-
1
-
-
26444483354
-
Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum
-
Alsaker KV, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 2005;187:7103-18.
-
(2005)
J Bacteriol
, vol.187
, pp. 7103-7118
-
-
Alsaker, K.V.1
Papoutsakis, E.T.2
-
2
-
-
77950629484
-
Metabolite stress and tolerance in the production of biofuels and chemicals: geneexpression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum
-
Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: geneexpression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 2010;105:1131-47.
-
(2010)
Biotechnol Bioeng
, vol.105
, pp. 1131-1147
-
-
Alsaker, K.V.1
Paredes, C.2
Papoutsakis, E.T.3
-
3
-
-
83055188821
-
Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum
-
Amador-Noguez D, Brasg IA, Feng X-J et al. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum. Appl Environ Microb 2011;77: 7984-97.
-
(2011)
Appl Environ Microb
, vol.77
, pp. 7984-7997
-
-
Amador-Noguez, D.1
Brasg, I.A.2
Feng, X.-J.3
-
4
-
-
84868610929
-
Integration of chemical catalysis with extractive fermentation to produce fuels
-
Anbarasan P, Baer ZC, Sreekumar S et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 2012;491:235-9.
-
(2012)
Nature
, vol.491
, pp. 235-239
-
-
Anbarasan, P.1
Baer, Z.C.2
Sreekumar, S.3
-
5
-
-
0021062517
-
Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum
-
Andersch W, Bahl H, Gottschalk G. Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Eur J Appl Microbiol 1983;18: 327-32.
-
(1983)
Eur J Appl Microbiol
, vol.18
, pp. 327-332
-
-
Andersch, W.1
Bahl, H.2
Gottschalk, G.3
-
6
-
-
0025760959
-
Isolation and characterization of Clostridium acetobutylicummutantswith enhanced amylolytic activity
-
Annous BA, Blaschek HP. Isolation and characterization of Clostridium acetobutylicummutantswith enhanced amylolytic activity. Appl Environ Microb 1991;57:2544-8.
-
(1991)
Appl Environ Microb
, vol.57
, pp. 2544-2548
-
-
Annous, B.A.1
Blaschek, H.P.2
-
7
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi S, Cann AF, Connor MR et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008;10: 305-11.
-
(2008)
Metab Eng
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
-
8
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008;451:86-9.
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
9
-
-
71849086611
-
Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
-
Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009;27:1177-80.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 1177-1180
-
-
Atsumi, S.1
Higashide, W.2
Liao, J.C.3
-
10
-
-
70349427105
-
Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
-
Atsumi S, Li Z, Liao JC. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microb 2009;75:6306-11.
-
(2009)
Appl Environ Microb
, vol.75
, pp. 6306-6311
-
-
Atsumi, S.1
Li, Z.2
Liao, J.C.3
-
11
-
-
57449098845
-
Directed Evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli
-
Atsumi S, Liao JC. Directed Evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli. Appl Environ Microb 2008;74: 7802-8.
-
(2008)
Appl Environ Microb
, vol.74
, pp. 7802-7808
-
-
Atsumi, S.1
Liao, J.C.2
-
12
-
-
74149094503
-
Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
-
Atsumi S, Wu T-Y, Eckl E-M et al. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biot 2010a;85:651-7.
-
(2010)
Appl Microbiol Biot
, vol.85
, pp. 651-657
-
-
Atsumi, S.1
Wu, T.-Y.2
Eckl, E.-M.3
-
13
-
-
78650647970
-
Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
-
Atsumi S,Wu T-Y, Machado IMP et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 2010b;6:449.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 449
-
-
Atsumi, S.1
Wu, T.-Y.2
Machado, I.M.P.3
-
14
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013;31:335-41.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
15
-
-
79958177780
-
High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
-
Baez A, Cho K-M, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biot 2011;90: 1681-90.
-
(2011)
Appl Microbiol Biot
, vol.90
, pp. 1681-1690
-
-
Baez, A.1
Cho, K.-M.2
Liao, J.C.3
-
16
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian S, Liu X, Meyerowitz JT et al. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011;13:345-52.
-
(2011)
Metab Eng
, vol.13
, pp. 345-352
-
-
Bastian, S.1
Liu, X.2
Meyerowitz, J.T.3
-
17
-
-
77953076065
-
Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis
-
Berezina OV, Zakharova NV, Brandt A et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biot 2010;87:635-46.
-
(2010)
Appl Microbiol Biot
, vol.87
, pp. 635-646
-
-
Berezina, O.V.1
Zakharova, N.V.2
Brandt, A.3
-
18
-
-
84888097068
-
Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production
-
Bhandiwad A, Shaw AJ, Guss A et al. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng 2014;21:17-25.
-
(2014)
Metab Eng
, vol.21
, pp. 17-25
-
-
Bhandiwad, A.1
Shaw, A.J.2
Guss, A.3
-
19
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011;7:222-7.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.Y.3
-
20
-
-
34248196414
-
Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum
-
Borden JR, Papoutsakis ET. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microb 2007;73:3061-8.
-
(2007)
Appl Environ Microb
, vol.73
, pp. 3061-3068
-
-
Borden, J.R.1
Papoutsakis, E.T.2
-
21
-
-
84871712835
-
Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
-
BuckelW, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 2013;1827:94-113.
-
(2013)
Biochim Biophys Acta
, vol.1827
, pp. 94-113
-
-
Buckel, W.1
Thauer, R.K.2
-
22
-
-
85015997250
-
Consolidated bioprocessing for biofuel production: recent advances
-
Chinn M, Mbaneme V. Consolidated bioprocessing for biofuel production: recent advances. Energy Emiss Control Technol 2015;3:23-44.
-
(2015)
Energy Emiss Control Technol
, vol.3
, pp. 23-44
-
-
Chinn, M.1
Mbaneme, V.2
-
23
-
-
84896119130
-
Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
-
Choi KY, Wernick DG, Tat CA et al. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 2014;23:53-61.
-
(2014)
Metab Eng
, vol.23
, pp. 53-61
-
-
Choi, K.Y.1
Wernick, D.G.2
Tat, C.A.3
-
24
-
-
84869014233
-
Targetedmutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway
-
Cooksley CM, Zhang Y,Wang H, et al. Targetedmutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 2012;14:630-41.
-
(2012)
Metab Eng
, vol.14
, pp. 630-641
-
-
Cooksley, C.M.1
Zhang, Y.2
Wang, H.3
-
25
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco C, Clomburg JM, Miller EN et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011;476:355-9.
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
-
26
-
-
0036199858
-
Transcriptional regulation of solventogenesis in Clostridium acetobutylicum
-
Dürre P, Böhringer M, Nakotte S et al. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Mol Microb Biotech 2002;4:295-300.
-
(2002)
J Mol Microb Biotech
, vol.4
, pp. 295-300
-
-
Dürre, P.1
Böhringer, M.2
Nakotte, S.3
-
27
-
-
1542269174
-
Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping
-
Ezeji TC, Qureshi N, Blaschek HP. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biot 2004b;63:653-8.
-
(2004)
Appl Microbiol Biot
, vol.63
, pp. 653-658
-
-
Ezeji, T.C.1
Qureshi, N.2
Blaschek, H.P.3
-
28
-
-
34249981232
-
Bioproduction of butanol from biomass: from genes to bioreactors
-
Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotech 2007;18:220-7.
-
(2007)
Curr Opin Biotech
, vol.18
, pp. 220-227
-
-
Ezeji, T.C.1
Qureshi, N.2
Blaschek, H.P.3
-
29
-
-
10944238461
-
Butanol fermentation research: upstream and downstream manipulations
-
Ezeji TC, Qureshi N, Blaschek HP. Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004a;4:305-14.
-
(2004)
Chem Rec
, vol.4
, pp. 305-314
-
-
Ezeji, T.C.1
Qureshi, N.2
Blaschek, H.P.3
-
31
-
-
0041912376
-
Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping
-
Ezeji TC, Qureshi N, Blaschek HP. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microb Biot 2003;19: 595-603.
-
(2003)
World J Microb Biot
, vol.19
, pp. 595-603
-
-
Ezeji, T.C.1
Qureshi, N.2
Blaschek, H.P.3
-
32
-
-
0030908712
-
Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose
-
Formanek J, Mackie R, Blaschek HP. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microb 1997;63:2306-10.
-
(1997)
Appl Environ Microb
, vol.63
, pp. 2306-2310
-
-
Formanek, J.1
Mackie, R.2
Blaschek, H.P.3
-
33
-
-
79958010538
-
Fermentative production of butanol-the industrial perspective
-
Green EM. Fermentative production of butanol-the industrial perspective. Curr Opin Biotech 2011;22:337-43.
-
(2011)
Curr Opin Biotech
, vol.22
, pp. 337-343
-
-
Green, E.M.1
-
34
-
-
2042480078
-
Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824
-
Green EM, Bennett GN. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotech 1996;57-58:213-21.
-
(1996)
Appl Biochem Biotech
, vol.57
, Issue.58
, pp. 213-221
-
-
Green, E.M.1
Bennett, G.N.2
-
35
-
-
0029846031
-
Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824
-
Green EM, Boynton ZL, Harris LM et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 1996;142:2079-86.
-
(1996)
Microbiology
, vol.142
, pp. 2079-2086
-
-
Green, E.M.1
Boynton, Z.L.2
Harris, L.M.3
-
36
-
-
0026494903
-
Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction
-
Grupe H, Gottschalk G. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microb 1992;58:3896-902.
-
(1992)
Appl Environ Microb
, vol.58
, pp. 3896-3902
-
-
Grupe, H.1
Gottschalk, G.2
-
37
-
-
0035678083
-
Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene
-
Harris LM, Blank L, Desai RP et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biot 2001;27:322-8.
-
(2001)
J Ind Microbiol Biot
, vol.27
, pp. 322-328
-
-
Harris, L.M.1
Blank, L.2
Desai, R.P.3
-
38
-
-
0034606690
-
Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition?
-
Harris LM, Desai RP, Welker NE et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 2000;67:1-11.
-
(2000)
Biotechnol Bioeng
, vol.67
, pp. 1-11
-
-
Harris, L.M.1
Desai, R.P.2
Welker, N.E.3
-
39
-
-
0021261020
-
Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate
-
Hartmanis MGN, Gatenbeck S. Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microb 1984;47:1277-83.
-
(1984)
Appl Environ Microb
, vol.47
, pp. 1277-1283
-
-
Hartmanis, M.G.N.1
Gatenbeck, S.2
-
40
-
-
0021153497
-
Uptake and activation of acetate and butyrate in Clostridium acetobutylicum
-
Hartmanis MGN, Klason T, Gatenbeck S. Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl Microbiol Biot 1984;20:66-71.
-
(1984)
Appl Microbiol Biot
, vol.20
, pp. 66-71
-
-
Hartmanis, M.G.N.1
Klason, T.2
Gatenbeck, S.3
-
41
-
-
71749102588
-
The ClosTron: mutagenesis in Clostridium refined and streamlined
-
Heap JT, Kuehne SA, Ehsaan M et al. The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Meth 2010;80:49-55.
-
(2010)
J Microbiol Meth
, vol.80
, pp. 49-55
-
-
Heap, J.T.1
Kuehne, S.A.2
Ehsaan, M.3
-
42
-
-
34548124567
-
The ClosTron: a universal gene knock-out system for the genus Clostridium
-
Heap JT, Pennington OJ, Cartman ST et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Meth 2007;70:452-64.
-
(2007)
J Microbiol Meth
, vol.70
, pp. 452-464
-
-
Heap, J.T.1
Pennington, O.J.2
Cartman, S.T.3
-
43
-
-
79955611428
-
Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
-
HigashideW, Li Y, Yang Y et al. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microb 2011;77:2727-33.
-
(2011)
Appl Environ Microb
, vol.77
, pp. 2727-2733
-
-
Higashide, W.1
Li, Y.2
Yang, Y.3
-
44
-
-
79953889249
-
Conversion of proteins into biofuels by engineering nitrogen flux
-
Huo Y-X, Cho KM, Rivera JGL et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 2011;29:346-51.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 346-351
-
-
Huo, Y.-X.1
Cho, K.M.2
Rivera, J.G.L.3
-
46
-
-
84868374643
-
Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum
-
Jang Y-S, Lee JY, Lee J et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 2012a;3:e00314-12.
-
(2012)
mBio
, vol.3
, pp. e00314-e00412
-
-
Jang, Y.-S.1
Lee, J.Y.2
Lee, J.3
-
47
-
-
84866770070
-
Butanol production fromrenewable biomass by clostridia
-
Jang Y-S, Malaviya A, Cho C et al. Butanol production fromrenewable biomass by clostridia. Bioresource Technol 2012b;123:653-63.
-
(2012)
Bioresource Technol
, vol.123
, pp. 653-663
-
-
Jang, Y.-S.1
Malaviya, A.2
Cho, C.3
-
48
-
-
84881579946
-
Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture
-
Jang YS, Malaviya A, Lee J et al. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol Progr 2013;29:1083-8.
-
(2013)
Biotechnol Progr
, vol.29
, pp. 1083-1088
-
-
Jang, Y.S.1
Malaviya, A.2
Lee, J.3
-
49
-
-
68049142960
-
Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio
-
Jiang Y, Xu C, Dong F et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 2009;11: 284-91.
-
(2009)
Metab Eng
, vol.11
, pp. 284-291
-
-
Jiang, Y.1
Xu, C.2
Dong, F.3
-
50
-
-
0022970603
-
Acetone-butanol fermentation revisited
-
Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev 1986;50:484-524.
-
(1986)
Microbiol Rev
, vol.50
, pp. 484-524
-
-
Jones, D.T.1
Woods, D.R.2
-
51
-
-
85009949309
-
Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review
-
Jouzani GS, Taherzadeh MJ. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2015;5: 152-95.
-
(2015)
Biofuel Res J
, vol.5
, pp. 152-195
-
-
Jouzani, G.S.1
Taherzadeh, M.J.2
-
52
-
-
84859950774
-
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
-
Lan EI, Liao JC. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 2012;109:6018-23.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 6018-6023
-
-
Lan, E.I.1
Liao, J.C.2
-
53
-
-
79958747820
-
Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
-
Lan EI, Liao JC. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 2011;13:353-63.
-
(2011)
Metab Eng
, vol.13
, pp. 353-363
-
-
Lan, E.I.1
Liao, J.C.2
-
54
-
-
84882392453
-
Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
-
Lan EI, Ro SY, Liao JC. Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 2013;6:2672.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 2672
-
-
Lan, E.I.1
Ro, S.Y.2
Liao, J.C.3
-
55
-
-
51649108629
-
Fermentative butanol production by clostridia
-
Lee SY, Park JH, Jang SH et al. Fermentative butanol production by clostridia. Biotechnol Bioeng 2008;101: 209-28.
-
(2008)
Biotechnol Bioeng
, vol.101
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
-
56
-
-
84870384496
-
Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes
-
Lee W-H, Seo S-O, Bae Y-H et al. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioproc Biosyst Eng 2012;35:1467-75.
-
(2012)
Bioproc Biosyst Eng
, vol.35
, pp. 1467-1475
-
-
Lee, W.-H.1
Seo, S.-O.2
Bae, Y.-H.3
-
57
-
-
84862676730
-
Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways
-
Lehmann D, Hönicke D, Ehrenreich A et al. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Appl Microbiol Biot 2012;94:743-54.
-
(2012)
Appl Microbiol Biot
, vol.94
, pp. 743-754
-
-
Lehmann, D.1
Hönicke, D.2
Ehrenreich, A.3
-
58
-
-
38649099718
-
Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri
-
Li F, Hinderberger J, Seedorf H et al. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 2008;190: 843-50.
-
(2008)
J Bacteriol
, vol.190
, pp. 843-850
-
-
Li, F.1
Hinderberger, J.2
Seedorf, H.3
-
59
-
-
84884576600
-
Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels
-
Li H, Liao JC. Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. Energy Environ Sci 2013;6:2892.
-
(2013)
Energy Environ Sci
, vol.6
, pp. 2892
-
-
Li, H.1
Liao, J.C.2
-
60
-
-
84859111827
-
Integrated electromicrobial conversion of CO2 to higher alcohols
-
Li H, Opgenorth PH, Wernick DG et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 2012; 335:1596.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
Opgenorth, P.H.2
Wernick, D.G.3
-
61
-
-
84937718357
-
Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum
-
Lin PP, Mi L, Morioka AH et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng 2015;31:44-52.
-
(2015)
Metab Eng
, vol.31
, pp. 44-52
-
-
Lin, P.P.1
Mi, L.2
Morioka, A.H.3
-
62
-
-
84899555105
-
Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius
-
Lin PP, Rabe KS, Takasumi JL et al. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 2014;24:1-8.
-
(2014)
Metab Eng
, vol.24
, pp. 1-8
-
-
Lin, P.P.1
Rabe, K.S.2
Takasumi, J.L.3
-
63
-
-
80052625837
-
Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production
-
Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotech 2011;22:634-47.
-
(2011)
Curr Opin Biotech
, vol.22
, pp. 634-647
-
-
Lütke-Eversloh, T.1
Bahl, H.2
-
64
-
-
84889061841
-
Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
-
Matsuda F, Ishii J, Kondo T et al. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact 2013;12:119.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 119
-
-
Matsuda, F.1
Ishii, J.2
Kondo, T.3
-
65
-
-
0021222280
-
Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum
-
Monot F, Engasser J-M, Petitdemange H. Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biot 1984;19:422-6.
-
(1984)
Appl Microbiol Biot
, vol.19
, pp. 422-426
-
-
Monot, F.1
Engasser, J.-M.2
Petitdemange, H.3
-
66
-
-
67349164687
-
Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China
-
Ni Y, Sun Z. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biot 2009;83: 415-23.
-
(2009)
Appl Microbiol Biot
, vol.83
, pp. 415-423
-
-
Ni, Y.1
Sun, Z.2
-
67
-
-
68049135724
-
Engineering alternative butanol production platforms in heterologous bacteria
-
NielsenDR, Leonard E, Yoon S-H et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009;11:262-73.
-
(2009)
Metab Eng
, vol.11
, pp. 262-273
-
-
Nielsen, D.R.1
Leonard, E.2
Yoon, S.-H.3
-
68
-
-
0034902930
-
Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum
-
Nölling J, Breton G, Omelchenko MV et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 2001;183: 4823-38.
-
(2001)
J Bacteriol
, vol.183
, pp. 4823-4838
-
-
Nölling, J.1
Breton, G.2
Omelchenko, M.V.3
-
70
-
-
53049086510
-
Engineering solventogenic clostridia
-
Papoutsakis ET. Engineering solventogenic clostridia. Curr Opin Biotech 2008;19:420-9.
-
(2008)
Curr Opin Biotech
, vol.19
, pp. 420-429
-
-
Papoutsakis, E.T.1
-
72
-
-
77649235073
-
Bio-butanol vs. bioethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum
-
PfrommPH, Amanor-Boadu V, Nelson R et al. Bio-butanol vs. bioethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenerg 2010;34:515-24.
-
(2010)
Biomass Bioenerg
, vol.34
, pp. 515-524
-
-
Pfromm, P.H.1
Amanor-Boadu, V.2
Nelson, R.3
-
73
-
-
33749863920
-
Genome sequence of the bioplastic-producing 'Knallgas' bacterium Ralstonia eutropha H16
-
Pohlmann A, Fricke WF, Reinecke F et al. Genome sequence of the bioplastic-producing 'Knallgas' bacterium Ralstonia eutropha H16. Nat Biotechnol 2006;24:1257-62.
-
(2006)
Nat Biotechnol
, vol.24
, pp. 1257-1262
-
-
Pohlmann, A.1
Fricke, W.F.2
Reinecke, F.3
-
74
-
-
36248966555
-
Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum
-
Shao L, Hu S, Yang Y et al. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 2007;17:963-5.
-
(2007)
Cell Res
, vol.17
, pp. 963-965
-
-
Shao, L.1
Hu, S.2
Yang, Y.3
-
75
-
-
79955611425
-
Driving forces enable hightiter anaerobic 1-butanol synthesis in Escherichia coli
-
Shen CR, Lan EI, Dekishima Y et al. Driving forces enable hightiter anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microb 2011;77:2905-15.
-
(2011)
Appl Environ Microb
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
-
76
-
-
54349114978
-
Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
-
Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 2008;10:312-20.
-
(2008)
Metab Eng
, vol.10
, pp. 312-320
-
-
Shen, C.R.1
Liao, J.C.2
-
77
-
-
80555150662
-
An evolutionary strategy for isobutanol production strain development in Escherichia coli
-
Smith KM, Liao JC. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 2011;13:674-81.
-
(2011)
Metab Eng
, vol.13
, pp. 674-681
-
-
Smith, K.M.1
Liao, J.C.2
-
78
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen EJ, Chan R, Prasad N et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008;7:36.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
-
79
-
-
1642396325
-
Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum
-
Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 2004;186:2006-18.
-
(2004)
J Bacteriol
, vol.186
, pp. 2006-2018
-
-
Tomas, C.A.1
Beamish, J.2
Papoutsakis, E.T.3
-
80
-
-
0041527249
-
Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program
-
Tomas CA,Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microb 2003;69:4951-65.
-
(2003)
Appl Environ Microb
, vol.69
, pp. 4951-4965
-
-
Tomas, C.A.1
Welker, N.E.2
Papoutsakis, E.T.3
-
81
-
-
9744280392
-
Taxonomy of the genus Cupriavidus: a tale of lost and found
-
Vandamme P. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Micr 2004;54:2285-9.
-
(2004)
Int J Syst Evol Micr
, vol.54
, pp. 2285-2289
-
-
Vandamme, P.1
-
82
-
-
84884174040
-
Development of a gene knockout system usingmobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii
-
Wang Y, Li X, Milne CB et al. Development of a gene knockout system usingmobile group II introns (Targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microb 2013;79:5853-63.
-
(2013)
Appl Environ Microb
, vol.79
, pp. 5853-5863
-
-
Wang, Y.1
Li, X.2
Milne, C.B.3
-
83
-
-
84874396804
-
Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers
-
Wernick DG, Liao JC. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers. Appl Microbiol Biot 2013;97:1397-406.
-
(2013)
Appl Microbiol Biot
, vol.97
, pp. 1397-1406
-
-
Wernick, D.G.1
Liao, J.C.2
-
84
-
-
84868275382
-
Draft genome sequence of butanolacetone-producing Clostridium beijerinckii strain G117
-
Wu Y-R, Li Y, Yang K-L et al. Draft genome sequence of butanolacetone-producing Clostridium beijerinckii strain G117. J Bacteriol 2012;194:5470-1.
-
(2012)
J Bacteriol
, vol.194
, pp. 5470-5471
-
-
Wu, Y.-R.1
Li, Y.2
Yang, K.-L.3
-
85
-
-
84942313615
-
Metabolic and process engineering of Clostridium cellulovorans for biofuel production fromcellulose
-
Yang X, Xu M, Yang S-T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production fromcellulose. Metab Eng 2015;32:39-48.
-
(2015)
Metab Eng
, vol.32
, pp. 39-48
-
-
Yang, X.1
Xu, M.2
Yang, S.-T.3
-
86
-
-
42249085227
-
What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
-
Zhu X-G, Long SP, Ort DR. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotech 2008;19: 153-9.
-
(2008)
Curr Opin Biotech
, vol.19
, pp. 153-159
-
-
Zhu, X.-G.1
Long, S.P.2
Ort, D.R.3
|