메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 245-275

Systems biology of metabolism

Author keywords

Genome scale metabolic models; Metabolic engineering; Metabolomics; Proteomics; Systems medicine; Transcriptomics

Indexed keywords

PROTEOME; TRANSCRIPTOME;

EID: 85021651714     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-061516-044757     Document Type: Review
Times cited : (178)

References (181)
  • 1
    • 84899564808 scopus 로고    scopus 로고
    • Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean
    • Keller MA, Turchyn A, Ralser M. (2014). Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10: 725
    • (2014) Mol. Syst. Biol , vol.10 , pp. 725
    • Keller, M.A.1    Turchyn, A.2    Ralser, M.3
  • 2
    • 84863553135 scopus 로고    scopus 로고
    • Identification and functional expression of the mitochondrial pyruvate carrier
    • Herzig S, Raemy E, Montessult S, Veuthey JL, Westermann B, et al. (2012). Identification and functional expression of the mitochondrial pyruvate carrier. Science 337: 93-96
    • (2012) Science , vol.337 , pp. 93-96
    • Herzig, S.1    Raemy, E.2    Montessult, S.3    Veuthey, J.L.4    Westermann, B.5
  • 3
    • 84863552418 scopus 로고    scopus 로고
    • A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
    • Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, et al. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96-100
    • (2012) Science , vol.337 , pp. 96-100
    • Bricker, D.K.1    Taylor, E.B.2    Schell, J.C.3    Orsak, T.4    Boutron, A.5
  • 4
    • 0347506028 scopus 로고    scopus 로고
    • It is all about metabolic fluxes
    • Nielsen J. (2003). It is all about metabolic fluxes. J. Bacteriol. 185: 7031-35
    • (2003) J. Bacteriol , vol.185 , pp. 7031-7035
    • Nielsen, J.1
  • 5
    • 71349087490 scopus 로고    scopus 로고
    • A unifying view of 21st century systems biology
    • Vidal M. (2009). A unifying view of 21st century systems biology. FEBS Lett. 583: 3891-94
    • (2009) FEBS Lett , vol.583 , pp. 3891-3894
    • Vidal, M.1
  • 6
    • 0345743608 scopus 로고    scopus 로고
    • Here is the evidence, now what is the hypothesis? the complementary roles of inductive and hypothesis-driven science in the post-genomic era
    • Kell DB, Oliver SG. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26: 99-105
    • (2004) BioEssays , vol.26 , pp. 99-105
    • Kell, D.B.1    Oliver, S.G.2
  • 7
    • 38349164135 scopus 로고    scopus 로고
    • Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae
    • Jewett MC, Nielsen J. (2008). Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8: 122-31
    • (2008) FEMS Yeast Res , vol.8 , pp. 122-131
    • Jewett, M.C.1    Nielsen, J.2
  • 8
    • 36949064203 scopus 로고
    • Cardiac action and pacemaker potentials based on the Hodkin-Huxley equations
    • Noble D. (1960). Cardiac action and pacemaker potentials based on the Hodkin-Huxley equations. Nature 188: 495-97
    • (1960) Nature , vol.188 , pp. 495-497
    • Noble, D.1
  • 10
    • 0015989446 scopus 로고
    • A linear steady-state treatment of enzymatic chains General properties, control and effector strength
    • Heinrich R, Rapoport TA. (1974). A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 89-95
    • (1974) Eur. J. Biochem , vol.42 , pp. 89-95
    • Heinrich, R.1    Rapoport, T.A.2
  • 14
    • 0035805255 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analyses of a systematically perturbed metabolic network
    • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929-34
    • (2001) Science , vol.292 , pp. 929-934
    • Ideker, T.1    Thorsson, V.2    Ranish, J.A.3    Christmas, R.4    Buhler, J.5
  • 16
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • Kitano H. (2002). Computational systems biology. Nature 420: 206-10
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 17
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: A brief overview
    • Kitano H. (2002). Systems biology: a brief overview. Science 295: 1662-64
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 18
    • 0021403731 scopus 로고
    • Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A
    • Domach MM, Leung SK, Cahn RE, Cocks GG, Shuler ML. (1984). Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A. Biotechnol. Bioeng. 26: 203-16
    • (1984) Biotechnol. Bioeng , vol.26 , pp. 203-216
    • Domach, M.M.1    Leung, S.K.2    Cahn, R.E.3    Cocks, G.G.4    Shuler, M.L.5
  • 20
    • 84864258618 scopus 로고    scopus 로고
    • A whole-cell computational model predicts phenotype from genotype
    • Karr JR, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM, et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell 150: 389-401
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, J.R.1    Sanghvi, J.C.2    MacKlin, D.N.3    Gutschow, M.V.4    Jacobs, J.M.5
  • 21
    • 79958097953 scopus 로고    scopus 로고
    • The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters
    • Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, et al. (2011). The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50: 4402-10
    • (2011) Biochemistry , vol.50 , pp. 4402-4410
    • Bar-Even, A.1    Noor, E.2    Savir, Y.3    Liebermeister, W.4    Davidi, D.5
  • 22
    • 84959560542 scopus 로고    scopus 로고
    • Metabolic trade-offs in yeast are caused by F1F0-ATP synthase
    • Nilsson A, Nielsen J. (2016). Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci. Rep. 6: 22264
    • (2016) Sci. Rep , vol.6 , pp. 22264
    • Nilsson, A.1    Nielsen, J.2
  • 23
    • 0343907200 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II Mathematical model
    • Rizzi M, Baltes M, Theobald U, Reuss M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55: 592-608
    • (1997) Biotechnol. Bioeng , vol.55 , pp. 592-608
    • Rizzi, M.1    Baltes, M.2    Theobald, U.3    Reuss, M.4
  • 25
    • 0024694679 scopus 로고
    • Overproduction of glycolytic enzymes in yeast
    • Schaff I, Heinisch J, Zimmermann FK. (1989). Overproduction of glycolytic enzymes in yeast. Yeast 5: 285-290
    • (1989) Yeast , vol.5 , pp. 285-290
    • Schaff, I.1    Heinisch, J.2    Zimmermann, F.K.3
  • 26
    • 0033753004 scopus 로고    scopus 로고
    • Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance fermentative capacity of Saccharomyces cerevisiae
    • Smits HP, Hauf J, Müller S, Hobley TJ, Zimmermann FK, et al. (2000). Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance fermentative capacity of Saccharomyces cerevisiae. Yeast 16: 1325-34
    • (2000) Yeast , vol.16 , pp. 1325-1334
    • Smits, H.P.1    Hauf, J.2    Müller, S.3    Hobley, T.J.4    Zimmermann, F.K.5
  • 27
    • 0036727253 scopus 로고    scopus 로고
    • Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis
    • Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR. (2002). Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. 68: 4274-82
    • (2002) Appl. Environ. Microbiol , vol.68 , pp. 4274-4282
    • Koebmann, B.J.1    Solem, C.2    Pedersen, M.B.3    Nilsson, D.4    Jensen, P.R.5
  • 29
    • 0015972675 scopus 로고
    • Isolation of a regulatory mutant of fructose-1, 6-diphosphatase in Saccharomyces cerevisiae
    • van de Poll K, Kerkenaar A, Schamhart DHJ. (1974). Isolation of a regulatory mutant of fructose-1, 6-diphosphatase in Saccharomyces cerevisiae. J. Bacteriol. 117: 965-70
    • (1974) J. Bacteriol , vol.117 , pp. 965-970
    • Van De Poll, K.1    Kerkenaar, A.2    Schamhart, D.H.J.3
  • 30
    • 84897627707 scopus 로고    scopus 로고
    • Lost in transition: Start-up of glycolysis yields subpopulations of non-growing cells
    • van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJ, et al. (2014). Lost in transition: start-up of glycolysis yields subpopulations of non-growing cells. Science 343: 1245114
    • (2014) Science , vol.343 , pp. 1245114
    • Van Heerden, J.H.1    Wortel, M.T.2    Bruggeman, F.J.3    Heijnen, J.J.4    Bollen, Y.J.5
  • 31
    • 84959891449 scopus 로고    scopus 로고
    • Trehalose-6-phosphate synthase and stabilization of yeast glycolysis
    • fov100
    • Fraenkel D, Nielsen J. (2016). Trehalose-6-phosphate synthase and stabilization of yeast glycolysis. FEMS Yeast Res. 16: fov100
    • (2016) FEMS Yeast Res , vol.16
    • Fraenkel, D.1    Nielsen, J.2
  • 33
    • 0036285634 scopus 로고    scopus 로고
    • Mathematical models of protein kinase signal transduction
    • Heinrich R, Neel BG, Rapoport TA. (2002). Mathematical models of protein kinase signal transduction. Mol. Cell 9: 957-70
    • (2002) Mol. Cell , vol.9 , pp. 957-970
    • Heinrich, R.1    Neel, B.G.2    Rapoport, T.A.3
  • 34
    • 84879517894 scopus 로고    scopus 로고
    • Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress
    • Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong K-K, et al. (2012). Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLOS Comput. Biol. 9: e1003084
    • (2012) PLOS Comput. Biol , vol.9 , pp. e1003084
    • Petelenz-Kurdziel, E.1    Kuehn, C.2    Nordlander, B.3    Klein, D.4    Hong, K.-K.5
  • 35
    • 0033580813 scopus 로고    scopus 로고
    • Systems properties of the Haemophilus influenzae Rd metabolic genotype
    • Edwards JS, Palsson BO. (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274: 17410-16
    • (1999) J. Biol. Chem , vol.274 , pp. 17410-17416
    • Edwards, J.S.1    Palsson, B.O.2
  • 36
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype Its definition, characteristics, and capabilities
    • Edwards JS, Palsson BO. (2001). The Escherichia coli MG1655 in silico metabolic genotype. Its definition, characteristics, and capabilities. PNAS 97: 5528-33
    • (2001) PNAS , vol.97 , pp. 5528-5533
    • Edwards, J.S.1    Palsson, B.O.2
  • 38
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J, Famili I, Fu P, Palsson BO, Nielsen J. (2003). Genome-scale metabolic reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13: 244-53
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 39
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructedmetabolic network
    • Famili I, Förster J, Nielsen J, Palsson BO. (2003). Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructedmetabolic network. PNAS 100: 13134-39
    • (2003) PNAS , vol.100 , pp. 13134-13139
    • Famili, I.1    Förster, J.2    Nielsen, J.3    Palsson, B.O.4
  • 40
    • 84864795465 scopus 로고    scopus 로고
    • Recent advances in reconstruction and applications of genome-scale metabolic models
    • Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY. (2012). Recent advances in reconstruction and applications of genome-scale metabolic models. Curr. Opin. Biotechnol. 23: 617-23
    • (2012) Curr. Opin. Biotechnol , vol.23 , pp. 617-623
    • Kim, T.Y.1    Sohn, S.B.2    Kim, Y.B.3    Kim, W.J.4    Lee, S.Y.5
  • 41
    • 84900303762 scopus 로고    scopus 로고
    • Optimizing genome-scale network reconstructions
    • Monk J, Nogales J, Palsson BO. (2014). Optimizing genome-scale network reconstructions. Nat. Biotechnol. 32: 447-52
    • (2014) Nat. Biotechnol , vol.32 , pp. 447-452
    • Monk, J.1    Nogales, J.2    Palsson, B.O.3
  • 42
    • 84861165967 scopus 로고
    • Are we ready for genome-scale modeling in plants?
    • Collakova E, Yen JY, Senger RS. (2012). Are we ready for genome-scale modeling in plants? Plant Sci. 191-192: 53-70
    • (1912) Plant Sci , vol.192 , pp. 53-70
    • Collakova, E.1    Yen, J.Y.2    Senger, R.S.3
  • 43
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
    • Orth JB, Conrad TM, Na J, Lerman JA, Nam H, et al. (2011). A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol. 7: 535
    • (2011) Mol. Syst. Biol , vol.7 , pp. 535
    • Orth, J.B.1    Conrad, T.M.2    Na, J.3    Lerman, J.A.4    Nam, H.5
  • 44
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • Aung HW, Henry SA, Walker LP. (2013). Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. 9: 215-29
    • (2013) Ind. Biotechnol , vol.9 , pp. 215-229
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 45
    • 41149105489 scopus 로고    scopus 로고
    • Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus Niger
    • Andersen MR, Nielsen ML, Nielsen J. (2008). Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol. Syst. Biol. 4: 178
    • (2008) Mol. Syst. Biol , vol.4 , pp. 178
    • Andersen, M.R.1    Nielsen, M.L.2    Nielsen, J.3
  • 46
    • 84875973063 scopus 로고    scopus 로고
    • The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
    • Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, et al. (2013). The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput. Biol. 9: e1002980
    • (2013) PLOS Comput. Biol , vol.9 , pp. e1002980
    • Agren, R.1    Liu, L.2    Shoaie, S.3    Vongsangnak, W.4    Nookaew, I.5
  • 47
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • McCloskey D, Palsson BO, Feist AM. (2013). Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 9: 661
    • (2013) Mol. Syst. Biol , vol.9 , pp. 661
    • McCloskey, D.1    Palsson, B.O.2    Feist, A.M.3
  • 48
    • 84979849215 scopus 로고    scopus 로고
    • Genome scale models of yeast: Towards standardized evaluation and consistent omic integration
    • Sanchez BJ, Nielsen J. (2015). Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 7: 846-58
    • (2015) Integr. Biol , vol.7 , pp. 846-858
    • Sanchez, B.J.1    Nielsen, J.2
  • 49
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
    • HerrgÅrd MJ, Swainston N, Dobson P, Dunn WB, Arga KY, et al. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26: 1155-60
    • (2008) Nat. Biotechnol , vol.26 , pp. 1155-1160
    • HerrgÅrd, M.J.1    Swainston, N.2    Dobson, P.3    Dunn, W.B.4    Arga, K.Y.5
  • 50
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • bat059
    • Heavner BD, Smallbone K, Price ND, Walker LP. (2013). Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database 2013: bat059
    • (2013) Database , vol.2013
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 51
    • 0018393802 scopus 로고
    • Identification ofmetabolic model: Citrate production from glucose by Candida lipolytica
    • Aiba S, Matsuoka M. (1979). Identification ofmetabolic model: citrate production from glucose by Candida lipolytica. Biotechnol. Bioeng. 21: 1373-86
    • (1979) Biotechnol. Bioeng , vol.21 , pp. 1373-1386
    • Aiba, S.1    Matsuoka, M.2
  • 52
    • 0022493181 scopus 로고
    • Fat synthesis in adipose tissue An examination of stoichiometric constraints
    • Fell DA, Small JK. (1986). Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem. J. 238: 781-86
    • (1986) Biochem. J , vol.238 , pp. 781-786
    • Fell, D.A.1    Small, J.K.2
  • 53
    • 0035125986 scopus 로고    scopus 로고
    • In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    • Edwards JS, Ibarra RU, Palsson BO. (2001). In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-30
    • (2001) Nat. Biotechnol , vol.19 , pp. 125-130
    • Edwards, J.S.1    Ibarra, R.U.2    Palsson, B.O.3
  • 54
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz R, Kuepfer L, Sauer U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 119
    • (2007) Mol. Syst. Biol , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 55
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O'Brien EJ, Monk JM, Palsson BO. (2015). Using genome-scale models to predict biological capabilities. Cell 161: 971-87
    • (2015) Cell , vol.161 , pp. 971-987
    • O'Brien, E.J.1    Monk, J.M.2    Palsson, B.O.3
  • 56
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • Ibarra RU, Edwards JS, Palsson BO. (2002). Escherichia coli K12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-89
    • (2002) Nature , vol.420 , pp. 186-189
    • Ibarra, R.U.1    Edwards, J.S.2    Palsson, B.O.3
  • 57
    • 20044375201 scopus 로고    scopus 로고
    • Large-scale metabolic in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism
    • Fischer E, Sauer U. (2005). Large-scale metabolic in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37: 636-40
    • (2005) Nat. Genet , vol.37 , pp. 636-640
    • Fischer, E.1    Sauer, U.2
  • 58
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
    • Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. (2013). Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 8: 1043-57
    • (2013) Biotechnol. J , vol.8 , pp. 1043-1057
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 59
    • 84866975246 scopus 로고    scopus 로고
    • Multiscale modeling of metabolism and macromolecular synthesis in e coli and its applications to the evolution of codon usage
    • Thiele I, Ronan MTF, Que R, Bordbar A, Diep D, et al. (2012). Multiscale modeling of metabolism and macromolecular synthesis in E coli and its applications to the evolution of codon usage. PLOS ONE 7: e45635
    • (2012) PLOS ONE , vol.7 , pp. e45635
    • Thiele, I.1    Ronan, M.T.F.2    Que, R.3    Bordbar, A.4    Diep, D.5
  • 60
    • 84878756325 scopus 로고    scopus 로고
    • Structural systems biology evaluation of metabolic thermotolerance of Escherichia coli
    • Chang RL, Andrews K, Kim D, Li Z, Godzik A, et al. (2013). Structural systems biology evaluation of metabolic thermotolerance of Escherichia coli. Science 340: 1220-23
    • (2013) Science , vol.340 , pp. 1220-1223
    • Chang, R.L.1    Andrews, K.2    Kim, D.3    Li, Z.4    Godzik, A.5
  • 61
  • 62
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signaling circuits in molecular interaction networks
    • Ideker T, Ozier O, Schwikowski B, Siegel AF. (2002). Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 18: S233-40
    • (2002) Bioinformatics , vol.18 , pp. S233-S240
    • Ideker, T.1    Ozier, O.2    Schwikowski, B.3    Siegel, A.F.4
  • 63
    • 14544268137 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of metabolism by using metabolic network topology
    • Patil KR, Nielsen J. (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. PNAS 102: 2685-89
    • (2005) PNAS , vol.102 , pp. 2685-2689
    • Patil, K.R.1    Nielsen, J.2
  • 64
    • 41049102359 scopus 로고    scopus 로고
    • Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks
    • Oliveira A, Patil KR, Nielsen J. (2008). Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst. Biol. 2: 17
    • (2008) BMC Syst. Biol , vol.2 , pp. 17
    • Oliveira, A.1    Patil, K.R.2    Nielsen, J.3
  • 65
    • 84877309040 scopus 로고    scopus 로고
    • Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypothesis and methods
    • Väremo L, Nielsen J, Nookaew I. (2013). Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypothesis and methods. Nucleic Acids Res. 41: 4378-91
    • (2013) Nucleic Acids Res , vol.41 , pp. 4378-4391
    • Väremo, L.1    Nielsen, J.2    Nookaew, I.3
  • 66
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL, Iyer VR, Brown PO. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-86
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 67
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • Å kesson M, Förster J, Nielsen J. (2004). Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6: 285-93
    • (2004) Metab. Eng , vol.6 , pp. 285-293
    • Åkesson, M.1    Förster, J.2    Nielsen, J.3
  • 68
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado D, HerrgÅrd M. (2014). Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLOS Comput. Biol. 10: e1003580
    • (2014) PLOS Comput. Biol , vol.10 , pp. e1003580
    • Machado, D.1    HerrgÅrd, M.2
  • 69
    • 84885367114 scopus 로고    scopus 로고
    • Genome-scale models of metabolism and gene expression extend and refine growth phenotype predictions
    • O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. (2013). Genome-scale models of metabolism and gene expression extend and refine growth phenotype predictions. Mol. Syst. Biol. 9: 693
    • (2013) Mol. Syst. Biol , vol.9 , pp. 693
    • O'Brien, E.J.1    Lerman, J.A.2    Chang, R.L.3    Hyduke, D.R.4    Palsson, B.O.5
  • 70
    • 78649832864 scopus 로고    scopus 로고
    • Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast
    • Fendt S-M, Oliveira AP, Christen S, Picotti P, Dechant RC, et al. (2010). Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol. Syst. Biol. 6: 432
    • (2010) Mol. Syst. Biol , vol.6 , pp. 432
    • Fendt, S.-M.1    Oliveira, A.P.2    Christen, S.3    Picotti, P.4    Dechant, R.C.5
  • 72
    • 84883788052 scopus 로고    scopus 로고
    • Mapping yeast transcriptional networks
    • Hughes TR, de Boer CG. (2013). Mapping yeast transcriptional networks. Genetics 195: 9-36
    • (2013) Genetics , vol.195 , pp. 9-36
    • Hughes, T.R.1    De Boer, C.G.2
  • 73
    • 84994140656 scopus 로고    scopus 로고
    • Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors
    • Österlund T, Bordel S, Nielsen J. (2015). Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr. Biol. 7: 560-68
    • (2015) Integr. Biol , vol.7 , pp. 560-568
    • Österlund, T.1    Bordel, S.2    Nielsen, J.3
  • 74
    • 84979030925 scopus 로고    scopus 로고
    • Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6 in Saccharomyces cerevisiae
    • Liu G, Bergenholm D, Nielsen J. (2016). Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6 in Saccharomyces cerevisiae. mBio 7: e00559-16
    • (2016) MBio , vol.7 , pp. e00559-e00616
    • Liu, G.1    Bergenholm, D.2    Nielsen, J.3
  • 76
    • 33144474263 scopus 로고    scopus 로고
    • Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae
    • Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C, et al. (2006). Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. PNAS 103: 2166-71
    • (2006) PNAS , vol.103 , pp. 2166-2171
    • Rossell, S.1    Van Der Weijden, C.C.2    Lindenbergh, A.3    Van Tuijl, A.4    Francke, C.5
  • 77
    • 84889643157 scopus 로고    scopus 로고
    • Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis
    • Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, et al. (2013). Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol. Syst. Biol. 9: 709
    • (2013) Mol. Syst. Biol , vol.9 , pp. 709
    • Chubukov, V.1    Uhr, M.2    Le Chat, L.3    Kleijn, R.J.4    Jules, M.5
  • 78
    • 84951061481 scopus 로고    scopus 로고
    • Pseudo-Transition analysis identifies the key regulators of dynamic metabolic adaptations from steadystate data
    • Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB, et al. (2015). Pseudo-Transition analysis identifies the key regulators of dynamic metabolic adaptations from steadystate data. Cell Syst. 1: 270-82
    • (2015) Cell Syst , vol.1 , pp. 270-282
    • Gerosa, L.1    Haverkorn Van Rijsewijk, B.R.B.2    Christodoulou, D.3    Kochanowski, K.4    Schmidt, T.S.B.5
  • 79
    • 78049304837 scopus 로고    scopus 로고
    • Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes
    • Bordel S, Agren R, Nielsen J. (2010). Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLOS Comput. Biol. 6: e1000859
    • (2010) PLOS Comput. Biol , vol.6 , pp. e1000859
    • Bordel, S.1    Agren, R.2    Nielsen, J.3
  • 80
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • Marguerat S, Schmidt A, Codlin S, Chen W, Aebershold R, et al. (2012). Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151: 671-83
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1    Schmidt, A.2    Codlin, S.3    Chen, W.4    Aebershold, R.5
  • 82
    • 79251556819 scopus 로고    scopus 로고
    • Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
    • Canelas AB, Harrison N, Fazio A, Zhang J, Pitkänen JP, et al. (2010). Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat. Commun. 1: 145
    • (2010) Nat. Commun , vol.1 , pp. 145
    • Canelas, A.B.1    Harrison, N.2    Fazio, A.3    Zhang, J.4    Pitkänen, J.P.5
  • 83
    • 84867641516 scopus 로고    scopus 로고
    • Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains
    • Hong K-K, Hou J, Shoaie S, Nielsen J, Bordel S. (2012). Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains. FEMS Yeast Res. 12: 741-47
    • (2012) FEMS Yeast Res , vol.12 , pp. 741-747
    • Hong, K.-K.1    Hou, J.2    Shoaie, S.3    Nielsen, J.4    Bordel, S.5
  • 85
    • 78449268845 scopus 로고    scopus 로고
    • Interdependence of cell growth and gene expression: Origins and consequences
    • Scott M, Gunderson CW, Mateescu EM, Zhong Z, Hwa T. (2010). Interdependence of cell growth and gene expression: origins and consequences. Science 330: 1099-102
    • (2010) Science , vol.330 , pp. 1099-1102
    • Scott, M.1    Gunderson, C.W.2    Mateescu, E.M.3    Zhong, Z.4    Hwa, T.5
  • 86
    • 84947583295 scopus 로고    scopus 로고
    • Overflow metabolism in Escherichia coli results from efficient proteome allocation
    • Basan M, Hui S, Okano H, Zhang Z, Shen Y, et al. (2015). Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528: 99-104
    • (2015) Nature , vol.528 , pp. 99-104
    • Basan, M.1    Hui, S.2    Okano, H.3    Zhang, Z.4    Shen, Y.5
  • 87
    • 0343471961 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae i Experimental observations
    • Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55: 305-16
    • (1997) Biotechnol. Bioeng , vol.55 , pp. 305-316
    • Theobald, U.1    Mailinger, W.2    Baltes, M.3    Rizzi, M.4    Reuss, M.5
  • 89
    • 84946476393 scopus 로고    scopus 로고
    • Real-Time metabolome profiling of the metabolic switch between starvation and growth
    • Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. (2015). Real-Time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12: 1091-97
    • (2015) Nat. Methods , vol.12 , pp. 1091-1097
    • Link, H.1    Fuhrer, T.2    Gerosa, L.3    Zamboni, N.4    Sauer, U.5
  • 90
    • 33750705293 scopus 로고    scopus 로고
    • Integration of metabolome data with metabolic networks reveals reporter reactions
    • Cakir T, Patil KR, Önsan ZI, Ülgen KÖ, Kirdar B, et al. (2006). Integration of metabolome data with metabolic networks reveals reporter reactions. Mol. Syst. Biol. 2: 50
    • (2006) Mol. Syst. Biol , vol.2 , pp. 50
    • Cakir, T.1    Patil, K.R.2    Önsan, Z.I.3    Ülgen, K.O.4    Kirdar, B.5
  • 91
    • 26944471174 scopus 로고    scopus 로고
    • The next wave in metabolome analysis
    • Nielsen J, Oliver S. (2005). The next wave in metabolome analysis. Trends Biotechnol. 23: 544-46
    • (2005) Trends Biotechnol , vol.23 , pp. 544-546
    • Nielsen, J.1    Oliver, S.2
  • 92
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W. (2001). 13C metabolic flux analysis. Metab. Eng. 3: 195-206
    • (2001) Metab. Eng , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 93
    • 79551508527 scopus 로고    scopus 로고
    • 13C metabolic flux analysis in complex systems
    • Zamboni N. (2011). 13C metabolic flux analysis in complex systems. Curr. Opin. Biotechnol. 22: 103-8
    • (2011) Curr. Opin. Biotechnol , vol.22 , pp. 103-108
    • Zamboni, N.1
  • 94
    • 34047177923 scopus 로고    scopus 로고
    • Metabolic flux analysis at ultra short time scale: Isotopically non-stationary 13C labeling experiments
    • Nöh K, Grönke K, Luo B, Takors R, Oldiges M, et al. (2007). Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J. Biotechnol. 129: 249-67
    • (2007) J. Biotechnol , vol.129 , pp. 249-267
    • Nöh, K.1    Grönke, K.2    Luo, B.3    Takors, R.4    Oldiges, M.5
  • 95
    • 80555149221 scopus 로고    scopus 로고
    • Dynamic metabolic flux analysis (DMFA): A framework for determining fluxes at metabolic non-steady state
    • Leighty RW, Antoniewicz MR. (2011). Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab. Eng. 13: 745-55
    • (2011) Metab. Eng , vol.13 , pp. 745-755
    • Leighty, R.W.1    Antoniewicz, M.R.2
  • 96
    • 68049129530 scopus 로고    scopus 로고
    • Quantification of statin effects on hepatic cholesterol synthesis by transient 13C-flux analysis
    • Maier K, Hofmann U, Bauer A, Niebel A, Vacun G, et al. (2009). Quantification of statin effects on hepatic cholesterol synthesis by transient 13C-flux analysis. Metab. Eng. 11: 292-309
    • (2009) Metab. Eng , vol.11 , pp. 292-309
    • Maier, K.1    Hofmann, U.2    Bauer, A.3    Niebel, A.4    Vacun, G.5
  • 97
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo CM, Gemeiro PA, Bell EL, Mattaini KR, Yang J, et al. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380-84
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1    Gemeiro, P.A.2    Bell, E.L.3    Mattaini, K.R.4    Yang, J.5
  • 98
    • 84880876347 scopus 로고    scopus 로고
    • Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism
    • Fendt S-M, Bell EL, Keibler MA, Davidson SM, Wirth GJ, et al. (2013). Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 73: 4429-38
    • (2013) Cancer Res , vol.73 , pp. 4429-4438
    • Fendt, S.-M.1    Bell, E.L.2    Keibler, M.A.3    Davidson, S.M.4    Wirth, G.J.5
  • 99
    • 37549068090 scopus 로고    scopus 로고
    • Nad+/nadh and nadp+/nadph in cellular functions and cell death: Regulation and biological consequences
    • Ying W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10: 179-206
    • (2008) Antioxid. Redox Signal , vol.10 , pp. 179-206
    • Ying, W.1
  • 100
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen T, Kielland-Brandt MC, Nielsen J, Villadsen J. (2000). Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2: 69-77
    • (2000) Metab. Eng , vol.2 , pp. 69-77
    • Nissen, T.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 101
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, et al. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056-60
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3    Lagouge, M.4    Noriega, L.5
  • 102
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α.
    • Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, et al. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38: 864-78
    • (2010) Mol. Cell , vol.38 , pp. 864-878
    • Lim, J.-H.1    Lee, Y.-M.2    Chun, Y.-S.3    Chen, J.4    Kim, J.-E.5
  • 103
    • 0141719702 scopus 로고    scopus 로고
    • Small molecular activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. (2003). Small molecular activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-96
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3    Lamming, D.W.4    Lavu, S.5
  • 104
    • 69849107217 scopus 로고    scopus 로고
    • Calorie restriction, SIRT1 and longevity
    • Canto C, Auwerx J. (2009). Calorie restriction, SIRT1 and longevity. Trends. Endocrinol.Metab. 20: 325-31
    • (2009) Trends. Endocrinol.Metab , vol.20 , pp. 325-331
    • Canto, C.1    Auwerx, J.2
  • 105
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337-42
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1    Pearson, K.J.2    Price, N.L.3    Jamieson, H.A.4    Lerin, C.5
  • 106
    • 80455143206 scopus 로고    scopus 로고
    • Calorie restriction-like effects of 30 days or resveratrol supplementation on energy metabolism and metabolic profile in obese humans
    • Timmers S, Konings E, Bilet L, Houtkooper RH, van deWeijer T, et al. (2011). Calorie restriction-like effects of 30 days or resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14: 612-22
    • (2011) Cell Metab , vol.14 , pp. 612-622
    • Timmers, S.1    Konings, E.2    Bilet, L.3    Houtkooper, R.H.4    Van De Weijer, T.5
  • 107
    • 70350524083 scopus 로고    scopus 로고
    • Resveratrol is not a direct activator of SIRT1 enzyme activity
    • Beher D, Wu J, Cumine S, Kim KW, Lu S-C, et al. (2009). Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des. 74: 619-24
    • (2009) Chem. Biol. Drug des , vol.74 , pp. 619-624
    • Beher, D.1    Wu, J.2    Cumine, S.3    Kim, K.W.4    Lu, S.-C.5
  • 109
    • 53549113031 scopus 로고    scopus 로고
    • The role ofTORin autophagy regulation from yeast to plants and mammals
    • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. (2008). The role ofTORin autophagy regulation from yeast to plants and mammals. Autophagy 4: 851-65
    • (2008) Autophagy , vol.4 , pp. 851-865
    • Diaz-Troya, S.1    Perez-Perez, M.E.2    Florencio, F.J.3    Crespo, J.L.4
  • 111
    • 73149091660 scopus 로고    scopus 로고
    • Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
    • Usaite R, Jewett MC, Oliveira AP, Yates JR III, Olsson L, Nielsen J, et al. (2009). Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5: 319
    • (2009) Mol. Syst. Biol , vol.5 , pp. 319
    • Usaite, R.1    Jewett, M.C.2    Oliveira, A.P.3    Yates, J.R.I.I.I.4    Olsson, L.5    Nielsen, J.6
  • 112
    • 80855128291 scopus 로고    scopus 로고
    • Mapping the interactions of Snf1 with TORC1 in Saccharomyces cerevisiae
    • Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, et al. (2011). Mapping the interactions of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol. Syst. Biol. 7: 545
    • (2011) Mol. Syst. Biol , vol.7 , pp. 545
    • Zhang, J.1    Vaga, S.2    Chumnanpuen, P.3    Kumar, R.4    Vemuri, G.N.5
  • 113
    • 84897480343 scopus 로고    scopus 로고
    • Glucose de-repression by yeast AMP-Activated protein kinase SNF1 is controlled via at least two independent steps
    • Garcia-Salcedo R, Lubitz T, Beltran G, Elbing K, Tian Y, et al. (2014). Glucose de-repression by yeast AMP-Activated protein kinase SNF1 is controlled via at least two independent steps. FEBS J. 281: 1901-17
    • (2014) FEBS J , vol.281 , pp. 1901-1917
    • Garcia-Salcedo, R.1    Lubitz, T.2    Beltran, G.3    Elbing, K.4    Tian, Y.5
  • 114
    • 84928723640 scopus 로고    scopus 로고
    • Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis
    • Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebershold R, et al. (2015). Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci. Signal. 8: 1-15
    • (2015) Sci. Signal , vol.8 , pp. 1-15
    • Oliveira, A.P.1    Ludwig, C.2    Zampieri, M.3    Weisser, H.4    Aebershold, R.5
  • 115
    • 0025895183 scopus 로고
    • Toward a science of metabolic engineering
    • Bailey JE. (1991). Toward a science of metabolic engineering. Science 252: 1668-74
    • (1991) Science , vol.252 , pp. 1668-1674
    • Bailey, J.E.1
  • 116
    • 0025866296 scopus 로고
    • Network rigidity and metabolic engineering in metabolite overproduction
    • Stephanopoulos G, Vallino JJ. (1991). Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675-81
    • (1991) Science , vol.252 , pp. 1675-1681
    • Stephanopoulos, G.1    Vallino, J.J.2
  • 118
    • 84960460639 scopus 로고    scopus 로고
    • Engineering cellular metabolism
    • Nielsen J, Keasling JD. (2016). Engineering cellular metabolism. Cell 164: 1185-97
    • (2016) Cell , vol.164 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 119
    • 84886948663 scopus 로고    scopus 로고
    • Microbial production of short-chain alkanes
    • Choi YJ, Lee SY. (2013). Microbial production of short-chain alkanes. Nature 502: 571-74
    • (2013) Nature , vol.502 , pp. 571-574
    • Choi, Y.J.1    Lee, S.Y.2
  • 120
    • 85053517843 scopus 로고    scopus 로고
    • Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
    • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, et al. (2016). Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7: 11709
    • (2016) Nat. Commun , vol.7 , pp. 11709
    • Zhou, Y.J.1    Buijs, N.A.2    Zhu, Z.3    Qin, J.4    Siewers, V.5
  • 121
    • 75749125061 scopus 로고    scopus 로고
    • Microbial production of fatty-Acid-derived fuels and chemicals from plant biomass
    • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, et al. (2010). Microbial production of fatty-Acid-derived fuels and chemicals from plant biomass. Nature 463: 559-62
    • (2010) Nature , vol.463 , pp. 559-562
    • Steen, E.J.1    Kang, Y.2    Bokinsky, G.3    Hu, Z.4    Schirmer, A.5
  • 122
    • 0142027026 scopus 로고    scopus 로고
    • Metabolic engineering for the microbial production of 1, 3-propanediol
    • Nakamura CE, Whited GM. (2003). Metabolic engineering for the microbial production of 1, 3-propanediol. Curr. Opin. Biotechnol. 14: 454-59
    • (2003) Curr. Opin. Biotechnol , vol.14 , pp. 454-459
    • Nakamura, C.E.1    Whited, G.M.2
  • 123
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol
    • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, et al. (2011). Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat. Chem. Biol. 7: 445-52
    • (2011) Nat. Chem. Biol , vol.7 , pp. 445-452
    • Yim, H.1    Haselbeck, R.2    Niu, W.3    Pujol-Baxley, C.4    Burgard, A.5
  • 124
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
    • Becker J, Zelder O, Häfner S, Schr öder H, Wittmann C. (2011). From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-68
    • (2011) Metab. Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 125
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
    • Park JH, Lee KH, Kim TY, Lee SY. (2007). Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. PNAS 104: 7797-802
    • (2007) PNAS , vol.104 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 126
    • 84862827747 scopus 로고    scopus 로고
    • Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode
    • Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, et al. (2012). Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquiterpene α-santalene in a fed-batch mode. Metab. Eng. 14: 91-103
    • (2012) Metab. Eng , vol.14 , pp. 91-103
    • Scalcinati, G.1    Knuf, C.2    Partow, S.3    Chen, Y.4    Maury, J.5
  • 127
    • 33645870422 scopus 로고    scopus 로고
    • Production of the antimalarial drug precursor artemisinic acid in engineered yeast
    • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-43
    • (2006) Nature , vol.440 , pp. 940-943
    • Ro, D.-K.1    Paradise, E.M.2    Ouellet, M.3    Fisher, K.J.4    Newman, K.L.5
  • 130
    • 84941962714 scopus 로고    scopus 로고
    • De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    • Li M, Kildegaard KR, Rodriguez A, Borodina I, Nielsen J. (2015). De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32: 1-11
    • (2015) Metab. Eng , vol.32 , pp. 1-11
    • Li, M.1    Kildegaard, K.R.2    Rodriguez, A.3    Borodina, I.4    Nielsen, J.5
  • 131
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • Hong K-K, Nielsen J. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69: 2671-90
    • (2012) Cell. Mol. Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.-K.1    Nielsen, J.2
  • 132
    • 84941351055 scopus 로고    scopus 로고
    • Yeast cell factories on the horizon
    • Nielsen J. (2015). Yeast cell factories on the horizon. Science 349: 1050-51
    • (2015) Science , vol.349 , pp. 1050-1051
    • Nielsen, J.1
  • 133
    • 0035812464 scopus 로고    scopus 로고
    • Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions
    • Burgard AP, Maranas CD. (2001). Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74: 364-75
    • (2001) Biotechnol. Bioeng , vol.74 , pp. 364-375
    • Burgard, A.P.1    Maranas, C.D.2
  • 134
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil KR, Rocha I, Förster J, Nielsen J. (2005). Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6: 308
    • (2005) BMC Bioinform , vol.6 , pp. 308
    • Patil, K.R.1    Rocha, I.2    Förster, J.3    Nielsen, J.4
  • 135
    • 25144505718 scopus 로고    scopus 로고
    • In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    • Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, et al. (2005). In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91: 643-48
    • (2005) Biotechnol. Bioeng , vol.91 , pp. 643-648
    • Fong, S.S.1    Burgard, A.P.2    Herring, C.D.3    Knight, E.M.4    Blattner, F.R.5
  • 136
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J, Nielsen J. (2006). In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8: 102-11
    • (2006) Metab. Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 137
    • 84872655172 scopus 로고    scopus 로고
    • Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
    • Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, et al. (2013). Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLOS ONE 8: e54144
    • (2013) PLOS ONE , vol.8 , pp. e54144
    • Otero, J.M.1    Cimini, D.2    Patil, K.R.3    Poulsen, S.G.4    Olsson, L.5
  • 138
    • 84936966835 scopus 로고    scopus 로고
    • Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways
    • Hadadi N, Hatzimanikatis V. (2015). Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28: 99-104
    • (2015) Curr. Opin. Chem. Biol , vol.28 , pp. 99-104
    • Hadadi, N.1    Hatzimanikatis, V.2
  • 139
    • 84969752776 scopus 로고    scopus 로고
    • Characterizing strain variation in engineered e coli using a multi-omics-based workflow
    • Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baldoo E, et al. (2016). Characterizing strain variation in engineered E coli using a multi-omics-based workflow. Cell Syst. 2: 335-46
    • (2016) Cell Syst , vol.2 , pp. 335-346
    • Brunk, E.1    George, K.W.2    Alonso-Gutierrez, J.3    Thompson, M.4    Baldoo, E.5
  • 140
    • 79961072482 scopus 로고    scopus 로고
    • Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis
    • Hong K-K, Vongsangnak W, Vemuri GN, Nielsen J. (2011). Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. PNAS 108: 12179-84S
    • (2011) PNAS , vol.108 , pp. 12179S-121784S
    • Hong, K.-K.1    Vongsangnak, W.2    Vemuri, G.N.3    Nielsen, J.4
  • 141
    • 0033664269 scopus 로고    scopus 로고
    • Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
    • Ostergaard S, Olsson L, Johnston M, Nielsen J. (2000). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-86
    • (2000) Nat. Biotechnol , vol.18 , pp. 1283-1286
    • Ostergaard, S.1    Olsson, L.2    Johnston, M.3    Nielsen, J.4
  • 142
    • 32044452893 scopus 로고    scopus 로고
    • Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering
    • Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. (2005). Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-72
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 6465-6472
    • Bro, C.1    Knudsen, S.2    Regenberg, B.3    Olsson, L.4    Nielsen, J.5
  • 143
    • 51649124324 scopus 로고    scopus 로고
    • The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae
    • de Jongh WA, Bro C, Ostergaard S, Regenberg B, Olsson L, et al. (2008). The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol. Bioeng. 101: 317-26
    • (2008) Biotechnol. Bioeng , vol.101 , pp. 317-326
    • De Jongh, W.A.1    Bro, C.2    Ostergaard, S.3    Regenberg, B.4    Olsson, L.5
  • 144
    • 84907483760 scopus 로고    scopus 로고
    • Altered sterol composition renders yeast thermotolerant
    • Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, et al. (2014). Altered sterol composition renders yeast thermotolerant. Science 346: 75-78
    • (2014) Science , vol.346 , pp. 75-78
    • Caspeta, L.1    Chen, Y.2    Ghiaci, P.3    Feizi, A.4    Buskov, S.5
  • 145
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-33
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 146
    • 80052580351 scopus 로고    scopus 로고
    • Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase
    • Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzle ED, et al. (2011). Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477: 225-28
    • (2011) Nature , vol.477 , pp. 225-228
    • Frezza, C.1    Zheng, L.2    Folger, O.3    Rajagopalan, K.N.4    MacKenzle, E.D.5
  • 147
    • 84949679802 scopus 로고    scopus 로고
    • Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GADPH
    • Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, et al. (2015). Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GADPH. Science 350: 1391-96
    • (2015) Science , vol.350 , pp. 1391-1396
    • Yun, J.1    Mullarky, E.2    Lu, C.3    Bosch, K.N.4    Kavalier, A.5
  • 148
    • 84920286423 scopus 로고    scopus 로고
    • New paradigms for metabolic modeling of human cells
    • Mardinoglu A, Nielsen J. (2015). New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34: 91-97
    • (2015) Curr. Opin. Biotechnol , vol.34 , pp. 91-97
    • Mardinoglu, A.1    Nielsen, J.2
  • 149
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliome data
    • Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, et al. (2007). Global reconstruction of the human metabolic network based on genomic and bibliome data. PNAS 104: 1777-82
    • (2007) PNAS , vol.104 , pp. 1777-1782
    • Duarte, N.C.1    Becker, S.A.2    Jamshidi, N.3    Thiele, I.4    Mo, M.L.5
  • 150
    • 34548860112 scopus 로고    scopus 로고
    • The Edinburgh human metabolic network reconstruction and its functional analysis
    • Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, et al. (2007). The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3: 135
    • (2007) Mol. Syst. Biol , vol.3 , pp. 135
    • Ma, H.1    Sorokin, A.2    Mazein, A.3    Selkov, A.4    Selkov, E.5
  • 152
    • 84898663879 scopus 로고    scopus 로고
    • Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
    • Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, et al. (2014). Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10: 721
    • (2014) Mol. Syst. Biol , vol.10 , pp. 721
    • Agren, R.1    Mardinoglu, A.2    Asplund, A.3    Kampf, C.4    Uhlen, M.5
  • 153
    • 84883787394 scopus 로고    scopus 로고
    • Integration of clinical data with a genome-scale metabolic model of the human adipocyte
    • Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, et al. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9: 949
    • (2013) Mol. Syst. Biol , vol.9 , pp. 949
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Uhlen, M.5
  • 154
    • 84898011025 scopus 로고    scopus 로고
    • Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-Alcoholic fatty liver disease
    • Mardinoglu A, Aagren R, Kampf C, Asplund A, Uhlen M, et al. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-Alcoholic fatty liver disease. Nat. Commun. 5: 3083
    • (2014) Nat. Commun , vol.5 , pp. 3083
    • Mardinoglu, A.1    Aagren, R.2    Kampf, C.3    Asplund, A.4    Uhlen, M.5
  • 155
    • 84929276343 scopus 로고    scopus 로고
    • Proteome- and transcriptomedriven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes
    • Väremo L, Scheele C, Broholm C, Mardinoglu A, Kampf C, et al. (2015). Proteome- and transcriptomedriven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep. 11: 1-13
    • (2015) Cell Rep , vol.11 , pp. 1-13
    • Väremo, L.1    Scheele, C.2    Broholm, C.3    Mardinoglu, A.4    Kampf, C.5
  • 156
    • 85016333383 scopus 로고    scopus 로고
    • Personal model-Assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD
    • Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Söderlund S, et al. (2017). Personal model-Assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13: 916
    • (2017) Mol. Syst. Biol , vol.13 , pp. 916
    • Mardinoglu, A.1    Bjornson, E.2    Zhang, C.3    Klevstig, M.4    Söderlund, S.5
  • 158
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genomescale active metabolic networks for 60 human cell types and 16 cancer types using INIT
    • Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, et al. (2012). Reconstruction of genomescale active metabolic networks for 60 human cell types and 16 cancer types using INIT. PLOS Comput. Biol. 8: e1002518
    • (2012) PLOS Comput. Biol , vol.8 , pp. e1002518
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5
  • 160
    • 84964321113 scopus 로고    scopus 로고
    • On the dependency of cellular protein levels on mRNA abundance
    • Liu Y, Beyer A, Aebershold R. (2016). On the dependency of cellular protein levels on mRNA abundance. Cell 165: 535-50
    • (2016) Cell , vol.165 , pp. 535-550
    • Liu, Y.1    Beyer, A.2    Aebershold, R.3
  • 161
    • 78650642557 scopus 로고    scopus 로고
    • Defining the transcriptome and proteome in three functionally different human cell lines
    • Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, et al. (2010). Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6: 450
    • (2010) Mol. Syst. Biol , vol.6 , pp. 450
    • Lundberg, E.1    Fagerberg, L.2    Klevebring, D.3    Matic, I.4    Geiger, T.5
  • 164
    • 84907333139 scopus 로고    scopus 로고
    • Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality
    • Jerby-Arnon L, Pfetzer N, Waldman YY, McGarry L, James D, et al. (2014). Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158: 1199-209
    • (2014) Cell , vol.158 , pp. 1199-1209
    • Jerby-Arnon, L.1    Pfetzer, N.2    Waldman, Y.Y.3    McGarry, L.4    James, D.5
  • 165
    • 79953661070 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing theWarburg effect
    • Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. (2011). Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing theWarburg effect. PLOS Comput. Biol. 7: e1002018
    • (2011) PLOS Comput. Biol , vol.7 , pp. e1002018
    • Shlomi, T.1    Benyamini, T.2    Gottlieb, E.3    Sharan, R.4    Ruppin, E.5
  • 166
    • 79959621970 scopus 로고    scopus 로고
    • Predicting selective drug targets in cancer through metabolic networks
    • Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, et al. (2011). Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7: 501
    • (2011) Mol. Syst. Biol , vol.7 , pp. 501
    • Folger, O.1    Jerby, L.2    Frezza, C.3    Gottlieb, E.4    Ruppin, E.5
  • 167
    • 84947745250 scopus 로고    scopus 로고
    • Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis
    • Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, et al. (2015). Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527: 379-83
    • (2015) Nature , vol.527 , pp. 379-383
    • Rabinovich, S.1    Adler, L.2    Yizhak, K.3    Sarver, A.4    Silberman, A.5
  • 168
    • 84895833353 scopus 로고    scopus 로고
    • Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma
    • Gatto F, Nookaew I, Nielsen J. (2014). Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. PNAS 111: E866-75
    • (2014) PNAS , vol.111 , pp. E866-E875
    • Gatto, F.1    Nookaew, I.2    Nielsen, J.3
  • 169
    • 84966671361 scopus 로고    scopus 로고
    • Glycosaminoglycan profiling in patients plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma
    • Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, et al. (2016). Glycosaminoglycan profiling in patients plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15: 1-15
    • (2016) Cell Rep , vol.15 , pp. 1-15
    • Gatto, F.1    Volpi, N.2    Nilsson, H.3    Nookaew, I.4    Maruzzo, M.5
  • 170
    • 84866168894 scopus 로고    scopus 로고
    • Functional interactions between the gut microbiota and host metabolism
    • Tremaroli V, Bäckhed F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature 489: 242-49
    • (2012) Nature , vol.489 , pp. 242-249
    • Tremaroli, V.1    Bäckhed, F.2
  • 171
    • 77950251400 scopus 로고    scopus 로고
    • A human gut microbial gene catalogue established by metagenomic sequencing
    • Qin J, Li R, Raes J, Arumigam M, Burgdorf KS, et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65
    • (2010) Nature , vol.464 , pp. 59-65
    • Qin, J.1    Li, R.2    Raes, J.3    Arumigam, M.4    Burgdorf, K.S.5
  • 172
    • 84867074831 scopus 로고    scopus 로고
    • A metagenome-wide association study of gut microbiota in type 2 diabetes
    • Qin J, Li Y, Cai Z, Li S, Zhu J, et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60
    • (2012) Nature , vol.490 , pp. 55-60
    • Qin, J.1    Li, Y.2    Cai, Z.3    Li, S.4    Zhu, J.5
  • 173
    • 84878709716 scopus 로고    scopus 로고
    • Gutmetagenome in European women with normal, impaired and diabetic glucose control
    • Karlsson F, Tremaroli V, Nookaew I, Bergström G, Behre CJ, et al. (2013). Gutmetagenome in European women with normal, impaired and diabetic glucose control. Nature 498: 99-103
    • (2013) Nature , vol.498 , pp. 99-103
    • Karlsson, F.1    Tremaroli, V.2    Nookaew, I.3    Bergström, G.4    Behre, C.J.5
  • 174
    • 84891524250 scopus 로고    scopus 로고
    • Assessing the human gut microbiota in metabolic diseases
    • Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. (2013). Assessing the human gut microbiota in metabolic diseases. Diabetes 62: 3341-49
    • (2013) Diabetes , vol.62 , pp. 3341-3349
    • Karlsson, F.1    Tremaroli, V.2    Nielsen, J.3    Bäckhed, F.4
  • 175
    • 84871814687 scopus 로고    scopus 로고
    • Symptomatic atherosclerosis is associated with an altered gut metagenome
    • Karlsson F, FÅk F, Nookaew I, Tremaroli V, Fagerberg B, et al. (2012). Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3: 1245
    • (2012) Nat. Commun , vol.3 , pp. 1245
    • Karlsson, F.1    Fåk, F.2    Nookaew, I.3    Tremaroli, V.4    Fagerberg, B.5
  • 177
    • 84929440325 scopus 로고    scopus 로고
    • Metabolic dependencies drive species co-occurrence in diverse microbial communities
    • Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, et al. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. PNAS 112: 6449-54
    • (2015) PNAS , vol.112 , pp. 6449-6454
    • Zelezniak, A.1    Andrejev, S.2    Ponomarova, O.3    Mende, D.R.4    Bork, P.5
  • 178
    • 84883389182 scopus 로고    scopus 로고
    • Understanding the interactions between bacteria in the human gut through metabolic modeling
    • Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, et al. (2013). Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3: 2532
    • (2013) Sci. Rep , vol.3 , pp. 2532
    • Shoaie, S.1    Karlsson, F.2    Mardinoglu, A.3    Nookaew, I.4    Bordel, S.5
  • 180
    • 84948461699 scopus 로고    scopus 로고
    • Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
    • Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, et al. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350: 1079-84
    • (2015) Science , vol.350 , pp. 1079-1084
    • Vetizou, M.1    Pitt, J.M.2    Daillere, R.3    Lepage, P.4    Waldschmitt, N.5
  • 181
    • 84948451779 scopus 로고    scopus 로고
    • Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
    • Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350: 1084-89
    • (2015) Science , vol.350 , pp. 1084-1089
    • Sivan, A.1    Corrales, L.2    Hubert, N.3    Williams, J.B.4    Aquino-Michaels, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.