메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3123-3131

Binaryconnect: Training deep neural networks with binary weights during propagations

Author keywords

[No Author keywords available]

Indexed keywords

HARDWARE; INFORMATION SCIENCE; MULTIPLYING CIRCUITS; PROGRAM PROCESSORS; RECONFIGURABLE HARDWARE;

EID: 84965117606     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2843)

References (44)
  • 3
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS'2012. 2012.
    • (2012) NIPS'2012
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 5
    • 84906921986 scopus 로고    scopus 로고
    • Fast and robust neural network joint models for statistical machine translation
    • Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. Fast and robust neural network joint models for statistical machine translation. In Proc. ACL'2014, 2014.
    • (2014) Proc. ACL'2014
    • Devlin, J.1    Zbib, R.2    Huang, Z.3    Lamar, T.4    Schwartz, R.5    Makhoul, J.6
  • 6
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In NIPS'2014, 2014.
    • (2014) NIPS'2014
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 7
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • arXiv:1409.0473
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In ICLR'2015, arXiv:1409.0473, 2015.
    • (2015) ICLR'2015
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 8
    • 71149105669 scopus 로고    scopus 로고
    • Large-scale deep unsupervised learning using graphics processors
    • Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised learning using graphics processors. In ICML'2009, 2009.
    • (2009) ICML'2009
    • Raina, R.1    Madhavan, A.2    Ng, A.Y.3
  • 18
    • 85162557101 scopus 로고    scopus 로고
    • Practical variational inference for neural networks
    • J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Curran Associates, Inc.
    • Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2348-2356. Curran Associates, Inc., 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2348-2356
    • Graves, A.1
  • 22
    • 34548811405 scopus 로고    scopus 로고
    • Hardware complexity of modular multiplication and exponentiation
    • Oct.
    • J. P. David, K. Kalach, and N. Tittley. Hardware complexity of modular multiplication and exponentiation. Computers, IEEE Transactions on, 56(10):1308-1319, Oct. 2007.
    • (2007) Computers, IEEE Transactions on , vol.56 , Issue.10 , pp. 1308-1319
    • David, J.P.1    Kalach, K.2    Tittley, N.3
  • 25
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS'2010, 2010.
    • (2010) AISTATS'2010
    • Glorot, X.1    Bengio, Y.2
  • 28
    • 34548480020 scopus 로고
    • A method for unconstrained convex minimization problem with the rate of convergence o (1/k2)
    • Yu Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o (1/k2). Doklady AN SSSR (translated as Soviet. Math. Docl.), 269:543-547, 1983.
    • (1983) Doklady AN SSSR (translated as Soviet. Math. Docl.) , vol.269 , pp. 543-547
    • Nesterov, Y.1
  • 33
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Yann Le Cun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 34
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML'2010, 2010.
    • (2010) ICML'2010
    • Nair, V.1    Hinton, G.E.2
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 84937908919 scopus 로고    scopus 로고
    • Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights
    • Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights. In NIPS'2014, 2014.
    • (2014) NIPS'2014
    • Soudry, D.1    Hubara, I.2    Meir, R.3
  • 39
    • 84920265200 scopus 로고    scopus 로고
    • Fixed-point feedforward deep neural network design using weights+ 1, 0, and-1
    • IEEE
    • Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design using weights+ 1, 0, and-1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pages 1-6. IEEE, 2014.
    • (2014) Signal Processing Systems (SiPS), 2014 IEEE Workshop on , pp. 1-6
    • Hwang, K.1    Sung, W.2
  • 41
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Thomas P Minka. Expectation propagation for approximate bayesian inference. In UAI'2001, 2001.
    • (2001) UAI'2001
    • Minka, T.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.