-
1
-
-
84899564808
-
Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean
-
Keller MA, Turchyn A, Ralser M. (2014). Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10: 725
-
(2014)
Mol. Syst. Biol
, vol.10
, pp. 725
-
-
Keller, M.A.1
Turchyn, A.2
Ralser, M.3
-
2
-
-
84863553135
-
Identification and functional expression of the mitochondrial pyruvate carrier
-
Herzig S, Raemy E, Montessult S, Veuthey JL, Westermann B, et al. (2012). Identification and functional expression of the mitochondrial pyruvate carrier. Science 337: 93-96
-
(2012)
Science
, vol.337
, pp. 93-96
-
-
Herzig, S.1
Raemy, E.2
Montessult, S.3
Veuthey, J.L.4
Westermann, B.5
-
3
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, et al. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96-100
-
(2012)
Science
, vol.337
, pp. 96-100
-
-
Bricker, D.K.1
Taylor, E.B.2
Schell, J.C.3
Orsak, T.4
Boutron, A.5
-
4
-
-
0347506028
-
It is all about metabolic fluxes
-
Nielsen J. (2003). It is all about metabolic fluxes. J. Bacteriol. 185: 7031-35
-
(2003)
J. Bacteriol
, vol.185
, pp. 7031-7035
-
-
Nielsen, J.1
-
5
-
-
71349087490
-
A unifying view of 21st century systems biology
-
Vidal M. (2009). A unifying view of 21st century systems biology. FEBS Lett. 583: 3891-94
-
(2009)
FEBS Lett
, vol.583
, pp. 3891-3894
-
-
Vidal, M.1
-
6
-
-
0345743608
-
Here is the evidence, now what is the hypothesis? the complementary roles of inductive and hypothesis-driven science in the post-genomic era
-
Kell DB, Oliver SG. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26: 99-105
-
(2004)
BioEssays
, vol.26
, pp. 99-105
-
-
Kell, D.B.1
Oliver, S.G.2
-
7
-
-
38349164135
-
Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae
-
Jewett MC, Nielsen J. (2008). Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8: 122-31
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 122-131
-
-
Jewett, M.C.1
Nielsen, J.2
-
8
-
-
36949064203
-
Cardiac action and pacemaker potentials based on the Hodkin-Huxley equations
-
Noble D. (1960). Cardiac action and pacemaker potentials based on the Hodkin-Huxley equations. Nature 188: 495-97
-
(1960)
Nature
, vol.188
, pp. 495-497
-
-
Noble, D.1
-
10
-
-
0015989446
-
A linear steady-state treatment of enzymatic chains General properties, control and effector strength
-
Heinrich R, Rapoport TA. (1974). A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 89-95
-
(1974)
Eur. J. Biochem
, vol.42
, pp. 89-95
-
-
Heinrich, R.1
Rapoport, T.A.2
-
13
-
-
0034069495
-
Gene ontology: Tool for the unification of biology
-
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25: 25-29
-
(2000)
Nat. Genet
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
-
14
-
-
0035805255
-
Integrated genomic and proteomic analyses of a systematically perturbed metabolic network
-
Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929-34
-
(2001)
Science
, vol.292
, pp. 929-934
-
-
Ideker, T.1
Thorsson, V.2
Ranish, J.A.3
Christmas, R.4
Buhler, J.5
-
16
-
-
0037079054
-
Computational systems biology
-
Kitano H. (2002). Computational systems biology. Nature 420: 206-10
-
(2002)
Nature
, vol.420
, pp. 206-210
-
-
Kitano, H.1
-
17
-
-
0036500993
-
Systems biology: A brief overview
-
Kitano H. (2002). Systems biology: a brief overview. Science 295: 1662-64
-
(2002)
Science
, vol.295
, pp. 1662-1664
-
-
Kitano, H.1
-
18
-
-
0021403731
-
Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A
-
Domach MM, Leung SK, Cahn RE, Cocks GG, Shuler ML. (1984). Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A. Biotechnol. Bioeng. 26: 203-16
-
(1984)
Biotechnol. Bioeng
, vol.26
, pp. 203-216
-
-
Domach, M.M.1
Leung, S.K.2
Cahn, R.E.3
Cocks, G.G.4
Shuler, M.L.5
-
19
-
-
0033031386
-
E-CELL: Software environment for whole-cell simulation
-
Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, et al. (1999). E-CELL: software environment for whole-cell simulation. Bioinformatics 15: 72-84
-
(1999)
Bioinformatics
, vol.15
, pp. 72-84
-
-
Tomita, M.1
Hashimoto, K.2
Takahashi, K.3
Shimizu, T.S.4
Matsuzaki, Y.5
-
20
-
-
84864258618
-
A whole-cell computational model predicts phenotype from genotype
-
Karr JR, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM, et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell 150: 389-401
-
(2012)
Cell
, vol.150
, pp. 389-401
-
-
Karr, J.R.1
Sanghvi, J.C.2
MacKlin, D.N.3
Gutschow, M.V.4
Jacobs, J.M.5
-
21
-
-
79958097953
-
The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters
-
Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, et al. (2011). The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50: 4402-10
-
(2011)
Biochemistry
, vol.50
, pp. 4402-4410
-
-
Bar-Even, A.1
Noor, E.2
Savir, Y.3
Liebermeister, W.4
Davidi, D.5
-
22
-
-
84959560542
-
Metabolic trade-offs in yeast are caused by F1F0-ATP synthase
-
Nilsson A, Nielsen J. (2016). Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci. Rep. 6: 22264
-
(2016)
Sci. Rep
, vol.6
, pp. 22264
-
-
Nilsson, A.1
Nielsen, J.2
-
23
-
-
0343907200
-
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II Mathematical model
-
Rizzi M, Baltes M, Theobald U, Reuss M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55: 592-608
-
(1997)
Biotechnol. Bioeng
, vol.55
, pp. 592-608
-
-
Rizzi, M.1
Baltes, M.2
Theobald, U.3
Reuss, M.4
-
24
-
-
0037025146
-
Dynamic modeling of the central carbon metabolism of e
-
Chassagnole C, Noissomit-Rizzi N, Schmid JW, Mauch K, Reuss M. (2002). Dynamic modeling of the central carbon metabolism of E coli. Biotechnol. Bioeng. 79: 53-73
-
(2002)
Coli. Biotechnol. Bioeng
, vol.79
, pp. 53-73
-
-
Chassagnole, C.1
Noissomit-Rizzi, N.2
Schmid, J.W.3
Mauch, K.4
Reuss, M.5
-
25
-
-
0024694679
-
Overproduction of glycolytic enzymes in yeast
-
Schaff I, Heinisch J, Zimmermann FK. (1989). Overproduction of glycolytic enzymes in yeast. Yeast 5: 285-290
-
(1989)
Yeast
, vol.5
, pp. 285-290
-
-
Schaff, I.1
Heinisch, J.2
Zimmermann, F.K.3
-
26
-
-
0033753004
-
Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance fermentative capacity of Saccharomyces cerevisiae
-
Smits HP, Hauf J, Müller S, Hobley TJ, Zimmermann FK, et al. (2000). Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance fermentative capacity of Saccharomyces cerevisiae. Yeast 16: 1325-34
-
(2000)
Yeast
, vol.16
, pp. 1325-1334
-
-
Smits, H.P.1
Hauf, J.2
Müller, S.3
Hobley, T.J.4
Zimmermann, F.K.5
-
27
-
-
0036727253
-
Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis
-
Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR. (2002). Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. 68: 4274-82
-
(2002)
Appl. Environ. Microbiol
, vol.68
, pp. 4274-4282
-
-
Koebmann, B.J.1
Solem, C.2
Pedersen, M.B.3
Nilsson, D.4
Jensen, P.R.5
-
29
-
-
0015972675
-
Isolation of a regulatory mutant of fructose-1, 6-diphosphatase in Saccharomyces cerevisiae
-
van de Poll K, Kerkenaar A, Schamhart DHJ. (1974). Isolation of a regulatory mutant of fructose-1, 6-diphosphatase in Saccharomyces cerevisiae. J. Bacteriol. 117: 965-70
-
(1974)
J. Bacteriol
, vol.117
, pp. 965-970
-
-
Van De Poll, K.1
Kerkenaar, A.2
Schamhart, D.H.J.3
-
30
-
-
84897627707
-
Lost in transition: Start-up of glycolysis yields subpopulations of non-growing cells
-
van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJ, et al. (2014). Lost in transition: start-up of glycolysis yields subpopulations of non-growing cells. Science 343: 1245114
-
(2014)
Science
, vol.343
, pp. 1245114
-
-
Van Heerden, J.H.1
Wortel, M.T.2
Bruggeman, F.J.3
Heijnen, J.J.4
Bollen, Y.J.5
-
31
-
-
84959891449
-
Trehalose-6-phosphate synthase and stabilization of yeast glycolysis
-
fov100
-
Fraenkel D, Nielsen J. (2016). Trehalose-6-phosphate synthase and stabilization of yeast glycolysis. FEMS Yeast Res. 16: fov100
-
(2016)
FEMS Yeast Res
, vol.16
-
-
Fraenkel, D.1
Nielsen, J.2
-
32
-
-
23444449142
-
Integrative model of the response of yeast to osmotic shock
-
Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S. (2005). Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23: 975-82
-
(2005)
Nat. Biotechnol
, vol.23
, pp. 975-982
-
-
Klipp, E.1
Nordlander, B.2
Krüger, R.3
Gennemark, P.4
Hohmann, S.5
-
33
-
-
0036285634
-
Mathematical models of protein kinase signal transduction
-
Heinrich R, Neel BG, Rapoport TA. (2002). Mathematical models of protein kinase signal transduction. Mol. Cell 9: 957-70
-
(2002)
Mol. Cell
, vol.9
, pp. 957-970
-
-
Heinrich, R.1
Neel, B.G.2
Rapoport, T.A.3
-
34
-
-
84879517894
-
Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress
-
Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong K-K, et al. (2012). Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLOS Comput. Biol. 9: e1003084
-
(2012)
PLOS Comput. Biol
, vol.9
, pp. e1003084
-
-
Petelenz-Kurdziel, E.1
Kuehn, C.2
Nordlander, B.3
Klein, D.4
Hong, K.-K.5
-
35
-
-
0033580813
-
Systems properties of the Haemophilus influenzae Rd metabolic genotype
-
Edwards JS, Palsson BO. (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274: 17410-16
-
(1999)
J. Biol. Chem
, vol.274
, pp. 17410-17416
-
-
Edwards, J.S.1
Palsson, B.O.2
-
36
-
-
0034625143
-
The Escherichia coli MG1655 in silico metabolic genotype Its definition, characteristics, and capabilities
-
Edwards JS, Palsson BO. (2001). The Escherichia coli MG1655 in silico metabolic genotype. Its definition, characteristics, and capabilities. PNAS 97: 5528-33
-
(2001)
PNAS
, vol.97
, pp. 5528-5533
-
-
Edwards, J.S.1
Palsson, B.O.2
-
37
-
-
0036330798
-
Genome-scale metabolic model of Helicobacter pylori 26695
-
Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, et al. (2002). Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184: 4582-93
-
(2002)
J. Bacteriol
, vol.184
, pp. 4582-4593
-
-
Schilling, C.H.1
Covert, M.W.2
Famili, I.3
Church, G.M.4
Edwards, J.S.5
-
38
-
-
0037313750
-
Genome-scale metabolic reconstruction of the Saccharomyces cerevisiae metabolic network
-
Förster J, Famili I, Fu P, Palsson BO, Nielsen J. (2003). Genome-scale metabolic reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13: 244-53
-
(2003)
Genome Res
, vol.13
, pp. 244-253
-
-
Förster, J.1
Famili, I.2
Fu, P.3
Palsson, B.O.4
Nielsen, J.5
-
39
-
-
0344824417
-
Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructedmetabolic network
-
Famili I, Förster J, Nielsen J, Palsson BO. (2003). Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructedmetabolic network. PNAS 100: 13134-39
-
(2003)
PNAS
, vol.100
, pp. 13134-13139
-
-
Famili, I.1
Förster, J.2
Nielsen, J.3
Palsson, B.O.4
-
40
-
-
84864795465
-
Recent advances in reconstruction and applications of genome-scale metabolic models
-
Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY. (2012). Recent advances in reconstruction and applications of genome-scale metabolic models. Curr. Opin. Biotechnol. 23: 617-23
-
(2012)
Curr. Opin. Biotechnol
, vol.23
, pp. 617-623
-
-
Kim, T.Y.1
Sohn, S.B.2
Kim, Y.B.3
Kim, W.J.4
Lee, S.Y.5
-
41
-
-
84900303762
-
Optimizing genome-scale network reconstructions
-
Monk J, Nogales J, Palsson BO. (2014). Optimizing genome-scale network reconstructions. Nat. Biotechnol. 32: 447-52
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 447-452
-
-
Monk, J.1
Nogales, J.2
Palsson, B.O.3
-
42
-
-
84861165967
-
Are we ready for genome-scale modeling in plants?
-
Collakova E, Yen JY, Senger RS. (2012). Are we ready for genome-scale modeling in plants? Plant Sci. 191-192: 53-70
-
(1912)
Plant Sci
, vol.192
, pp. 53-70
-
-
Collakova, E.1
Yen, J.Y.2
Senger, R.S.3
-
43
-
-
80054069179
-
A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
-
Orth JB, Conrad TM, Na J, Lerman JA, Nam H, et al. (2011). A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol. 7: 535
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 535
-
-
Orth, J.B.1
Conrad, T.M.2
Na, J.3
Lerman, J.A.4
Nam, H.5
-
44
-
-
84881540727
-
Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
-
Aung HW, Henry SA, Walker LP. (2013). Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. 9: 215-29
-
(2013)
Ind. Biotechnol
, vol.9
, pp. 215-229
-
-
Aung, H.W.1
Henry, S.A.2
Walker, L.P.3
-
45
-
-
41149105489
-
Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus Niger
-
Andersen MR, Nielsen ML, Nielsen J. (2008). Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol. Syst. Biol. 4: 178
-
(2008)
Mol. Syst. Biol
, vol.4
, pp. 178
-
-
Andersen, M.R.1
Nielsen, M.L.2
Nielsen, J.3
-
46
-
-
84875973063
-
The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
-
Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, et al. (2013). The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput. Biol. 9: e1002980
-
(2013)
PLOS Comput. Biol
, vol.9
, pp. e1002980
-
-
Agren, R.1
Liu, L.2
Shoaie, S.3
Vongsangnak, W.4
Nookaew, I.5
-
47
-
-
84879002382
-
Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
-
McCloskey D, Palsson BO, Feist AM. (2013). Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9: 661
-
(2013)
Mol. Syst. Biol
, vol.9
, pp. 661
-
-
McCloskey, D.1
Palsson, B.O.2
Feist, A.M.3
-
48
-
-
84979849215
-
Genome scale models of yeast: Towards standardized evaluation and consistent omic integration
-
Sanchez BJ, Nielsen J. (2015). Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 7: 846-58
-
(2015)
Integr. Biol
, vol.7
, pp. 846-858
-
-
Sanchez, B.J.1
Nielsen, J.2
-
49
-
-
53749085229
-
A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
-
HerrgÅrd MJ, Swainston N, Dobson P, Dunn WB, Arga KY, et al. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26: 1155-60
-
(2008)
Nat. Biotechnol
, vol.26
, pp. 1155-1160
-
-
HerrgÅrd, M.J.1
Swainston, N.2
Dobson, P.3
Dunn, W.B.4
Arga, K.Y.5
-
50
-
-
84885911432
-
Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
-
bat059
-
Heavner BD, Smallbone K, Price ND, Walker LP. (2013). Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013: bat059
-
(2013)
Database
, vol.2013
-
-
Heavner, B.D.1
Smallbone, K.2
Price, N.D.3
Walker, L.P.4
-
51
-
-
0018393802
-
Identification ofmetabolic model: Citrate production from glucose by Candida lipolytica
-
Aiba S, Matsuoka M. (1979). Identification ofmetabolic model: citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21: 1373-86
-
(1979)
Biotechnol. Bioeng
, vol.21
, pp. 1373-1386
-
-
Aiba, S.1
Matsuoka, M.2
-
52
-
-
0022493181
-
Fat synthesis in adipose tissue An examination of stoichiometric constraints
-
Fell DA, Small JK. (1986). Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238: 781-86
-
(1986)
Biochem. J
, vol.238
, pp. 781-786
-
-
Fell, D.A.1
Small, J.K.2
-
53
-
-
0035125986
-
In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
-
Edwards JS, Ibarra RU, Palsson BO. (2001). In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-30
-
(2001)
Nat. Biotechnol
, vol.19
, pp. 125-130
-
-
Edwards, J.S.1
Ibarra, R.U.2
Palsson, B.O.3
-
54
-
-
34447523907
-
Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
-
Schuetz R, Kuepfer L, Sauer U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 119
-
(2007)
Mol. Syst. Biol
, vol.3
, pp. 119
-
-
Schuetz, R.1
Kuepfer, L.2
Sauer, U.3
-
55
-
-
84930227327
-
Using genome-scale models to predict biological capabilities
-
O'Brien EJ, Monk JM, Palsson BO. (2015). Using genome-scale models to predict biological capabilities. Cell 161: 971-87
-
(2015)
Cell
, vol.161
, pp. 971-987
-
-
O'Brien, E.J.1
Monk, J.M.2
Palsson, B.O.3
-
56
-
-
0037079023
-
Escherichia coli K12 undergoes adaptive evolution to achieve in silico predicted optimal growth
-
Ibarra RU, Edwards JS, Palsson BO. (2002). Escherichia coli K12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-89
-
(2002)
Nature
, vol.420
, pp. 186-189
-
-
Ibarra, R.U.1
Edwards, J.S.2
Palsson, B.O.3
-
57
-
-
20044375201
-
Large-scale metabolic in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism
-
Fischer E, Sauer U. (2005). Large-scale metabolic in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37: 636-40
-
(2005)
Nat. Genet
, vol.37
, pp. 636-640
-
-
Fischer, E.1
Sauer, U.2
-
58
-
-
84883800631
-
Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
-
Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. (2013). Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 8: 1043-57
-
(2013)
Biotechnol. J
, vol.8
, pp. 1043-1057
-
-
Chakrabarti, A.1
Miskovic, L.2
Soh, K.C.3
Hatzimanikatis, V.4
-
59
-
-
84866975246
-
Multiscale modeling of metabolism and macromolecular synthesis in e coli and its applications to the evolution of codon usage
-
Thiele I, Ronan MTF, Que R, Bordbar A, Diep D, et al. (2012). Multiscale modeling of metabolism and macromolecular synthesis in E coli and its applications to the evolution of codon usage. PLOS ONE 7: e45635
-
(2012)
PLOS ONE
, vol.7
, pp. e45635
-
-
Thiele, I.1
Ronan, M.T.F.2
Que, R.3
Bordbar, A.4
Diep, D.5
-
60
-
-
84878756325
-
Structural systems biology evaluation of metabolic thermotolerance of Escherichia coli
-
Chang RL, Andrews K, Kim D, Li Z, Godzik A, et al. (2013). Structural systems biology evaluation of metabolic thermotolerance of Escherichia coli. Science 340: 1220-23
-
(2013)
Science
, vol.340
, pp. 1220-1223
-
-
Chang, R.L.1
Andrews, K.2
Kim, D.3
Li, Z.4
Godzik, A.5
-
61
-
-
84877119088
-
Genome-scale modeling of the protein secretion machinery in yeast
-
Feizi A, Österlund T, Petranovic D, Bordel S, Nielsen J. (2013). Genome-scale modeling of the protein secretion machinery in yeast. PLOS ONE 8: e63284
-
(2013)
PLOS ONE
, vol.8
, pp. e63284
-
-
Feizi, A.1
Österlund, T.2
Petranovic, D.3
Bordel, S.4
Nielsen, J.5
-
62
-
-
0000801240
-
Discovering regulatory and signaling circuits in molecular interaction networks
-
Ideker T, Ozier O, Schwikowski B, Siegel AF. (2002). Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 18: S233-40
-
(2002)
Bioinformatics
, vol.18
, pp. S233-S240
-
-
Ideker, T.1
Ozier, O.2
Schwikowski, B.3
Siegel, A.F.4
-
63
-
-
14544268137
-
Uncovering transcriptional regulation of metabolism by using metabolic network topology
-
Patil KR, Nielsen J. (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. PNAS 102: 2685-89
-
(2005)
PNAS
, vol.102
, pp. 2685-2689
-
-
Patil, K.R.1
Nielsen, J.2
-
64
-
-
41049102359
-
Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks
-
Oliveira A, Patil KR, Nielsen J. (2008). Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst. Biol. 2: 17
-
(2008)
BMC Syst. Biol
, vol.2
, pp. 17
-
-
Oliveira, A.1
Patil, K.R.2
Nielsen, J.3
-
65
-
-
84877309040
-
Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypothesis and methods
-
Väremo L, Nielsen J, Nookaew I. (2013). Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypothesis and methods. Nucleic Acids Res. 41: 4378-91
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4378-4391
-
-
Väremo, L.1
Nielsen, J.2
Nookaew, I.3
-
66
-
-
0030669030
-
Exploring the metabolic and genetic control of gene expression on a genomic scale
-
DeRisi JL, Iyer VR, Brown PO. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-86
-
(1997)
Science
, vol.278
, pp. 680-686
-
-
DeRisi, J.L.1
Iyer, V.R.2
Brown, P.O.3
-
67
-
-
6044265058
-
Integration of gene expression data into genome-scale metabolic models
-
Å kesson M, Förster J, Nielsen J. (2004). Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6: 285-93
-
(2004)
Metab. Eng
, vol.6
, pp. 285-293
-
-
Åkesson, M.1
Förster, J.2
Nielsen, J.3
-
68
-
-
84901306814
-
Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
-
Machado D, HerrgÅrd M. (2014). Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLOS Comput. Biol. 10: e1003580
-
(2014)
PLOS Comput. Biol
, vol.10
, pp. e1003580
-
-
Machado, D.1
HerrgÅrd, M.2
-
69
-
-
84885367114
-
Genome-scale models of metabolism and gene expression extend and refine growth phenotype predictions
-
O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. (2013). Genome-scale models of metabolism and gene expression extend and refine growth phenotype predictions. Mol. Syst. Biol. 9: 693
-
(2013)
Mol. Syst. Biol
, vol.9
, pp. 693
-
-
O'Brien, E.J.1
Lerman, J.A.2
Chang, R.L.3
Hyduke, D.R.4
Palsson, B.O.5
-
70
-
-
78649832864
-
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast
-
Fendt S-M, Oliveira AP, Christen S, Picotti P, Dechant RC, et al. (2010). Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol. Syst. Biol. 6: 432
-
(2010)
Mol. Syst. Biol
, vol.6
, pp. 432
-
-
Fendt, S.-M.1
Oliveira, A.P.2
Christen, S.3
Picotti, P.4
Dechant, R.C.5
-
71
-
-
4544352942
-
Transcriptional regulatory code of a eukaryotic genome
-
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004). Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104
-
(2004)
Nature
, vol.431
, pp. 99-104
-
-
Harbison, C.T.1
Gordon, D.B.2
Lee, T.I.3
Rinaldi, N.J.4
Macisaac, K.D.5
-
72
-
-
84883788052
-
Mapping yeast transcriptional networks
-
Hughes TR, de Boer CG. (2013). Mapping yeast transcriptional networks. Genetics 195: 9-36
-
(2013)
Genetics
, vol.195
, pp. 9-36
-
-
Hughes, T.R.1
De Boer, C.G.2
-
73
-
-
84994140656
-
Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors
-
Österlund T, Bordel S, Nielsen J. (2015). Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr. Biol. 7: 560-68
-
(2015)
Integr. Biol
, vol.7
, pp. 560-568
-
-
Österlund, T.1
Bordel, S.2
Nielsen, J.3
-
74
-
-
84979030925
-
Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6 in Saccharomyces cerevisiae
-
Liu G, Bergenholm D, Nielsen J. (2016). Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6 in Saccharomyces cerevisiae. mBio 7: e00559-16
-
(2016)
MBio
, vol.7
, pp. e00559-e00616
-
-
Liu, G.1
Bergenholm, D.2
Nielsen, J.3
-
75
-
-
83655163675
-
Deciphering the transcriptional regulatory logic of amino acid metabolism
-
Cho B-K, Federowicz S, Park Y-S, Zengler K, Palsson BO. (2011). Deciphering the transcriptional regulatory logic of amino acid metabolism. Nat. Chem. Biol. 8: 65-71
-
(2011)
Nat. Chem. Biol
, vol.8
, pp. 65-71
-
-
Cho, B.-K.1
Federowicz, S.2
Park, Y.-S.3
Zengler, K.4
Palsson, B.O.5
-
76
-
-
33144474263
-
Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae
-
Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C, et al. (2006). Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. PNAS 103: 2166-71
-
(2006)
PNAS
, vol.103
, pp. 2166-2171
-
-
Rossell, S.1
Van Der Weijden, C.C.2
Lindenbergh, A.3
Van Tuijl, A.4
Francke, C.5
-
77
-
-
84889643157
-
Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis
-
Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, et al. (2013). Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol. 9: 709
-
(2013)
Mol. Syst. Biol
, vol.9
, pp. 709
-
-
Chubukov, V.1
Uhr, M.2
Le Chat, L.3
Kleijn, R.J.4
Jules, M.5
-
78
-
-
84951061481
-
Pseudo-Transition analysis identifies the key regulators of dynamic metabolic adaptations from steadystate data
-
Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB, et al. (2015). Pseudo-Transition analysis identifies the key regulators of dynamic metabolic adaptations from steadystate data. Cell Syst. 1: 270-82
-
(2015)
Cell Syst
, vol.1
, pp. 270-282
-
-
Gerosa, L.1
Haverkorn Van Rijsewijk, B.R.B.2
Christodoulou, D.3
Kochanowski, K.4
Schmidt, T.S.B.5
-
79
-
-
78049304837
-
Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes
-
Bordel S, Agren R, Nielsen J. (2010). Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLOS Comput. Biol. 6: e1000859
-
(2010)
PLOS Comput. Biol
, vol.6
, pp. e1000859
-
-
Bordel, S.1
Agren, R.2
Nielsen, J.3
-
80
-
-
84868028972
-
Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
-
Marguerat S, Schmidt A, Codlin S, Chen W, Aebershold R, et al. (2012). Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151: 671-83
-
(2012)
Cell
, vol.151
, pp. 671-683
-
-
Marguerat, S.1
Schmidt, A.2
Codlin, S.3
Chen, W.4
Aebershold, R.5
-
81
-
-
84953737483
-
The quantitative and conditiondependent Escherichia coli proteome
-
Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B, et al. (2016). The quantitative and conditiondependent Escherichia coli proteome. Nat. Biotechnol. 34: 104-10
-
(2016)
Nat. Biotechnol
, vol.34
, pp. 104-110
-
-
Schmidt, A.1
Kochanowski, K.2
Vedelaar, S.3
Ahrne, E.4
Volkmer, B.5
-
82
-
-
79251556819
-
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
-
Canelas AB, Harrison N, Fazio A, Zhang J, Pitkänen JP, et al. (2010). Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat. Commun. 1: 145
-
(2010)
Nat. Commun
, vol.1
, pp. 145
-
-
Canelas, A.B.1
Harrison, N.2
Fazio, A.3
Zhang, J.4
Pitkänen, J.P.5
-
83
-
-
84867641516
-
Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains
-
Hong K-K, Hou J, Shoaie S, Nielsen J, Bordel S. (2012). Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains. FEMS Yeast Res. 12: 741-47
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 741-747
-
-
Hong, K.-K.1
Hou, J.2
Shoaie, S.3
Nielsen, J.4
Bordel, S.5
-
85
-
-
78449268845
-
Interdependence of cell growth and gene expression: Origins and consequences
-
Scott M, Gunderson CW, Mateescu EM, Zhong Z, Hwa T. (2010). Interdependence of cell growth and gene expression: origins and consequences. Science 330: 1099-102
-
(2010)
Science
, vol.330
, pp. 1099-1102
-
-
Scott, M.1
Gunderson, C.W.2
Mateescu, E.M.3
Zhong, Z.4
Hwa, T.5
-
86
-
-
84947583295
-
Overflow metabolism in Escherichia coli results from efficient proteome allocation
-
Basan M, Hui S, Okano H, Zhang Z, Shen Y, et al. (2015). Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528: 99-104
-
(2015)
Nature
, vol.528
, pp. 99-104
-
-
Basan, M.1
Hui, S.2
Okano, H.3
Zhang, Z.4
Shen, Y.5
-
87
-
-
0343471961
-
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae i Experimental observations
-
Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55: 305-16
-
(1997)
Biotechnol. Bioeng
, vol.55
, pp. 305-316
-
-
Theobald, U.1
Mailinger, W.2
Baltes, M.3
Rizzi, M.4
Reuss, M.5
-
88
-
-
28044440100
-
-
Villas-Boas SG, Højer-Pedersen J, Å kesson M, Smedsgaard J, Nielsen J (2005). Globalmetabolite analysis of yeast: evaluation of sample preparation methods. 22: 1155-69
-
(2005)
Globalmetabolite Analysis of Yeast: Evaluation of Sample Preparation Methods
, vol.22
, pp. 1155-1169
-
-
Villas-Boas, S.G.1
Højer-Pedersen, J.2
Åkesson, M.3
Smedsgaard, J.4
Nielsen, J.5
-
89
-
-
84946476393
-
Real-Time metabolome profiling of the metabolic switch between starvation and growth
-
Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. (2015). Real-Time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12: 1091-97
-
(2015)
Nat. Methods
, vol.12
, pp. 1091-1097
-
-
Link, H.1
Fuhrer, T.2
Gerosa, L.3
Zamboni, N.4
Sauer, U.5
-
90
-
-
33750705293
-
Integration of metabolome data with metabolic networks reveals reporter reactions
-
Cakir T, Patil KR, Önsan ZI, Ülgen KÖ, Kirdar B, et al. (2006). Integration of metabolome data with metabolic networks reveals reporter reactions. Mol. Syst. Biol. 2: 50
-
(2006)
Mol. Syst. Biol
, vol.2
, pp. 50
-
-
Cakir, T.1
Patil, K.R.2
Önsan, Z.I.3
Ülgen, K.O.4
Kirdar, B.5
-
91
-
-
26944471174
-
The next wave in metabolome analysis
-
Nielsen J, Oliver S. (2005). The next wave in metabolome analysis. Trends Biotechnol. 23: 544-46
-
(2005)
Trends Biotechnol
, vol.23
, pp. 544-546
-
-
Nielsen, J.1
Oliver, S.2
-
92
-
-
0034741983
-
13C metabolic flux analysis
-
Wiechert W. (2001). 13C metabolic flux analysis. Metab. Eng. 3: 195-206
-
(2001)
Metab. Eng
, vol.3
, pp. 195-206
-
-
Wiechert, W.1
-
93
-
-
79551508527
-
13C metabolic flux analysis in complex systems
-
Zamboni N. (2011). 13C metabolic flux analysis in complex systems. Curr. Opin. Biotechnol. 22: 103-8
-
(2011)
Curr. Opin. Biotechnol
, vol.22
, pp. 103-108
-
-
Zamboni, N.1
-
94
-
-
34047177923
-
Metabolic flux analysis at ultra short time scale: Isotopically non-stationary 13C labeling experiments
-
Nöh K, Grönke K, Luo B, Takors R, Oldiges M, et al. (2007). Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J. Biotechnol. 129: 249-67
-
(2007)
J. Biotechnol
, vol.129
, pp. 249-267
-
-
Nöh, K.1
Grönke, K.2
Luo, B.3
Takors, R.4
Oldiges, M.5
-
95
-
-
80555149221
-
Dynamic metabolic flux analysis (DMFA): A framework for determining fluxes at metabolic non-steady state
-
Leighty RW, Antoniewicz MR. (2011). Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab. Eng. 13: 745-55
-
(2011)
Metab. Eng
, vol.13
, pp. 745-755
-
-
Leighty, R.W.1
Antoniewicz, M.R.2
-
96
-
-
68049129530
-
Quantification of statin effects on hepatic cholesterol synthesis by transient 13C-flux analysis
-
Maier K, Hofmann U, Bauer A, Niebel A, Vacun G, et al. (2009). Quantification of statin effects on hepatic cholesterol synthesis by transient 13C-flux analysis. Metab. Eng. 11: 292-309
-
(2009)
Metab. Eng
, vol.11
, pp. 292-309
-
-
Maier, K.1
Hofmann, U.2
Bauer, A.3
Niebel, A.4
Vacun, G.5
-
97
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gemeiro PA, Bell EL, Mattaini KR, Yang J, et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380-84
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gemeiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
-
98
-
-
84880876347
-
Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism
-
Fendt S-M, Bell EL, Keibler MA, Davidson SM, Wirth GJ, et al. (2013). Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 73: 4429-38
-
(2013)
Cancer Res
, vol.73
, pp. 4429-4438
-
-
Fendt, S.-M.1
Bell, E.L.2
Keibler, M.A.3
Davidson, S.M.4
Wirth, G.J.5
-
99
-
-
37549068090
-
Nad+/nadh and nadp+/nadph in cellular functions and cell death: Regulation and biological consequences
-
Ying W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10: 179-206
-
(2008)
Antioxid. Redox Signal
, vol.10
, pp. 179-206
-
-
Ying, W.1
-
100
-
-
0033929520
-
Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
-
Nissen T, Kielland-Brandt MC, Nielsen J, Villadsen J. (2000). Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2: 69-77
-
(2000)
Metab. Eng
, vol.2
, pp. 69-77
-
-
Nissen, T.1
Kielland-Brandt, M.C.2
Nielsen, J.3
Villadsen, J.4
-
101
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, et al. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056-60
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
-
102
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α.
-
Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, et al. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38: 864-78
-
(2010)
Mol. Cell
, vol.38
, pp. 864-878
-
-
Lim, J.-H.1
Lee, Y.-M.2
Chun, Y.-S.3
Chen, J.4
Kim, J.-E.5
-
103
-
-
0141719702
-
Small molecular activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. (2003). Small molecular activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-96
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
-
104
-
-
69849107217
-
Calorie restriction, SIRT1 and longevity
-
Canto C, Auwerx J. (2009). Calorie restriction, SIRT1 and longevity. Trends. Endocrinol.Metab. 20: 325-31
-
(2009)
Trends. Endocrinol.Metab
, vol.20
, pp. 325-331
-
-
Canto, C.1
Auwerx, J.2
-
105
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337-42
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
-
106
-
-
80455143206
-
Calorie restriction-like effects of 30 days or resveratrol supplementation on energy metabolism and metabolic profile in obese humans
-
Timmers S, Konings E, Bilet L, Houtkooper RH, van deWeijer T, et al. (2011). Calorie restriction-like effects of 30 days or resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14: 612-22
-
(2011)
Cell Metab
, vol.14
, pp. 612-622
-
-
Timmers, S.1
Konings, E.2
Bilet, L.3
Houtkooper, R.H.4
Van De Weijer, T.5
-
107
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Beher D, Wu J, Cumine S, Kim KW, Lu S-C, et al. (2009). Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 74: 619-24
-
(2009)
Chem. Biol. Drug des
, vol.74
, pp. 619-624
-
-
Beher, D.1
Wu, J.2
Cumine, S.3
Kim, K.W.4
Lu, S.-C.5
-
110
-
-
75149183710
-
Spermidine: A novel autophagy inducer and longevity elixir
-
Madeo F, Eisenberg T, Büttner T, Ruckenstuhl C, Kroemer G. (2010). Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 6: 160-62
-
(2010)
Autophagy
, vol.6
, pp. 160-162
-
-
Madeo, F.1
Eisenberg, T.2
Büttner, T.3
Ruckenstuhl, C.4
Kroemer, G.5
-
111
-
-
73149091660
-
Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
-
Usaite R, Jewett MC, Oliveira AP, Yates JR III, Olsson L, Nielsen J, et al. (2009). Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5: 319
-
(2009)
Mol. Syst. Biol
, vol.5
, pp. 319
-
-
Usaite, R.1
Jewett, M.C.2
Oliveira, A.P.3
Yates, J.R.I.I.I.4
Olsson, L.5
Nielsen, J.6
-
112
-
-
80855128291
-
Mapping the interactions of Snf1 with TORC1 in Saccharomyces cerevisiae
-
Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, et al. (2011). Mapping the interactions of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol. Syst. Biol. 7: 545
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 545
-
-
Zhang, J.1
Vaga, S.2
Chumnanpuen, P.3
Kumar, R.4
Vemuri, G.N.5
-
113
-
-
84897480343
-
Glucose de-repression by yeast AMP-Activated protein kinase SNF1 is controlled via at least two independent steps
-
Garcia-Salcedo R, Lubitz T, Beltran G, Elbing K, Tian Y, et al. (2014). Glucose de-repression by yeast AMP-Activated protein kinase SNF1 is controlled via at least two independent steps. FEBS J. 281: 1901-17
-
(2014)
FEBS J
, vol.281
, pp. 1901-1917
-
-
Garcia-Salcedo, R.1
Lubitz, T.2
Beltran, G.3
Elbing, K.4
Tian, Y.5
-
114
-
-
84928723640
-
Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis
-
Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebershold R, et al. (2015). Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci. Signal. 8: 1-15
-
(2015)
Sci. Signal
, vol.8
, pp. 1-15
-
-
Oliveira, A.P.1
Ludwig, C.2
Zampieri, M.3
Weisser, H.4
Aebershold, R.5
-
115
-
-
0025895183
-
Toward a science of metabolic engineering
-
Bailey JE. (1991). Toward a science of metabolic engineering. Science 252: 1668-74
-
(1991)
Science
, vol.252
, pp. 1668-1674
-
-
Bailey, J.E.1
-
116
-
-
0025866296
-
Network rigidity and metabolic engineering in metabolite overproduction
-
Stephanopoulos G, Vallino JJ. (1991). Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675-81
-
(1991)
Science
, vol.252
, pp. 1675-1681
-
-
Stephanopoulos, G.1
Vallino, J.J.2
-
118
-
-
84960460639
-
Engineering cellular metabolism
-
Nielsen J, Keasling JD. (2016). Engineering cellular metabolism. Cell 164: 1185-97
-
(2016)
Cell
, vol.164
, pp. 1185-1197
-
-
Nielsen, J.1
Keasling, J.D.2
-
119
-
-
84886948663
-
Microbial production of short-chain alkanes
-
Choi YJ, Lee SY. (2013). Microbial production of short-chain alkanes. Nature 502: 571-74
-
(2013)
Nature
, vol.502
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
120
-
-
85053517843
-
Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
-
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, et al. (2016). Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7: 11709
-
(2016)
Nat. Commun
, vol.7
, pp. 11709
-
-
Zhou, Y.J.1
Buijs, N.A.2
Zhu, Z.3
Qin, J.4
Siewers, V.5
-
121
-
-
75749125061
-
Microbial production of fatty-Acid-derived fuels and chemicals from plant biomass
-
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, et al. (2010). Microbial production of fatty-Acid-derived fuels and chemicals from plant biomass. Nature 463: 559-62
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
Kang, Y.2
Bokinsky, G.3
Hu, Z.4
Schirmer, A.5
-
122
-
-
0142027026
-
Metabolic engineering for the microbial production of 1, 3-propanediol
-
Nakamura CE, Whited GM. (2003). Metabolic engineering for the microbial production of 1, 3-propanediol. Curr. Opin. Biotechnol. 14: 454-59
-
(2003)
Curr. Opin. Biotechnol
, vol.14
, pp. 454-459
-
-
Nakamura, C.E.1
Whited, G.M.2
-
123
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol
-
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, et al. (2011). Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat. Chem. Biol. 7: 445-52
-
(2011)
Nat. Chem. Biol
, vol.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
Pujol-Baxley, C.4
Burgard, A.5
-
124
-
-
79952106791
-
From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
-
Becker J, Zelder O, Häfner S, Schr öder H, Wittmann C. (2011). From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-68
-
(2011)
Metab. Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
125
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
-
Park JH, Lee KH, Kim TY, Lee SY. (2007). Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. PNAS 104: 7797-802
-
(2007)
PNAS
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
126
-
-
84862827747
-
Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode
-
Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, et al. (2012). Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode. Metab. Eng. 14: 91-103
-
(2012)
Metab. Eng
, vol.14
, pp. 91-103
-
-
Scalcinati, G.1
Knuf, C.2
Partow, S.3
Chen, Y.4
Maury, J.5
-
127
-
-
33645870422
-
Production of the antimalarial drug precursor artemisinic acid in engineered yeast
-
Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-43
-
(2006)
Nature
, vol.440
, pp. 940-943
-
-
Ro, D.-K.1
Paradise, E.M.2
Ouellet, M.3
Fisher, K.J.4
Newman, K.L.5
-
128
-
-
0037313962
-
Total biosynthesis of hydrocortisone from a simple carbon source in yeast
-
Szczebara FM, Chandeller C, Villeret C, Masurel A, Dupont C, et al. (2003). Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21: 143-49
-
(2003)
Nat. Biotechnol
, vol.21
, pp. 143-149
-
-
Szczebara, F.M.1
Chandeller, C.2
Villeret, C.3
Masurel, A.4
Dupont, C.5
-
129
-
-
84941346066
-
Complete biosynthesis of opioids in yeast
-
Galanie S, Thodey K, Tenchard IJ, Interrante MF, Smolke CD. (2015). Complete biosynthesis of opioids in yeast. Science 349: 1095-100
-
(2015)
Science
, vol.349
, pp. 1095-1100
-
-
Galanie, S.1
Thodey, K.2
Tenchard, I.J.3
Interrante, M.F.4
Smolke, C.D.5
-
130
-
-
84941962714
-
De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
-
Li M, Kildegaard KR, Rodriguez A, Borodina I, Nielsen J. (2015). De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32: 1-11
-
(2015)
Metab. Eng
, vol.32
, pp. 1-11
-
-
Li, M.1
Kildegaard, K.R.2
Rodriguez, A.3
Borodina, I.4
Nielsen, J.5
-
131
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
Hong K-K, Nielsen J. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69: 2671-90
-
(2012)
Cell. Mol. Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.-K.1
Nielsen, J.2
-
132
-
-
84941351055
-
Yeast cell factories on the horizon
-
Nielsen J. (2015). Yeast cell factories on the horizon. Science 349: 1050-51
-
(2015)
Science
, vol.349
, pp. 1050-1051
-
-
Nielsen, J.1
-
133
-
-
0035812464
-
Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions
-
Burgard AP, Maranas CD. (2001). Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74: 364-75
-
(2001)
Biotechnol. Bioeng
, vol.74
, pp. 364-375
-
-
Burgard, A.P.1
Maranas, C.D.2
-
134
-
-
30044437327
-
Evolutionary programming as a platform for in silico metabolic engineering
-
Patil KR, Rocha I, Förster J, Nielsen J. (2005). Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6: 308
-
(2005)
BMC Bioinform
, vol.6
, pp. 308
-
-
Patil, K.R.1
Rocha, I.2
Förster, J.3
Nielsen, J.4
-
135
-
-
25144505718
-
In silico design and adaptive evolution of Escherichia coli for production of lactic acid
-
Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, et al. (2005). In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91: 643-48
-
(2005)
Biotechnol. Bioeng
, vol.91
, pp. 643-648
-
-
Fong, S.S.1
Burgard, A.P.2
Herring, C.D.3
Knight, E.M.4
Blattner, F.R.5
-
136
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C, Regenberg B, Förster J, Nielsen J. (2006). In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8: 102-11
-
(2006)
Metab. Eng
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
137
-
-
84872655172
-
Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
-
Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, et al. (2013). Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLOS ONE 8: e54144
-
(2013)
PLOS ONE
, vol.8
, pp. e54144
-
-
Otero, J.M.1
Cimini, D.2
Patil, K.R.3
Poulsen, S.G.4
Olsson, L.5
-
138
-
-
84936966835
-
Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways
-
Hadadi N, Hatzimanikatis V. (2015). Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28: 99-104
-
(2015)
Curr. Opin. Chem. Biol
, vol.28
, pp. 99-104
-
-
Hadadi, N.1
Hatzimanikatis, V.2
-
139
-
-
84969752776
-
Characterizing strain variation in engineered e coli using a multi-omics-based workflow
-
Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baldoo E, et al. (2016). Characterizing strain variation in engineered E coli using a multi-omics-based workflow. Cell Syst. 2: 335-46
-
(2016)
Cell Syst
, vol.2
, pp. 335-346
-
-
Brunk, E.1
George, K.W.2
Alonso-Gutierrez, J.3
Thompson, M.4
Baldoo, E.5
-
140
-
-
79961072482
-
Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis
-
Hong K-K, Vongsangnak W, Vemuri GN, Nielsen J. (2011). Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. PNAS 108: 12179-84S
-
(2011)
PNAS
, vol.108
, pp. 12179S-121784S
-
-
Hong, K.-K.1
Vongsangnak, W.2
Vemuri, G.N.3
Nielsen, J.4
-
141
-
-
0033664269
-
Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
-
Ostergaard S, Olsson L, Johnston M, Nielsen J. (2000). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-86
-
(2000)
Nat. Biotechnol
, vol.18
, pp. 1283-1286
-
-
Ostergaard, S.1
Olsson, L.2
Johnston, M.3
Nielsen, J.4
-
142
-
-
32044452893
-
Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering
-
Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. (2005). Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-72
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 6465-6472
-
-
Bro, C.1
Knudsen, S.2
Regenberg, B.3
Olsson, L.4
Nielsen, J.5
-
143
-
-
51649124324
-
The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae
-
de Jongh WA, Bro C, Ostergaard S, Regenberg B, Olsson L, et al. (2008). The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol. Bioeng. 101: 317-26
-
(2008)
Biotechnol. Bioeng
, vol.101
, pp. 317-326
-
-
De Jongh, W.A.1
Bro, C.2
Ostergaard, S.3
Regenberg, B.4
Olsson, L.5
-
144
-
-
84907483760
-
Altered sterol composition renders yeast thermotolerant
-
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, et al. (2014). Altered sterol composition renders yeast thermotolerant. Science 346: 75-78
-
(2014)
Science
, vol.346
, pp. 75-78
-
-
Caspeta, L.1
Chen, Y.2
Ghiaci, P.3
Feizi, A.4
Buskov, S.5
-
145
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-33
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
146
-
-
80052580351
-
Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase
-
Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzle ED, et al. (2011). Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477: 225-28
-
(2011)
Nature
, vol.477
, pp. 225-228
-
-
Frezza, C.1
Zheng, L.2
Folger, O.3
Rajagopalan, K.N.4
MacKenzle, E.D.5
-
147
-
-
84949679802
-
Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GADPH
-
Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, et al. (2015). Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GADPH. Science 350: 1391-96
-
(2015)
Science
, vol.350
, pp. 1391-1396
-
-
Yun, J.1
Mullarky, E.2
Lu, C.3
Bosch, K.N.4
Kavalier, A.5
-
148
-
-
84920286423
-
New paradigms for metabolic modeling of human cells
-
Mardinoglu A, Nielsen J. (2015). New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34: 91-97
-
(2015)
Curr. Opin. Biotechnol
, vol.34
, pp. 91-97
-
-
Mardinoglu, A.1
Nielsen, J.2
-
149
-
-
33846910173
-
Global reconstruction of the human metabolic network based on genomic and bibliome data
-
Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. (2007). Global reconstruction of the human metabolic network based on genomic and bibliome data. PNAS 104: 1777-82
-
(2007)
PNAS
, vol.104
, pp. 1777-1782
-
-
Duarte, N.C.1
Becker, S.A.2
Jamshidi, N.3
Thiele, I.4
Mo, M.L.5
-
150
-
-
34548860112
-
The Edinburgh human metabolic network reconstruction and its functional analysis
-
Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, et al. (2007). The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3: 135
-
(2007)
Mol. Syst. Biol
, vol.3
, pp. 135
-
-
Ma, H.1
Sorokin, A.2
Mazein, A.3
Selkov, A.4
Selkov, E.5
-
151
-
-
84877315835
-
A community-driven global reconstruction of human metabolism
-
Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, et al. (2013). A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31: 419-25
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 419-425
-
-
Thiele, I.1
Swainston, N.2
Fleming, R.M.T.3
Hoppe, A.4
Sahoo, S.5
-
152
-
-
84898663879
-
Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
-
Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, et al. (2014). Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10: 721
-
(2014)
Mol. Syst. Biol
, vol.10
, pp. 721
-
-
Agren, R.1
Mardinoglu, A.2
Asplund, A.3
Kampf, C.4
Uhlen, M.5
-
153
-
-
84883787394
-
Integration of clinical data with a genome-scale metabolic model of the human adipocyte
-
Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, et al. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9: 949
-
(2013)
Mol. Syst. Biol
, vol.9
, pp. 949
-
-
Mardinoglu, A.1
Agren, R.2
Kampf, C.3
Asplund, A.4
Uhlen, M.5
-
154
-
-
84898011025
-
Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-Alcoholic fatty liver disease
-
Mardinoglu A, Aagren R, Kampf C, Asplund A, Uhlen M, et al. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-Alcoholic fatty liver disease. Nat. Commun. 5: 3083
-
(2014)
Nat. Commun
, vol.5
, pp. 3083
-
-
Mardinoglu, A.1
Aagren, R.2
Kampf, C.3
Asplund, A.4
Uhlen, M.5
-
155
-
-
84929276343
-
Proteome- and transcriptomedriven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes
-
Väremo L, Scheele C, Broholm C, Mardinoglu A, Kampf C, et al. (2015). Proteome- and transcriptomedriven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep. 11: 1-13
-
(2015)
Cell Rep
, vol.11
, pp. 1-13
-
-
Väremo, L.1
Scheele, C.2
Broholm, C.3
Mardinoglu, A.4
Kampf, C.5
-
156
-
-
85016333383
-
Personal model-Assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
-
Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Söderlund S, et al. (2017). Personal model-Assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13: 916
-
(2017)
Mol. Syst. Biol
, vol.13
, pp. 916
-
-
Mardinoglu, A.1
Bjornson, E.2
Zhang, C.3
Klevstig, M.4
Söderlund, S.5
-
157
-
-
51349092391
-
Network-based prediction of human tissue-specific metabolism
-
Shlomi T, Cabili MN, HerrgÅrd MJ, Palsson BO, Ruppin E. (2008). Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26: 1003-10
-
(2008)
Nat. Biotechnol
, vol.26
, pp. 1003-1010
-
-
Shlomi, T.1
Cabili, M.N.2
HerrgÅrd, M.J.3
Palsson, B.O.4
Ruppin, E.5
-
158
-
-
84863662483
-
Reconstruction of genomescale active metabolic networks for 60 human cell types and 16 cancer types using INIT
-
Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, et al. (2012). Reconstruction of genomescale active metabolic networks for 60 human cell types and 16 cancer types using INIT. PLOS Comput. Biol. 8: e1002518
-
(2012)
PLOS Comput. Biol
, vol.8
, pp. e1002518
-
-
Agren, R.1
Bordel, S.2
Mardinoglu, A.3
Pornputtapong, N.4
Nookaew, I.5
-
159
-
-
84920269464
-
Tissue-based map of the human proteome
-
Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, et al. (2015). Tissue-based map of the human proteome. Science 347: 1260419
-
(2015)
Science
, vol.347
, pp. 1260419
-
-
Uhlen, M.1
Fagerberg, L.2
Hallström, B.M.3
Lindskog, C.4
Oksvold, P.5
-
160
-
-
84964321113
-
On the dependency of cellular protein levels on mRNA abundance
-
Liu Y, Beyer A, Aebershold R. (2016). On the dependency of cellular protein levels on mRNA abundance. Cell 165: 535-50
-
(2016)
Cell
, vol.165
, pp. 535-550
-
-
Liu, Y.1
Beyer, A.2
Aebershold, R.3
-
161
-
-
78650642557
-
Defining the transcriptome and proteome in three functionally different human cell lines
-
Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, et al. (2010). Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6: 450
-
(2010)
Mol. Syst. Biol
, vol.6
, pp. 450
-
-
Lundberg, E.1
Fagerberg, L.2
Klevebring, D.3
Matic, I.4
Geiger, T.5
-
162
-
-
84964506792
-
Transcriptomics resources of human tissues and organs
-
Uhlen M, Hallström BM, Lindskog C, Mardinoglu A, Ponten F, et al. (2016). Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12: 862
-
(2016)
Mol. Syst. Biol
, vol.12
, pp. 862
-
-
Uhlen, M.1
Hallström, B.M.2
Lindskog, C.3
Mardinoglu, A.4
Ponten, F.5
-
164
-
-
84907333139
-
Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality
-
Jerby-Arnon L, Pfetzer N, Waldman YY, McGarry L, James D, et al. (2014). Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158: 1199-209
-
(2014)
Cell
, vol.158
, pp. 1199-1209
-
-
Jerby-Arnon, L.1
Pfetzer, N.2
Waldman, Y.Y.3
McGarry, L.4
James, D.5
-
165
-
-
79953661070
-
Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing theWarburg effect
-
Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. (2011). Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing theWarburg effect. PLOS Comput. Biol. 7: e1002018
-
(2011)
PLOS Comput. Biol
, vol.7
, pp. e1002018
-
-
Shlomi, T.1
Benyamini, T.2
Gottlieb, E.3
Sharan, R.4
Ruppin, E.5
-
166
-
-
79959621970
-
Predicting selective drug targets in cancer through metabolic networks
-
Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, et al. (2011). Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7: 501
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 501
-
-
Folger, O.1
Jerby, L.2
Frezza, C.3
Gottlieb, E.4
Ruppin, E.5
-
167
-
-
84947745250
-
Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis
-
Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, et al. (2015). Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527: 379-83
-
(2015)
Nature
, vol.527
, pp. 379-383
-
-
Rabinovich, S.1
Adler, L.2
Yizhak, K.3
Sarver, A.4
Silberman, A.5
-
168
-
-
84895833353
-
Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma
-
Gatto F, Nookaew I, Nielsen J. (2014). Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. PNAS 111: E866-75
-
(2014)
PNAS
, vol.111
, pp. E866-E875
-
-
Gatto, F.1
Nookaew, I.2
Nielsen, J.3
-
169
-
-
84966671361
-
Glycosaminoglycan profiling in patients plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma
-
Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, et al. (2016). Glycosaminoglycan profiling in patients plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15: 1-15
-
(2016)
Cell Rep
, vol.15
, pp. 1-15
-
-
Gatto, F.1
Volpi, N.2
Nilsson, H.3
Nookaew, I.4
Maruzzo, M.5
-
170
-
-
84866168894
-
Functional interactions between the gut microbiota and host metabolism
-
Tremaroli V, Bäckhed F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature 489: 242-49
-
(2012)
Nature
, vol.489
, pp. 242-249
-
-
Tremaroli, V.1
Bäckhed, F.2
-
171
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J, Li R, Raes J, Arumigam M, Burgdorf KS, et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
Arumigam, M.4
Burgdorf, K.S.5
-
172
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin J, Li Y, Cai Z, Li S, Zhu J, et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60
-
(2012)
Nature
, vol.490
, pp. 55-60
-
-
Qin, J.1
Li, Y.2
Cai, Z.3
Li, S.4
Zhu, J.5
-
173
-
-
84878709716
-
Gutmetagenome in European women with normal, impaired and diabetic glucose control
-
Karlsson F, Tremaroli V, Nookaew I, Bergström G, Behre CJ, et al. (2013). Gutmetagenome in European women with normal, impaired and diabetic glucose control. Nature 498: 99-103
-
(2013)
Nature
, vol.498
, pp. 99-103
-
-
Karlsson, F.1
Tremaroli, V.2
Nookaew, I.3
Bergström, G.4
Behre, C.J.5
-
174
-
-
84891524250
-
Assessing the human gut microbiota in metabolic diseases
-
Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. (2013). Assessing the human gut microbiota in metabolic diseases. Diabetes 62: 3341-49
-
(2013)
Diabetes
, vol.62
, pp. 3341-3349
-
-
Karlsson, F.1
Tremaroli, V.2
Nielsen, J.3
Bäckhed, F.4
-
175
-
-
84871814687
-
Symptomatic atherosclerosis is associated with an altered gut metagenome
-
Karlsson F, FÅk F, Nookaew I, Tremaroli V, Fagerberg B, et al. (2012). Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3: 1245
-
(2012)
Nat. Commun
, vol.3
, pp. 1245
-
-
Karlsson, F.1
Fåk, F.2
Nookaew, I.3
Tremaroli, V.4
Fagerberg, B.5
-
176
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-63
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
Maurice, C.F.2
Carmody, R.N.3
Gootenberg, D.B.4
Button, J.E.5
-
177
-
-
84929440325
-
Metabolic dependencies drive species co-occurrence in diverse microbial communities
-
Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, et al. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. PNAS 112: 6449-54
-
(2015)
PNAS
, vol.112
, pp. 6449-6454
-
-
Zelezniak, A.1
Andrejev, S.2
Ponomarova, O.3
Mende, D.R.4
Bork, P.5
-
178
-
-
84883389182
-
Understanding the interactions between bacteria in the human gut through metabolic modeling
-
Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, et al. (2013). Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3: 2532
-
(2013)
Sci. Rep
, vol.3
, pp. 2532
-
-
Shoaie, S.1
Karlsson, F.2
Mardinoglu, A.3
Nookaew, I.4
Bordel, S.5
-
179
-
-
84938586730
-
Quantifying diet-induced metabolic changes of the human gut microbiome
-
Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P, et al. (2015). Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22: 320-31
-
(2015)
Cell Metab
, vol.22
, pp. 320-331
-
-
Shoaie, S.1
Ghaffari, P.2
Kovatcheva-Datchary, P.3
Mardinoglu, A.4
Sen, P.5
-
180
-
-
84948461699
-
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
-
Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, et al. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350: 1079-84
-
(2015)
Science
, vol.350
, pp. 1079-1084
-
-
Vetizou, M.1
Pitt, J.M.2
Daillere, R.3
Lepage, P.4
Waldschmitt, N.5
-
181
-
-
84948451779
-
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
-
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350: 1084-89
-
(2015)
Science
, vol.350
, pp. 1084-1089
-
-
Sivan, A.1
Corrales, L.2
Hubert, N.3
Williams, J.B.4
Aquino-Michaels, K.5
|