메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Yeast metabolic chassis designs for diverse biotechnological products

Author keywords

[No Author keywords available]

Indexed keywords

BIOTECHNOLOGY; CLASSIFICATION; CLUSTER ANALYSIS; ENERGY METABOLISM; FUNGAL GENE; GENE DELETION; GENETICS; METABOLIC ENGINEERING; METABOLISM; METABOLOMICS; PROCEDURES; SACCHAROMYCES CEREVISIAE; SYSTEMS BIOLOGY;

EID: 84979085378     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep29694     Document Type: Article
Times cited : (26)

References (53)
  • 1
    • 84925494179 scopus 로고    scopus 로고
    • Metabolic engineering of strains: From industrial-scale to lab-scale chemical production
    • Sun, J. & Alper, H. S. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. J. Ind. Microbiol. Biotechnol. 42, 423-436 (2015).
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 423-436
    • Sun, J.1    Alper, H.S.2
  • 2
    • 84887622083 scopus 로고    scopus 로고
    • From the first drop to the first truckload: Commercialization of microbial processes for renewable chemicals
    • Van Dien, S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 24, 1061-1068 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1061-1068
    • Van Dien, S.1
  • 3
    • 84869420041 scopus 로고    scopus 로고
    • Synthetic biology and metabolic engineering
    • Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth Biol. 1, 514-525 (2012).
    • (2012) ACS Synth Biol. , vol.1 , pp. 514-525
    • Stephanopoulos, G.1
  • 4
    • 84897581176 scopus 로고    scopus 로고
    • Total synthesis of a functional designer eukaryotic chromosome
    • Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55-58 (2014).
    • (2014) Science , vol.344 , pp. 55-58
    • Annaluru, N.1
  • 5
    • 84857058761 scopus 로고    scopus 로고
    • A systems-level approach for metabolic engineering of yeast cell factories
    • Kim, I. K., Roldão, A., Siewers, V. & Nielsen, J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res. 12, 228-248 (2012).
    • (2012) FEMS Yeast Res , vol.12 , pp. 228-248
    • Kim, I.K.1    Roldão, A.2    Siewers, V.3    Nielsen, J.4
  • 6
    • 78649284028 scopus 로고    scopus 로고
    • Grand challenge commentary: Chassis cells for industrial biochemical production
    • Vickers, C. E., Blank, L. M. & Krömer, J. O. Grand challenge commentary: Chassis cells for industrial biochemical production. Nat. Chem. Biol. 6, 875-877 (2010).
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 875-877
    • Vickers, C.E.1    Blank, L.M.2    Krömer, J.O.3
  • 7
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak, B. U. et al. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio. 5, e01696-14 (2014).
    • (2014) MBio. , vol.5 , pp. e01696-e01714
    • Kozak, B.U.1
  • 8
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian, J., Si, T., Nair, N. U. & Zhao, H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab. Eng. 24, 139-149 (2014).
    • (2014) Metab. Eng. , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 9
    • 84903976212 scopus 로고    scopus 로고
    • Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
    • Shi, S., Chen, Y., Siewers, V. & Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5, e01130-14 (2014).
    • (2014) MBio , vol.5 , pp. e01130-e01214
    • Shi, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 10
    • 84870540105 scopus 로고    scopus 로고
    • De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae
    • Koopman, F. et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 11, 155 (2012).
    • (2012) Microb. Cell Fact. , vol.11 , pp. 155
    • Koopman, F.1
  • 11
    • 84931041879 scopus 로고    scopus 로고
    • Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics
    • Gold, N. D. et al. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb. Cell Fact. 14, 73 (2015).
    • (2015) Microb. Cell Fact. , vol.14 , pp. 73
    • Gold, N.D.1
  • 12
    • 84938063531 scopus 로고    scopus 로고
    • De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast
    • Trenchard, I. J., Siddiqui, M. S., Thodey, K. & Smolke, C. D. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab. Eng. 31, 74-83 (2015).
    • (2015) Metab. Eng. , vol.31 , pp. 74-83
    • Trenchard, I.J.1    Siddiqui, M.S.2    Thodey, K.3    Smolke, C.D.4
  • 13
    • 84986254065 scopus 로고    scopus 로고
    • Establishment of a yeast platform strain for production of pcoumaric acid through metabolic engineering of aromatic amino acid biosynthesis
    • Rodriguez, A., Kildegaard, K. R., Li, M., Borodina, I. & Nielsen, J. Establishment of a yeast platform strain for production of pcoumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng. 31, 181-188 (2015).
    • (2015) Metab. Eng. , vol.31 , pp. 181-188
    • Rodriguez, A.1    Kildegaard, K.R.2    Li, M.3    Borodina, I.4    Nielsen, J.5
  • 14
    • 77951531018 scopus 로고    scopus 로고
    • Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae
    • Asadollahi, M. A., Maury, J., Schalk, M., Clark, A. & Nielsen, J. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 106, 86-96 (2010).
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 86-96
    • Asadollahi, M.A.1    Maury, J.2    Schalk, M.3    Clark, A.4    Nielsen, J.5
  • 15
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen, T. L., Kielland-Brandt, M. C., Nielsen, J. & Villadsen, J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2, 69-77 (2000).
    • (2000) Metab. Eng. , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 16
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase-santalene production by Saccharomyces cerevisiae
    • Scalcinati, G. et al. Combined metabolic engineering of precursor and co-factor supply to increase-santalene production by Saccharomyces cerevisiae. Microb. Cell Fact. 11, 117 (2012).
    • (2012) Microb. Cell Fact. , vol.11 , pp. 117
    • Scalcinati, G.1
  • 17
    • 84934962056 scopus 로고    scopus 로고
    • Production of-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae
    • López, J. et al. Production of-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb. Cell Fact. 14, 84 (2015).
    • (2015) Microb. Cell Fact. , vol.14 , pp. 84
    • López, J.1
  • 18
    • 84940033066 scopus 로고    scopus 로고
    • Efficient production of 2, 3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
    • Kim, S. & Hahn, J. S. Efficient production of 2, 3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab. Eng. 31, 94-101 (2015).
    • (2015) Metab. Eng. , vol.31 , pp. 94-101
    • Kim, S.1    Hahn, J.S.2
  • 19
  • 20
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O'Brien, E. J., Monk, J. M. & Palsson, B. O. Using Genome-scale Models to Predict Biological Capabilities. Cell. 161, 971-987 (2015).
    • (2015) Cell. , vol.161 , pp. 971-987
    • O'Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 21
    • 84930225331 scopus 로고    scopus 로고
    • Reconstructing genome-scale metabolic models with merlin
    • Dias, O., Rocha, M., Ferreira, E. C. & Rocha, I. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43, 3899-3910 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. 3899-3910
    • Dias, O.1    Rocha, M.2    Ferreira, E.C.3    Rocha, I.4
  • 22
    • 84895735489 scopus 로고    scopus 로고
    • Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species
    • Pitkänen, E. et al. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput. Biol. 10, e1003465 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003465
    • Pitkänen, E.1
  • 23
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657 (2003).
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 24
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil, K. R., Rocha, I., Förster, J. & Nielsen, J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6, 308 (2005).
    • (2005) BMC Bioinformatics , vol.6 , pp. 308
    • Patil, K.R.1    Rocha, I.2    Förster, J.3    Nielsen, J.4
  • 25
    • 84872655172 scopus 로고    scopus 로고
    • Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
    • Otero, J. M. et al. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One. 8, e54144 (2013).
    • (2013) PLoS One. , vol.8 , pp. e54144
    • Otero, J.M.1
  • 26
    • 70449592325 scopus 로고    scopus 로고
    • Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    • Asadollahi, M. A. et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 009, 11, 328-334 (2009).
    • (2009) Metab. Eng. , vol.9 , Issue.11 , pp. 328-334
    • Asadollahi, M.A.1
  • 27
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci. USA 99, 15112-15117 (2002).
    • (2002) Proc Natl Acad Sci. USA , vol.99 , pp. 15112-15117
    • Segrè, D.1    Vitkup, D.2    Church, G.M.3
  • 28
    • 84870676608 scopus 로고    scopus 로고
    • Impact of stoichiometry representation on simulation of genotypephenotype relationships in metabolic networks
    • Brochado, A. R., Andrejev, S., Maranas, C. D. & Patil, K. R. Impact of stoichiometry representation on simulation of genotypephenotype relationships in metabolic networks. PLoS Comput. Biol. 8, e1002758 (2012).
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002758
    • Brochado, A.R.1    Andrejev, S.2    Maranas, C.D.3    Patil, K.R.4
  • 29
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan, S., Suthers, P. F. & Maranas, C. D. OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 6, e1000744 (2010).
    • (2010) PLoS Comput Biol. , vol.6 , pp. e1000744
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 30
    • 84877118199 scopus 로고    scopus 로고
    • Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering
    • Cotton, C. & Reed, J. L. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol J. 8, 595-604 (2013).
    • (2013) Biotechnol J. , vol.8 , pp. 595-604
    • Cotton, C.1    Reed, J.L.2
  • 31
    • 84940738929 scopus 로고    scopus 로고
    • Genome-scale strain designs based on regulatory minimal cut sets
    • Mahadevan, R., von Kamp, A. & Klamt, S. Genome-scale strain designs based on regulatory minimal cut sets. Bioinformatics. 31, 2844-2851 (2015).
    • (2015) Bioinformatics. , vol.31 , pp. 2844-2851
    • Mahadevan, R.1    Von Kamp, A.2    Klamt, S.3
  • 32
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253 (2003).
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 33
    • 84973517474 scopus 로고    scopus 로고
    • Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae
    • Pereira, R., Nielsen, J. & Rocha, I. Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metab. Eng. Commun. 3, 153-163 (2016).
    • (2016) Metab. Eng. Commun. , vol.3 , pp. 153-163
    • Pereira, R.1    Nielsen, J.2    Rocha, I.3
  • 34
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2. 0
    • Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2. 0. Nat. Protoc. 6, 1290-1307 (2011).
    • (2011) Nat. Protoc. , vol.6 , pp. 1290-1307
    • Schellenberger, J.1
  • 35
    • 0027909365 scopus 로고
    • Transport and intracellular accumulation of acetaldehyde in Saccharomyces cerevisiae
    • Stanley, G. A. & Pamment, N. B. Transport and intracellular accumulation of acetaldehyde in Saccharomyces cerevisiae. Biotechnol. Bioeng. 42, 24-29 (1992).
    • (1992) Biotechnol. Bioeng. , vol.42 , pp. 24-29
    • Stanley, G.A.1    Pamment, N.B.2
  • 37
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • Aung, H. W., Henry, S. A. & Walker, L. P. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. 9, 215-228 (2013).
    • (2013) Ind. Biotechnol. , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 38
    • 15044342010 scopus 로고    scopus 로고
    • Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts
    • Blank, L. M., Lehmbeck, F. & Sauer, U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 5, 545-558 (2005).
    • (2005) FEMS Yeast Res. , vol.5 , pp. 545-558
    • Blank, L.M.1    Lehmbeck, F.2    Sauer, U.3
  • 39
    • 0028108519 scopus 로고
    • Metabolic flux balancing: Basic concepts, scientific and practical use
    • Varma, A. & Palsson, B. O. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12, 994-998 (1994).
    • (1994) Bio/Technology , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 40
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan, R. & Schilling, C. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264-276 (2003).
    • (2003) Metab. Eng. , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.2
  • 41
    • 0034798879 scopus 로고    scopus 로고
    • Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments
    • Burgard, A. P., Vaidyaraman, S. & Maranas, C. D. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol. Prog. 17, 791-797 (2001).
    • (2001) Biotechnol. Prog. , vol.17 , pp. 791-797
    • Burgard, A.P.1    Vaidyaraman, S.2    Maranas, C.D.3
  • 42
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production: Accounting for competing pathways
    • Tepper, N. & Shlomi, T. Predicting metabolic engineering knockout strategies for chemical production: Accounting for competing pathways. Bioinformatics. 26, 536-543 (2010).
    • (2010) Bioinformatics. , vol.26 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 43
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. Coli are consistent with computed optimal growth from genome-scale models
    • Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 390
    • Lewis, N.E.1
  • 44
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2008.
    • (2008) R: A Language and Environment for Statistical Computing
  • 45
    • 84923016543 scopus 로고    scopus 로고
    • Gplots: Various r programming tools for plotting data
    • Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 2. 17. 0 (2015).
    • (2015) R Package Version 2. 17. 0
    • Warnes, G.R.1
  • 46
    • 0026015230 scopus 로고
    • DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: Analysis of pyruvate carboxylase-deficient strains
    • Stucka, R., Dequin, S., Salmon, J. M. & Gancedo, C. DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: Analysis of pyruvate carboxylase-deficient strains. Mol. Gen. Genet. 229, 307-315 (1991).
    • (1991) Mol. Gen. Genet. , vol.229 , pp. 307-315
    • Stucka, R.1    Dequin, S.2    Salmon, J.M.3    Gancedo, C.4
  • 47
    • 78049460641 scopus 로고    scopus 로고
    • Improved vanillin production in baker's yeast through in silico design
    • Brochado, A. R. et al. Improved vanillin production in baker's yeast through in silico design. Microb. Cell Fact. 9, 84 (2010).
    • (2010) Microb. Cell Fact. , vol.9 , pp. 84
    • Brochado, A.R.1
  • 48
    • 84887228800 scopus 로고    scopus 로고
    • Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae
    • Stuckey, S. & Storici, F. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae. Methods Enzymol. 533, 103-131 (2013).
    • (2013) Methods Enzymol. , vol.533 , pp. 103-131
    • Stuckey, S.1    Storici, F.2
  • 49
    • 84887608996 scopus 로고    scopus 로고
    • The MX4blaster cassette: Repeated and clean Saccharomyces cerevisiae genome modification using the genome-wide deletion collection
    • Carvalho, Â., Pereira, F. & Johansson, B. The MX4blaster cassette: repeated and clean Saccharomyces cerevisiae genome modification using the genome-wide deletion collection. FEMS Yeast Res. 13, 711-719 (2013).
    • (2013) FEMS Yeast Res. , vol.13 , pp. 711-719
    • Carvalho, Â.1    Pereira, F.2    Johansson, B.3
  • 50
    • 84930638003 scopus 로고    scopus 로고
    • CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
    • Mans, R. et al. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15, fov004 (2015).
    • (2015) FEMS Yeast Res. , vol.15 , pp. fov004
    • Mans, R.1
  • 51
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528-532 (2013).
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1
  • 52
    • 84896122676 scopus 로고    scopus 로고
    • EasyClone: Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae
    • Jensen, N. B. et al. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 238-248 (2014).
    • (2014) FEMS Yeast Res. , vol.14 , pp. 238-248
    • Jensen, N.B.1
  • 53
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Filsinger Interrante, M.
    • Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095-1100 (2015).
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1    Thodey, K.2    Trenchard, I.J.3    Smolke, C.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.