메뉴 건너뛰기




Volumn 363, Issue 5, 2016, Pages

Frontiers in microbial 1-butanol and isobutanol production

Author keywords

ABE fermentation; Butanol; Isobutanol; Metabolic engineering; Synthetic biology

Indexed keywords

BUTANOL; CARBON DIOXIDE; CELLULOSE; COENZYME A; ISOBUTANOL; OXOACID; PROTEIN; BIOFUEL;

EID: 84959876975     PISSN: 03781097     EISSN: 15746968     Source Type: Journal    
DOI: 10.1093/femsle/fnw020     Document Type: Short Survey
Times cited : (79)

References (86)
  • 1
    • 26444483354 scopus 로고    scopus 로고
    • Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum
    • Alsaker KV, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 2005;187:7103-18.
    • (2005) J Bacteriol , vol.187 , pp. 7103-7118
    • Alsaker, K.V.1    Papoutsakis, E.T.2
  • 2
    • 77950629484 scopus 로고    scopus 로고
    • Metabolite stress and tolerance in the production of biofuels and chemicals: geneexpression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum
    • Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: geneexpression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 2010;105:1131-47.
    • (2010) Biotechnol Bioeng , vol.105 , pp. 1131-1147
    • Alsaker, K.V.1    Paredes, C.2    Papoutsakis, E.T.3
  • 3
    • 83055188821 scopus 로고    scopus 로고
    • Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum
    • Amador-Noguez D, Brasg IA, Feng X-J et al. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum. Appl Environ Microb 2011;77: 7984-97.
    • (2011) Appl Environ Microb , vol.77 , pp. 7984-7997
    • Amador-Noguez, D.1    Brasg, I.A.2    Feng, X.-J.3
  • 4
    • 84868610929 scopus 로고    scopus 로고
    • Integration of chemical catalysis with extractive fermentation to produce fuels
    • Anbarasan P, Baer ZC, Sreekumar S et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 2012;491:235-9.
    • (2012) Nature , vol.491 , pp. 235-239
    • Anbarasan, P.1    Baer, Z.C.2    Sreekumar, S.3
  • 5
    • 0021062517 scopus 로고
    • Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum
    • Andersch W, Bahl H, Gottschalk G. Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Eur J Appl Microbiol 1983;18: 327-32.
    • (1983) Eur J Appl Microbiol , vol.18 , pp. 327-332
    • Andersch, W.1    Bahl, H.2    Gottschalk, G.3
  • 6
    • 0025760959 scopus 로고
    • Isolation and characterization of Clostridium acetobutylicummutantswith enhanced amylolytic activity
    • Annous BA, Blaschek HP. Isolation and characterization of Clostridium acetobutylicummutantswith enhanced amylolytic activity. Appl Environ Microb 1991;57:2544-8.
    • (1991) Appl Environ Microb , vol.57 , pp. 2544-2548
    • Annous, B.A.1    Blaschek, H.P.2
  • 7
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi S, Cann AF, Connor MR et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008;10: 305-11.
    • (2008) Metab Eng , vol.10 , pp. 305-311
    • Atsumi, S.1    Cann, A.F.2    Connor, M.R.3
  • 8
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008;451:86-9.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 9
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009;27:1177-80.
    • (2009) Nat Biotechnol , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 10
    • 70349427105 scopus 로고    scopus 로고
    • Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
    • Atsumi S, Li Z, Liao JC. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microb 2009;75:6306-11.
    • (2009) Appl Environ Microb , vol.75 , pp. 6306-6311
    • Atsumi, S.1    Li, Z.2    Liao, J.C.3
  • 11
    • 57449098845 scopus 로고    scopus 로고
    • Directed Evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli
    • Atsumi S, Liao JC. Directed Evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli. Appl Environ Microb 2008;74: 7802-8.
    • (2008) Appl Environ Microb , vol.74 , pp. 7802-7808
    • Atsumi, S.1    Liao, J.C.2
  • 12
    • 74149094503 scopus 로고    scopus 로고
    • Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
    • Atsumi S, Wu T-Y, Eckl E-M et al. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biot 2010a;85:651-7.
    • (2010) Appl Microbiol Biot , vol.85 , pp. 651-657
    • Atsumi, S.1    Wu, T.-Y.2    Eckl, E.-M.3
  • 13
    • 78650647970 scopus 로고    scopus 로고
    • Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
    • Atsumi S,Wu T-Y, Machado IMP et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 2010b;6:449.
    • (2010) Mol Syst Biol , vol.6 , pp. 449
    • Atsumi, S.1    Wu, T.-Y.2    Machado, I.M.P.3
  • 14
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013;31:335-41.
    • (2013) Nat Biotechnol , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 15
    • 79958177780 scopus 로고    scopus 로고
    • High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
    • Baez A, Cho K-M, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biot 2011;90: 1681-90.
    • (2011) Appl Microbiol Biot , vol.90 , pp. 1681-1690
    • Baez, A.1    Cho, K.-M.2    Liao, J.C.3
  • 16
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • Bastian S, Liu X, Meyerowitz JT et al. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011;13:345-52.
    • (2011) Metab Eng , vol.13 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3
  • 17
    • 77953076065 scopus 로고    scopus 로고
    • Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis
    • Berezina OV, Zakharova NV, Brandt A et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biot 2010;87:635-46.
    • (2010) Appl Microbiol Biot , vol.87 , pp. 635-646
    • Berezina, O.V.1    Zakharova, N.V.2    Brandt, A.3
  • 18
    • 84888097068 scopus 로고    scopus 로고
    • Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production
    • Bhandiwad A, Shaw AJ, Guss A et al. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng 2014;21:17-25.
    • (2014) Metab Eng , vol.21 , pp. 17-25
    • Bhandiwad, A.1    Shaw, A.J.2    Guss, A.3
  • 19
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011;7:222-7.
    • (2011) Nat Chem Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 20
    • 34248196414 scopus 로고    scopus 로고
    • Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum
    • Borden JR, Papoutsakis ET. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microb 2007;73:3061-8.
    • (2007) Appl Environ Microb , vol.73 , pp. 3061-3068
    • Borden, J.R.1    Papoutsakis, E.T.2
  • 21
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
    • BuckelW, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 2013;1827:94-113.
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 22
    • 85015997250 scopus 로고    scopus 로고
    • Consolidated bioprocessing for biofuel production: recent advances
    • Chinn M, Mbaneme V. Consolidated bioprocessing for biofuel production: recent advances. Energy Emiss Control Technol 2015;3:23-44.
    • (2015) Energy Emiss Control Technol , vol.3 , pp. 23-44
    • Chinn, M.1    Mbaneme, V.2
  • 23
    • 84896119130 scopus 로고    scopus 로고
    • Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
    • Choi KY, Wernick DG, Tat CA et al. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 2014;23:53-61.
    • (2014) Metab Eng , vol.23 , pp. 53-61
    • Choi, K.Y.1    Wernick, D.G.2    Tat, C.A.3
  • 24
    • 84869014233 scopus 로고    scopus 로고
    • Targetedmutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway
    • Cooksley CM, Zhang Y,Wang H, et al. Targetedmutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 2012;14:630-41.
    • (2012) Metab Eng , vol.14 , pp. 630-641
    • Cooksley, C.M.1    Zhang, Y.2    Wang, H.3
  • 25
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco C, Clomburg JM, Miller EN et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011;476:355-9.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3
  • 26
    • 0036199858 scopus 로고    scopus 로고
    • Transcriptional regulation of solventogenesis in Clostridium acetobutylicum
    • Dürre P, Böhringer M, Nakotte S et al. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Mol Microb Biotech 2002;4:295-300.
    • (2002) J Mol Microb Biotech , vol.4 , pp. 295-300
    • Dürre, P.1    Böhringer, M.2    Nakotte, S.3
  • 27
    • 1542269174 scopus 로고    scopus 로고
    • Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping
    • Ezeji TC, Qureshi N, Blaschek HP. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biot 2004b;63:653-8.
    • (2004) Appl Microbiol Biot , vol.63 , pp. 653-658
    • Ezeji, T.C.1    Qureshi, N.2    Blaschek, H.P.3
  • 28
    • 34249981232 scopus 로고    scopus 로고
    • Bioproduction of butanol from biomass: from genes to bioreactors
    • Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotech 2007;18:220-7.
    • (2007) Curr Opin Biotech , vol.18 , pp. 220-227
    • Ezeji, T.C.1    Qureshi, N.2    Blaschek, H.P.3
  • 29
    • 10944238461 scopus 로고    scopus 로고
    • Butanol fermentation research: upstream and downstream manipulations
    • Ezeji TC, Qureshi N, Blaschek HP. Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004a;4:305-14.
    • (2004) Chem Rec , vol.4 , pp. 305-314
    • Ezeji, T.C.1    Qureshi, N.2    Blaschek, H.P.3
  • 31
    • 0041912376 scopus 로고    scopus 로고
    • Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping
    • Ezeji TC, Qureshi N, Blaschek HP. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microb Biot 2003;19: 595-603.
    • (2003) World J Microb Biot , vol.19 , pp. 595-603
    • Ezeji, T.C.1    Qureshi, N.2    Blaschek, H.P.3
  • 32
    • 0030908712 scopus 로고    scopus 로고
    • Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose
    • Formanek J, Mackie R, Blaschek HP. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microb 1997;63:2306-10.
    • (1997) Appl Environ Microb , vol.63 , pp. 2306-2310
    • Formanek, J.1    Mackie, R.2    Blaschek, H.P.3
  • 33
    • 79958010538 scopus 로고    scopus 로고
    • Fermentative production of butanol-the industrial perspective
    • Green EM. Fermentative production of butanol-the industrial perspective. Curr Opin Biotech 2011;22:337-43.
    • (2011) Curr Opin Biotech , vol.22 , pp. 337-343
    • Green, E.M.1
  • 34
    • 2042480078 scopus 로고    scopus 로고
    • Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824
    • Green EM, Bennett GN. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotech 1996;57-58:213-21.
    • (1996) Appl Biochem Biotech , vol.57 , Issue.58 , pp. 213-221
    • Green, E.M.1    Bennett, G.N.2
  • 35
    • 0029846031 scopus 로고    scopus 로고
    • Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824
    • Green EM, Boynton ZL, Harris LM et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 1996;142:2079-86.
    • (1996) Microbiology , vol.142 , pp. 2079-2086
    • Green, E.M.1    Boynton, Z.L.2    Harris, L.M.3
  • 36
    • 0026494903 scopus 로고
    • Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction
    • Grupe H, Gottschalk G. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microb 1992;58:3896-902.
    • (1992) Appl Environ Microb , vol.58 , pp. 3896-3902
    • Grupe, H.1    Gottschalk, G.2
  • 37
    • 0035678083 scopus 로고    scopus 로고
    • Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene
    • Harris LM, Blank L, Desai RP et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biot 2001;27:322-8.
    • (2001) J Ind Microbiol Biot , vol.27 , pp. 322-328
    • Harris, L.M.1    Blank, L.2    Desai, R.P.3
  • 38
    • 0034606690 scopus 로고    scopus 로고
    • Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition?
    • Harris LM, Desai RP, Welker NE et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 2000;67:1-11.
    • (2000) Biotechnol Bioeng , vol.67 , pp. 1-11
    • Harris, L.M.1    Desai, R.P.2    Welker, N.E.3
  • 39
    • 0021261020 scopus 로고
    • Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate
    • Hartmanis MGN, Gatenbeck S. Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microb 1984;47:1277-83.
    • (1984) Appl Environ Microb , vol.47 , pp. 1277-1283
    • Hartmanis, M.G.N.1    Gatenbeck, S.2
  • 40
    • 0021153497 scopus 로고
    • Uptake and activation of acetate and butyrate in Clostridium acetobutylicum
    • Hartmanis MGN, Klason T, Gatenbeck S. Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl Microbiol Biot 1984;20:66-71.
    • (1984) Appl Microbiol Biot , vol.20 , pp. 66-71
    • Hartmanis, M.G.N.1    Klason, T.2    Gatenbeck, S.3
  • 41
    • 71749102588 scopus 로고    scopus 로고
    • The ClosTron: mutagenesis in Clostridium refined and streamlined
    • Heap JT, Kuehne SA, Ehsaan M et al. The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Meth 2010;80:49-55.
    • (2010) J Microbiol Meth , vol.80 , pp. 49-55
    • Heap, J.T.1    Kuehne, S.A.2    Ehsaan, M.3
  • 42
    • 34548124567 scopus 로고    scopus 로고
    • The ClosTron: a universal gene knock-out system for the genus Clostridium
    • Heap JT, Pennington OJ, Cartman ST et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Meth 2007;70:452-64.
    • (2007) J Microbiol Meth , vol.70 , pp. 452-464
    • Heap, J.T.1    Pennington, O.J.2    Cartman, S.T.3
  • 43
    • 79955611428 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
    • HigashideW, Li Y, Yang Y et al. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microb 2011;77:2727-33.
    • (2011) Appl Environ Microb , vol.77 , pp. 2727-2733
    • Higashide, W.1    Li, Y.2    Yang, Y.3
  • 44
    • 79953889249 scopus 로고    scopus 로고
    • Conversion of proteins into biofuels by engineering nitrogen flux
    • Huo Y-X, Cho KM, Rivera JGL et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 2011;29:346-51.
    • (2011) Nat Biotechnol , vol.29 , pp. 346-351
    • Huo, Y.-X.1    Cho, K.M.2    Rivera, J.G.L.3
  • 46
    • 84868374643 scopus 로고    scopus 로고
    • Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum
    • Jang Y-S, Lee JY, Lee J et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 2012a;3:e00314-12.
    • (2012) mBio , vol.3 , pp. e00314-e00412
    • Jang, Y.-S.1    Lee, J.Y.2    Lee, J.3
  • 47
    • 84866770070 scopus 로고    scopus 로고
    • Butanol production fromrenewable biomass by clostridia
    • Jang Y-S, Malaviya A, Cho C et al. Butanol production fromrenewable biomass by clostridia. Bioresource Technol 2012b;123:653-63.
    • (2012) Bioresource Technol , vol.123 , pp. 653-663
    • Jang, Y.-S.1    Malaviya, A.2    Cho, C.3
  • 48
    • 84881579946 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture
    • Jang YS, Malaviya A, Lee J et al. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Progr 2013;29:1083-8.
    • (2013) Biotechnol Progr , vol.29 , pp. 1083-1088
    • Jang, Y.S.1    Malaviya, A.2    Lee, J.3
  • 49
    • 68049142960 scopus 로고    scopus 로고
    • Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio
    • Jiang Y, Xu C, Dong F et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 2009;11: 284-91.
    • (2009) Metab Eng , vol.11 , pp. 284-291
    • Jiang, Y.1    Xu, C.2    Dong, F.3
  • 50
    • 0022970603 scopus 로고
    • Acetone-butanol fermentation revisited
    • Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev 1986;50:484-524.
    • (1986) Microbiol Rev , vol.50 , pp. 484-524
    • Jones, D.T.1    Woods, D.R.2
  • 51
    • 85009949309 scopus 로고    scopus 로고
    • Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review
    • Jouzani GS, Taherzadeh MJ. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2015;5: 152-95.
    • (2015) Biofuel Res J , vol.5 , pp. 152-195
    • Jouzani, G.S.1    Taherzadeh, M.J.2
  • 52
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan EI, Liao JC. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 2012;109:6018-23.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 53
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan EI, Liao JC. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 2011;13:353-63.
    • (2011) Metab Eng , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 54
    • 84882392453 scopus 로고    scopus 로고
    • Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
    • Lan EI, Ro SY, Liao JC. Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 2013;6:2672.
    • (2013) Energy Environ Sci , vol.6 , pp. 2672
    • Lan, E.I.1    Ro, S.Y.2    Liao, J.C.3
  • 55
    • 51649108629 scopus 로고    scopus 로고
    • Fermentative butanol production by clostridia
    • Lee SY, Park JH, Jang SH et al. Fermentative butanol production by clostridia. Biotechnol Bioeng 2008;101: 209-28.
    • (2008) Biotechnol Bioeng , vol.101 , pp. 209-228
    • Lee, S.Y.1    Park, J.H.2    Jang, S.H.3
  • 56
    • 84870384496 scopus 로고    scopus 로고
    • Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes
    • Lee W-H, Seo S-O, Bae Y-H et al. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioproc Biosyst Eng 2012;35:1467-75.
    • (2012) Bioproc Biosyst Eng , vol.35 , pp. 1467-1475
    • Lee, W.-H.1    Seo, S.-O.2    Bae, Y.-H.3
  • 57
    • 84862676730 scopus 로고    scopus 로고
    • Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways
    • Lehmann D, Hönicke D, Ehrenreich A et al. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Appl Microbiol Biot 2012;94:743-54.
    • (2012) Appl Microbiol Biot , vol.94 , pp. 743-754
    • Lehmann, D.1    Hönicke, D.2    Ehrenreich, A.3
  • 58
    • 38649099718 scopus 로고    scopus 로고
    • Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri
    • Li F, Hinderberger J, Seedorf H et al. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 2008;190: 843-50.
    • (2008) J Bacteriol , vol.190 , pp. 843-850
    • Li, F.1    Hinderberger, J.2    Seedorf, H.3
  • 59
    • 84884576600 scopus 로고    scopus 로고
    • Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels
    • Li H, Liao JC. Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. Energy Environ Sci 2013;6:2892.
    • (2013) Energy Environ Sci , vol.6 , pp. 2892
    • Li, H.1    Liao, J.C.2
  • 60
    • 84859111827 scopus 로고    scopus 로고
    • Integrated electromicrobial conversion of CO2 to higher alcohols
    • Li H, Opgenorth PH, Wernick DG et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 2012; 335:1596.
    • (2012) Science , vol.335 , pp. 1596
    • Li, H.1    Opgenorth, P.H.2    Wernick, D.G.3
  • 61
    • 84937718357 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum
    • Lin PP, Mi L, Morioka AH et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng 2015;31:44-52.
    • (2015) Metab Eng , vol.31 , pp. 44-52
    • Lin, P.P.1    Mi, L.2    Morioka, A.H.3
  • 62
    • 84899555105 scopus 로고    scopus 로고
    • Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius
    • Lin PP, Rabe KS, Takasumi JL et al. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 2014;24:1-8.
    • (2014) Metab Eng , vol.24 , pp. 1-8
    • Lin, P.P.1    Rabe, K.S.2    Takasumi, J.L.3
  • 63
    • 80052625837 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production
    • Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotech 2011;22:634-47.
    • (2011) Curr Opin Biotech , vol.22 , pp. 634-647
    • Lütke-Eversloh, T.1    Bahl, H.2
  • 64
    • 84889061841 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
    • Matsuda F, Ishii J, Kondo T et al. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact 2013;12:119.
    • (2013) Microb Cell Fact , vol.12 , pp. 119
    • Matsuda, F.1    Ishii, J.2    Kondo, T.3
  • 65
    • 0021222280 scopus 로고
    • Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum
    • Monot F, Engasser J-M, Petitdemange H. Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biot 1984;19:422-6.
    • (1984) Appl Microbiol Biot , vol.19 , pp. 422-426
    • Monot, F.1    Engasser, J.-M.2    Petitdemange, H.3
  • 66
    • 67349164687 scopus 로고    scopus 로고
    • Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China
    • Ni Y, Sun Z. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biot 2009;83: 415-23.
    • (2009) Appl Microbiol Biot , vol.83 , pp. 415-423
    • Ni, Y.1    Sun, Z.2
  • 67
    • 68049135724 scopus 로고    scopus 로고
    • Engineering alternative butanol production platforms in heterologous bacteria
    • NielsenDR, Leonard E, Yoon S-H et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009;11:262-73.
    • (2009) Metab Eng , vol.11 , pp. 262-273
    • Nielsen, D.R.1    Leonard, E.2    Yoon, S.-H.3
  • 68
    • 0034902930 scopus 로고    scopus 로고
    • Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum
    • Nölling J, Breton G, Omelchenko MV et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 2001;183: 4823-38.
    • (2001) J Bacteriol , vol.183 , pp. 4823-4838
    • Nölling, J.1    Breton, G.2    Omelchenko, M.V.3
  • 69
    • 84861982164 scopus 로고    scopus 로고
    • Recent progress in consolidated bioprocessing
    • Olson DG, McBride JE, Shaw AJ et al. Recent progress in consolidated bioprocessing. Curr Opin Biotech 2012;23:396-405.
    • (2012) Curr Opin Biotech , vol.23 , pp. 396-405
    • Olson, D.G.1    McBride, J.E.2    Shaw, A.J.3
  • 70
    • 53049086510 scopus 로고    scopus 로고
    • Engineering solventogenic clostridia
    • Papoutsakis ET. Engineering solventogenic clostridia. Curr Opin Biotech 2008;19:420-9.
    • (2008) Curr Opin Biotech , vol.19 , pp. 420-429
    • Papoutsakis, E.T.1
  • 71
    • 78650976196 scopus 로고    scopus 로고
    • A review of solar photovoltaic technologies
    • Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sust Energ Rev 2011;15:1625-36.
    • (2011) Renew Sust Energ Rev , vol.15 , pp. 1625-1636
    • Parida, B.1    Iniyan, S.2    Goic, R.3
  • 72
    • 77649235073 scopus 로고    scopus 로고
    • Bio-butanol vs. bioethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum
    • PfrommPH, Amanor-Boadu V, Nelson R et al. Bio-butanol vs. bioethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenerg 2010;34:515-24.
    • (2010) Biomass Bioenerg , vol.34 , pp. 515-524
    • Pfromm, P.H.1    Amanor-Boadu, V.2    Nelson, R.3
  • 73
    • 33749863920 scopus 로고    scopus 로고
    • Genome sequence of the bioplastic-producing 'Knallgas' bacterium Ralstonia eutropha H16
    • Pohlmann A, Fricke WF, Reinecke F et al. Genome sequence of the bioplastic-producing 'Knallgas' bacterium Ralstonia eutropha H16. Nat Biotechnol 2006;24:1257-62.
    • (2006) Nat Biotechnol , vol.24 , pp. 1257-1262
    • Pohlmann, A.1    Fricke, W.F.2    Reinecke, F.3
  • 74
    • 36248966555 scopus 로고    scopus 로고
    • Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum
    • Shao L, Hu S, Yang Y et al. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 2007;17:963-5.
    • (2007) Cell Res , vol.17 , pp. 963-965
    • Shao, L.1    Hu, S.2    Yang, Y.3
  • 75
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable hightiter anaerobic 1-butanol synthesis in Escherichia coli
    • Shen CR, Lan EI, Dekishima Y et al. Driving forces enable hightiter anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microb 2011;77:2905-15.
    • (2011) Appl Environ Microb , vol.77 , pp. 2905-2915
    • Shen, C.R.1    Lan, E.I.2    Dekishima, Y.3
  • 76
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 2008;10:312-20.
    • (2008) Metab Eng , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 77
    • 80555150662 scopus 로고    scopus 로고
    • An evolutionary strategy for isobutanol production strain development in Escherichia coli
    • Smith KM, Liao JC. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 2011;13:674-81.
    • (2011) Metab Eng , vol.13 , pp. 674-681
    • Smith, K.M.1    Liao, J.C.2
  • 78
    • 58249098522 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
    • Steen EJ, Chan R, Prasad N et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008;7:36.
    • (2008) Microb Cell Fact , vol.7 , pp. 36
    • Steen, E.J.1    Chan, R.2    Prasad, N.3
  • 79
    • 1642396325 scopus 로고    scopus 로고
    • Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum
    • Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 2004;186:2006-18.
    • (2004) J Bacteriol , vol.186 , pp. 2006-2018
    • Tomas, C.A.1    Beamish, J.2    Papoutsakis, E.T.3
  • 80
    • 0041527249 scopus 로고    scopus 로고
    • Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program
    • Tomas CA,Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microb 2003;69:4951-65.
    • (2003) Appl Environ Microb , vol.69 , pp. 4951-4965
    • Tomas, C.A.1    Welker, N.E.2    Papoutsakis, E.T.3
  • 81
    • 9744280392 scopus 로고    scopus 로고
    • Taxonomy of the genus Cupriavidus: a tale of lost and found
    • Vandamme P. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Micr 2004;54:2285-9.
    • (2004) Int J Syst Evol Micr , vol.54 , pp. 2285-2289
    • Vandamme, P.1
  • 82
    • 84884174040 scopus 로고    scopus 로고
    • Development of a gene knockout system usingmobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii
    • Wang Y, Li X, Milne CB et al. Development of a gene knockout system usingmobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microb 2013;79:5853-63.
    • (2013) Appl Environ Microb , vol.79 , pp. 5853-5863
    • Wang, Y.1    Li, X.2    Milne, C.B.3
  • 83
    • 84874396804 scopus 로고    scopus 로고
    • Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers
    • Wernick DG, Liao JC. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers. Appl Microbiol Biot 2013;97:1397-406.
    • (2013) Appl Microbiol Biot , vol.97 , pp. 1397-1406
    • Wernick, D.G.1    Liao, J.C.2
  • 84
    • 84868275382 scopus 로고    scopus 로고
    • Draft genome sequence of butanolacetone-producing Clostridium beijerinckii strain G117
    • Wu Y-R, Li Y, Yang K-L et al. Draft genome sequence of butanolacetone-producing Clostridium beijerinckii strain G117. J Bacteriol 2012;194:5470-1.
    • (2012) J Bacteriol , vol.194 , pp. 5470-5471
    • Wu, Y.-R.1    Li, Y.2    Yang, K.-L.3
  • 85
    • 84942313615 scopus 로고    scopus 로고
    • Metabolic and process engineering of Clostridium cellulovorans for biofuel production fromcellulose
    • Yang X, Xu M, Yang S-T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production fromcellulose. Metab Eng 2015;32:39-48.
    • (2015) Metab Eng , vol.32 , pp. 39-48
    • Yang, X.1    Xu, M.2    Yang, S.-T.3
  • 86
    • 42249085227 scopus 로고    scopus 로고
    • What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
    • Zhu X-G, Long SP, Ort DR. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotech 2008;19: 153-9.
    • (2008) Curr Opin Biotech , vol.19 , pp. 153-159
    • Zhu, X.-G.1    Long, S.P.2    Ort, D.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.