. J., WENG, R. C., and KEERTHI, S. S. (2007): Trust region Newton methods for large-scale logistic regression. In Proceedings of ICML 2007, 561- 568, ACM Press.
    • (2007) Proceedings of ICML 2007 , pp. 561-568
    • Lin, C.J.1    Weng, R.C.2    Keerthi, S.S.3
  • 12
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press
    • MACQUEEN, J. (1967): Some Methods for Classification and Analysis of Multivariate Observations. In Fifth Berkeley Symposium on Mathematics, Statistics, and Probabilities, vol.1, 281-297, University of California Press.
    • (1967) Fifth Berkeley Symposium on Mathematics, Statistics, and Probabilities , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 13
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to Statistics
    • series 6
    • MASSART, P. (2000): Some applications of concentration inequalities to Statistics, Annales de la Facult́e des Sciences de Toulouse, series 6, 9, (2):245-303.
    • (2000) Annales de la Faculté des Sciences de Toulouse , vol.9 , Issue.2 , pp. 245-303
    • Massart, P.1
  • 14
    • 0001955526 scopus 로고    scopus 로고
    • A statistical study of on-line learning
    • Cambridge University Press
    • MURATA, N. (1998): A Statistical Study of On-line Learning. In Online Learning and Neural Networks, Cambridge University Press.
    • (1998) Online Learning and Neural Networks
    • Murata, N.1
  • 15
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • POLYAK, B. T. and JUDITSKY, A. B. (1992): Acceleration of stochastic approximation by averaging. SIAM J. Control and Optimization, 30(4):838-855.
    • (1992) SIAM J. Control and Optimization , vol.30 , Issue.4 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 18
    • 56449110590 scopus 로고    scopus 로고
    • SVM optimization: Inverse dependence on training set size
    • ACM
    • SHALEV-SHWARTZ, S. and SREBRO, N. (2008): SVM optimization: inverse dependence on training set size. In Proceedings of the ICML 2008, 928-935, ACM.
    • (2008) Proceedings of the ICML 2008 , pp. 928-935
    • Shalev-shwartz, S.1    Srebro, N.2
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B
    • TIBSHIRANI, R. (1996): Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58(1):267-288.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • TSYBAKOV, A. B. (2004): Optimal aggregation of classifiers in statistical learning, Annals of Statististics, 32(1).
    • (2004) Annals of Statististics , vol.32 , Issue.1
    • Tsybakov, A.B.1
  • 22
    • 0001024505 scopus 로고
    • On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities
    • VAPNIK, V. N. and CHERVONENKIS, A. YA. (1971): On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability and its Applications, 16(2):264-280.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 23
    • 0002278965 scopus 로고
    • Adaptive switching circuits
    • WIDROW, B. and HOFF, M. E. (1960): Adaptive switching circuits. IRE WESCON Conv. Record, Part 4., 96-104.
    • (1960) IRE WESCON Conv. Record , Issue.PART 4 , pp. 96-104
    • Widrow, B.1    Hoff, M.E.2
  • 24
    • 77956944936 scopus 로고    scopus 로고
    • Towards optimal one pass large scale learning with averaged stochastic gradient descent
    • to appear
    • XU, W. (2010): Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent. Journal of Machine Learning Research (to appear).
    • (2010) Journal of Machine Learning Research
    • Xu, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.