메뉴 건너뛰기




Volumn 10, Issue 1, 2001, Pages 1-50

The art of data augmentation

Author keywords

Auxiliary variables; Conditional augmentation; Em algorithm; Gibbs sampler; Haar measure; Hierarchical models; Marginal augmentation; Markov chain Monte Carlo; Mixed effects models; Nonpositive recurrent markov chain; Posterior distributions; Probit regression; Rate of convergence

Indexed keywords


EID: 0002696801     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1198/10618600152418584     Document Type: Article
Times cited : (910)

References (66)
  • 1
    • 0001248506 scopus 로고
    • Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling
    • Albert, J. H. (1992), “Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling,” Journalof EducationalStatistics, 17, 251-269.
    • (1992) Journalof Educationalstatistics , vol.17 , pp. 251-269
    • Albert, J.H.1
  • 3
    • 44949272138 scopus 로고
    • On Rates of Convergence of Stochastic Relaxation for Gaussian and Non-Gaussian Distribu tions
    • Amit, Y. (1991), “On Rates of Convergence of Stochastic Relaxation for Gaussian and Non-Gaussian Distribu tions,” Journal ofMultivariate Analysis, 38, 82-89.
    • (1991) Journal Ofmultivariate Analysis , vol.38 , pp. 82-89
    • Amit, Y.1
  • 6
    • 0041757402 scopus 로고    scopus 로고
    • Statistical Inference and Monte Carlo Algorithms
    • Casella, G. (1996), “Statistical Inference and Monte Carlo Algorithms” (with discussion), Test, 5, 249-344.
    • (1996) (With Discussion), Test , vol.5 , pp. 249-344
    • Casella, G.1
  • 7
    • 11944260941 scopus 로고
    • Path Integrals in the Theory of Condensed Helium
    • Ceperley, D. M. (1995), “Path Integrals in the Theory of Condensed Helium,” Reviews of Modern Physics, 67, 279-355.
    • (1995) Reviews of Modern Physics , vol.67 , pp. 279-355
    • Ceperley, D.M.1
  • 8
    • 0030539336 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review
    • Cowles, M. K., and Carlin, B. P. (1996), “Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review,” Journal of the American Statistical Association, 91, 883-904.
    • (1996) Journal Of The American Statistical Association , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 9
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs Sampling for Bayesian Nonconjugate and Hierarchical Models Using Auxiliary Variables
    • Damien, P., Wakefield, J., and Walker, S. (1999), “Gibbs Sampling for Bayesian Nonconjugate and Hierarchical Models Using Auxiliary Variables,” Journal of the RoyalStatisticalSociety, Ser. B, 61, 331-344.
    • (1999) Journal Of The Royalstatisticalsociety, Ser. B , vol.61 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 11
    • 0001440863 scopus 로고
    • Generalization of the Fortuin-Kasteleyn-Swendsen-WangRepresenta- tion and Monte Carlo Algorithm
    • Edwards, R. G., and Sokal, A. D. (1988), “Generalization of the Fortuin-Kasteleyn-Swendsen-WangRepresenta- tion and Monte Carlo Algorithm,” Physical Review Letters, 38, 2009-2012.
    • (1988) Physical Review Letters , vol.38 , pp. 2009-2012
    • Edwards, R.G.1    Sokal, A.D.2
  • 12
    • 0028517016 scopus 로고
    • Space-Alternating Generalized Expectation-Maximization Algorithm
    • Fessler, J. A., and Hero, A. O. (1994), “Space-Alternating Generalized Expectation-Maximization Algorithm,” IEEE Transactionson SignalProcessing, 42, 2664-2677.
    • (1994) IEEE Transactionson Signalprocessing , vol.42 , pp. 2664-2677
    • Fessler, J.A.1    Hero, A.O.2
  • 13
    • 0034060090 scopus 로고    scopus 로고
    • ThePX-EM Algorithmfor Fast StableFitting of Henderson's Mixed Model
    • Foulley, J. L., and van Dyk, D. A. (2000), “ThePX-EM Algorithmfor Fast StableFitting of Henderson's Mixed Model,” Genetics Selection Evolution, 32, 143-163.
    • (2000) Genetics Selection Evolution , vol.32 , pp. 143-163
    • Foulley, J.L.1    Van Dyk, D.A.2
  • 14
    • 0001574731 scopus 로고
    • EfficientParameterizationforNormalLinearMixedModels
    • Gelfand, A. E., Sahu, S. K., andCarlin, B. P. (1995), “EfficientParameterizationforNormalLinearMixedModels,” Biometrika, 82, 479-488.
    • (1995) Biometrika , vol.82 , pp. 479-488
    • Gelfand, A.E.1    Sahu, S.K.2    Carlin, B.P.3
  • 16
    • 84972492387 scopus 로고
    • Inference From Iterative Simulation Using Multiple Sequences (With
    • Gelman, A., and Rubin, D. B. (1992), “Inference From Iterative Simulation Using Multiple Sequences” (with discussion), StatisticalScience, 7, 457-472.
    • (1992) Statisticalscience , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 17
    • 0021518209 scopus 로고
    • Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images
    • Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Transactionson Pattern Analysis andMachineIntelligence, 6, 721-741.
    • (1984) IEEE Transactionson Pattern Analysis Andmachineintelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 19
    • 84936388799 scopus 로고
    • Discussion of the Gibbs Sampler and Other Markov Chain Monte Carlo Methods
    • Gray, A. J. (1993), “Discussion of the Gibbs Sampler and Other Markov Chain Monte Carlo Methods,” Journal of the RoyalStatisticalSociety, Ser. B, 55, 58-61.
    • (1993) Journal of the Royalstatisticalsociety, Ser. B , vol.55 , pp. 58-61
    • Gray, A.J.1
  • 20
    • 0042616935 scopus 로고    scopus 로고
    • Discussion of “TheEM Algorithm-An Old FolkSong Sung to a Fast New Tune
    • by Meng and van Dyk
    • Green, P. (1997), Discussion of “TheEM Algorithm-An Old FolkSong Sung to a Fast New Tune,” by Meng and van Dyk, Journal of the Royal Statistical Society, Ser. B, 59, 554-555.
    • (1997) Journal Of The Royal Statistical Society, Ser. B , vol.59 , pp. 554-555
    • Green, P.1
  • 21
    • 0028288404 scopus 로고
    • IgG Subclass Deposits in Glomeruli of Lupus and Nonlupus Membranous Nephropathies
    • Haas, M. (1994), “IgG Subclass Deposits in Glomeruli of Lupus and Nonlupus Membranous Nephropathies,” American Journal ofKidney Disease, 23, 358-364.
    • (1994) American Journal Ofkidney Disease , vol.23 , pp. 358-364
    • Haas, M.1
  • 22
    • 0348093248 scopus 로고    scopus 로고
    • Value of IgG Subclasses and Ultrastructural Markers in Predicting Latent Membranous Lupus Nephritis
    • Haas, M. (1998), “Value of IgG Subclasses and Ultrastructural Markers in Predicting Latent Membranous Lupus Nephritis,” Modern Pathology, 11, 147A.
    • (1998) Modern Pathology , vol.147A , pp. 11
    • Haas, M.1
  • 23
    • 0042194537 scopus 로고
    • Discussion of the Gibbs Sampler and Other Markov Chain MonteCarlo Methods
    • Higdon, D. M. (1993), “Discussion of the Gibbs Sampler and Other Markov Chain MonteCarlo Methods,” Journal of the RoyalStatisticalSociety, Ser. B, 55, 78.
    • (1993) Journal , vol.55 , pp. 78
    • Higdon, D.M.1
  • 24
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary Variable Methods for Markov Chain Monte Carlo With Applications
    • Higdon, D. M. (1998), “Auxiliary Variable Methods for Markov Chain Monte Carlo With Applications,” Journal of the American Statistical Association, 93, 585-595.
    • (1998) Journal Of The American Statistical Association , vol.93 , pp. 585-595
    • Higdon, D.M.1
  • 26
    • 0030327881 scopus 로고    scopus 로고
    • The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear
    • Hobert, J. P., and Casella, G. (1996), “The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models,” Journal of the American Statistical association, 91, 1461-1473.
    • (1996) Journal of the American Statistical association , vol.91 , pp. 1461-1473
    • Hobert, J.P.1    Casella, G.2
  • 27
    • 0032221034 scopus 로고    scopus 로고
    • FunctionalCompatibility, Markov Chains, and Gibbs Sampling With ImproperPosteriors
    • Hobert, J. P., and Casella, G. (1998), “FunctionalCompatibility, Markov Chains, and Gibbs Sampling With ImproperPosteriors,” Jour nal of Computationaland Graphical Statistics, 7, 42-60.
    • (1998) Jour Nal of Computationaland Graphical Statistics , vol.7 , pp. 42-60
    • Hobert, J.P.1    Casella, G.2
  • 28
    • 33947716431 scopus 로고
    • Beitrag zur Theorie des Ferromagnetismus
    • Ising, E. (1925), “Beitrag zur Theorie des Ferromagnetismus,” ZeitschriftfurPhysik, 31, 253-258.
    • (1925) Zeitschriftfurphysik , vol.31 , pp. 253-258
    • Ising, E.1
  • 29
    • 80051593425 scopus 로고
    • Maximizing Likelihood Computations With Repeated Measures: Application of the EM Algorithm
    • Laird, N., Lange, N., and Stram, D. (1987), “Maximizing Likelihood Computations With Repeated Measures: Application of the EM Algorithm,” Journalof the American Statistical association, 82, 97-105.
    • (1987) Journalof the American Statistical association , vol.82 , pp. 97-105
    • Laird, N.1    Lange, N.2    Stram, D.3
  • 30
    • 0020333131 scopus 로고
    • RandomEffects ModelsforLongitudinalData
    • Laird, N. M., and Ware, J. H. (1982), “RandomEffects ModelsforLongitudinalData,” Biometrics, 38, 967-974.
    • (1982) Biometrics , vol.38 , pp. 967-974
    • Laird, N.M.1    Ware, J.H.2
  • 31
    • 84950459427 scopus 로고
    • Hierarchical Bayes Models for the Progression of HIV Infection Using Longitudinal CD4 T-cells Numbers
    • Lange, N., Carlin, B. P., and Gelfand, A. E. (1992), “Hierarchical Bayes Models for the Progression of HIV Infection Using Longitudinal CD4 T-cells Numbers,” Journal of the American Statistical Association, 87, 615-632.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 615-632
    • Lange, N.1    Carlin, B.P.2    Gelfand, A.E.3
  • 32
    • 84950419603 scopus 로고
    • Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measure Data
    • Lindstrom, M. J., and Bates, D. M. (1988), “Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measure Data,” Journal of the American Statistical association, 83, 1014-1022.
    • (1988) Journal of the American Statistical association , vol.83 , pp. 1014-1022
    • Lindstrom, M.J.1    Bates, D.M.2
  • 34
    • 0000315742 scopus 로고
    • The ECME Algorithm: A Simple Extension of EM and ECM With Fast Monotone Convergence
    • Liu, C., and Rubin, D. B. (1994), “The ECME Algorithm: A Simple Extension of EM and ECM With Fast Monotone Convergence,” Biometrika, 81, 633-648.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.1    Rubin, D.B.2
  • 35
    • 0001508169 scopus 로고    scopus 로고
    • Parameter Expansionto Accelerate EM-ThePX-EM Algorithm
    • Liu, C., Rubin, D. B., andWu, Y. N. (1998), “Parameter Expansionto Accelerate EM-ThePX-EM Algorithm,” Biometrika, 85, 755-770.
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.1    Rubin, D.B.2    Wu, Y.N.3
  • 36
    • 0347963969 scopus 로고
    • Fraction of Missing Information and Convergence Rate of Data Augmentation
    • J. Sall and A. Lehman, Fairfax Station, VA: Interface Foundation
    • Liu, J. S. (1994), “Fraction of Missing Information and Convergence Rate of Data Augmentation,” in Compu tationally Intensive Statistical Methods: Proceedings of the 26th Symposium Interface. eds J. Sall and A. Lehman, Fairfax Station, VA: Interface Foundation, pp. 490-497.
    • (1994) Compu Tationally Intensive Statistical Methods: Proceedings of the 26Th Symposium Interface , pp. 490-497
    • Liu, J.S.1
  • 37
    • 33744665890 scopus 로고    scopus 로고
    • Generalized Gibbs Sampler and Multigrid Monte Carlo for Bayesian Compu tation
    • Liu, J. S., and Sabatti, C. (2000), “Generalized Gibbs Sampler and Multigrid Monte Carlo for Bayesian Compu tation,” Biometrika, 87, 353-369.
    • (2000) Biometrika , vol.87 , pp. 353-369
    • Liu, J.S.1    Sabatti, C.2
  • 38
    • 0001789822 scopus 로고
    • Covariance Structure of the Gibbs Sampler With Applications to Comparisons of Estimators and Augmentation Schemes
    • Liu, J. S., Wong, W. H., and Kong, A. (1994), “Covariance Structure of the Gibbs Sampler With Applications to Comparisons of Estimators and Augmentation Schemes,” Biometrika, 81, 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 40
    • 43949158952 scopus 로고
    • An Exact Likelihood Analysis of the Multinomial Probit Model
    • McCulloch, R., and Rossi, P. (1994), “An Exact Likelihood Analysis of the Multinomial Probit Model,” Journal of Econometrics, 64, 207-240.
    • (1994) Journal of Econometrics , vol.64 , pp. 207-240
    • Mc Culloch, R.1    Rossi, P.2
  • 41
    • 21344477603 scopus 로고
    • OntheRate of Convergence of theECM Algorithm
    • Meng, X. -L. (1994), “OntheRate of Convergence of theECM Algorithm,” TheAnnalsOf statistics, 22, 326-339.
    • (1994) TheannalsOf statistics , vol.22 , pp. 326-339
    • Meng, X.-L.1
  • 42
    • 38149148314 scopus 로고
    • On the Global and Component-Wise Rates of Convergence of the EM Algorithm
    • Meng, X. -L., and Rubin, D. B. (1994), “On the Global and Component-Wise Rates of Convergence of the EM Algorithm,” Linear Algebraand its Applications, 199, 413-425.
    • (1994) Linear Algebraand Its Applications , vol.199 , pp. 413-425
    • Meng, X.-L.1    Rubin, D.B.2
  • 43
    • 0030336223 scopus 로고    scopus 로고
    • Fitting Full-Information Factor Models and an Empirical Investigation of Bridge Sampling
    • Meng, X. -L., and Schilling, S. (1996), “Fitting Full-Information Factor Models and an Empirical Investigation of Bridge Sampling,” Journal of the American Statistical association, 91, 1254-1267.
    • (1996) Journal of the American Statistical association , vol.91 , pp. 1254-1267
    • Meng, X.-L.1    Schilling, S.2
  • 44
  • 46
    • 0000761884 scopus 로고    scopus 로고
    • Seeking Efficient Data Augmentation Schemes via Conditional and Marginal Augmentation
    • Meng, X. -L., and van Dyk, D. A. (1999), “Seeking Efficient Data Augmentation Schemes via Conditional and Marginal Augmentation,” Biometrika, 86, 301-320.
    • (1999) Biometrika , vol.86 , pp. 301-320
    • Meng, X.-L.1    Van Dyk, D.A.2
  • 47
    • 0003917106 scopus 로고    scopus 로고
    • On the Use of Auxiliary Variables in Markov Chain Monte Carlo Sampling
    • University of Minnesota, School of Statistics
    • Mira, A., and Tierney, L. (1997), “On the Use of Auxiliary Variables in Markov Chain Monte Carlo Sampling,” Technical Report, University of Minnesota, School of Statistics.
    • (1997) Technical Report
    • Mira, A.1    Tierney, L.2
  • 49
    • 0004087397 scopus 로고
    • Technical Report CRG-, TR-93-1, Department of ComputerScience, University of Toronto, 140 pages
    • Neal, R. M. (1993), ProbabilisticInference Using Markov chain monte Carlo Methods, Technical Report CRG- TR-93-1, Department of ComputerScience, University of Toronto, 140 pages.
    • (1993) Probabilisticinference Using Markov Chain Monte Carlo Methods
    • Neal, R.M.1
  • 51
    • 0034387387 scopus 로고    scopus 로고
    • A Reminder of the Fallibility of the Ward Statistic: Likelihood Explanation
    • Pawitan, Y. (2000), “A Reminder of the Fallibility of the Ward Statistic: Likelihood Explanation,” The American Statistician, 54, 54-56.
    • (2000) The American Statistician , vol.54 , pp. 54-56
    • Pawitan, Y.1
  • 52
    • 38249034154 scopus 로고
    • FollicularPopulationDynamics During the Estius Cycle of the Mare
    • Pierson, R. A., and Ginther, O. J. (1987), “FollicularPopulationDynamics During the Estius Cycle of the Mare,” Animal ReproductionScience, 14, 219-231.
    • (1987) Animal Reproductionscience , vol.14 , pp. 219-231
    • Pierson, R.A.1    Ginther, O.J.2
  • 54
    • 0001974429 scopus 로고    scopus 로고
    • Markov Chain Concepts Related to Sampling Algorithms
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London:Chapman and Hall
    • Roberts G. O. (1996), “Markov Chain Concepts Related to Sampling Algorithms,” in Markov ChainMonte Carlo in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London:Chapman and Hall, pp. 45-58.
    • (1996) Markov Chainmonte Carlo in Practice , pp. 45-58
    • Roberts, G.O.1
  • 55
    • 0038958222 scopus 로고    scopus 로고
    • Convergence of Slice Sampler Markov Chains
    • Cambridge University, Statistical Laboratory
    • Roberts, G. O., and Rosenthal, J. S. (1997), “Convergence of Slice Sampler Markov Chains,” Technical Report, Cambridge University, Statistical Laboratory.
    • (1997) Technical Report
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 56
    • 0001380113 scopus 로고
    • Iteratively Reweighted Least Squares
    • S. Kotz, N. L. Johnson, and C. B. Reed, New York: Wiley
    • Rubin, D. B. (1983), “Iteratively Reweighted Least Squares,” in Encyclopedia of Statistical Sciences, 4, eds. S. Kotz, N. L. Johnson, and C. B. Reed, New York: Wiley, pp. 272-275.
    • (1983) Encyclopedia of Statistical Sciences , vol.4 , pp. 272-275
    • Rubin, D.B.1
  • 57
    • 0041375875 scopus 로고    scopus 로고
    • On Convergence of the EM Algorithm and the Gibbs Sampler
    • Sahu, S. K., and Roberts, G. O. (1999), “On Convergence of the EM Algorithm and the Gibbs Sampler,” Statistics and Computing, 9, 55-64.
    • (1999) Statistics and Computing , vol.9 , pp. 55-64
    • Sahu, S.K.1    Roberts, G.O.2
  • 58
    • 9644261613 scopus 로고    scopus 로고
    • Existenceof theMLE andProprietyofPosteriorsforaGeneral Multi nomial Choice Model
    • Department of Statistics, The University of Missouri-Columbia
    • Speckman, P. L., Lee, J., and Sun, D. (1999), “Existenceof theMLE andProprietyofPosteriorsforaGeneral Multi nomial Choice Model,” Technical Report, Department of Statistics, The University of Missouri-Columbia.
    • (1999) Technical Report
    • Speckman, P.L.1    Lee, J.2    Sun, D.3
  • 59
    • 85011455075 scopus 로고    scopus 로고
    • Propriety ofPosteriorsWithlmproperPriors in Hierarchical Linear Mixed Models
    • Department of Statistics, The University of Missouri-Columbia
    • Sun, D., Tsutakawa, R. K., and He, Z. (1997), “Propriety ofPosteriorsWithlmproperPriors in Hierarchical Linear Mixed Models,” Technical Report, Department of Statistics, The University of Missouri-Columbia.
    • (1997) Technical Report
    • Sun, D.1    Tsutakawa, R.K.2    He, Z.3
  • 60
    • 33747349191 scopus 로고
    • NonuniversalCritical Dynamics in MonteCarlo Simulations
    • Swendsen, R. H., andWang, J. S. (1987), “NonuniversalCritical Dynamics in MonteCarlo Simulations,” Physical Review Letters, 58, 86-88.
    • (1987) Physical Review Letters , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.S.2
  • 62
    • 84950758368 scopus 로고
    • The CalculationofPosteriorDistributionsby Data Augmentation (With
    • Tanner, M. A., andWong, W. H. (1987), “The CalculationofPosteriorDistributionsby Data Augmentation” (with discussion), Journal of the American Statistical association, 82, 528-550.
    • (1987) Journal of the American Statistical association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 63
    • 0000576595 scopus 로고
    • Markov Chains for Exploring Posterior Distributions
    • Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions” (with discussion), The Annals of Statistics, 22, 1701-1762.
    • (1994) (With Discussion), the Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 64
    • 0001789959 scopus 로고    scopus 로고
    • Introductionto General State-Space Markov Chain Theory
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman and Hall
    • Tierney, L. (1996), “Introductionto General State-Space Markov Chain Theory,” in Markov Chain Monte Carlo in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman and Hall, pp. 59-74.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 59-74
    • Tierney, L.1
  • 65
    • 23044521224 scopus 로고    scopus 로고
    • Fitting Mixed-Effects Models Using Efficient EM-Type Algorithms
    • van Dyk, D. A. (2000), “Fitting Mixed-Effects Models Using Efficient EM-Type Algorithms,” Journal of Com- putationaland GraphicalStatistics, 9, 78-98.
    • (2000) Journal of Com- Putationaland Graphicalstatistics , vol.9 , pp. 78-98
    • Van Dyk, D.A.1
  • 66
    • 0031536683 scopus 로고    scopus 로고
    • On the Orderings and Groupings of ConditionalMaximizations Within ECM-Type Algorithms
    • van Dyk, D. A., and Meng, X. -L. (1997), “On the Orderings and Groupings of ConditionalMaximizations Within ECM-Type Algorithms,” Journal ofComputationaland Graphical Statistics, 6, 202-223
    • (1997) Journal Ofcomputationaland Graphical Statistics , vol.6 , pp. 202-223
    • Van Dyk, D.A.1    Meng, X.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.