메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase

Author keywords

[No Author keywords available]

Indexed keywords

ACETOIN; ACETOLACTATE DECARBOXYLASE; ACETOLACTATE SYNTHASE; ALCOHOL DEHYDROGENASE; BACTERIAL PROTEIN; BUTANEDIOL DEHYDROGENASE; CARBOXYLYASE; MULTIENZYME COMPLEX; OXIDOREDUCTASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE;

EID: 84974601942     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep27667     Document Type: Article
Times cited : (68)

References (29)
  • 1
    • 84895454815 scopus 로고    scopus 로고
    • Strategies for enhancing fermentative production of acetoin: A review
    • Xiao, Z. & Lu, J. R. Strategies for enhancing fermentative production of acetoin: A review. Biotechnol. Adv. 32, 492-503 (2014).
    • (2014) Biotechnol. Adv. , vol.32 , pp. 492-503
    • Xiao, Z.1    Lu, J.R.2
  • 2
    • 66249105386 scopus 로고    scopus 로고
    • Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium
    • Xiao, Z., Ma, C., Xu, P. & Lu, J. R. Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium. PLoS One 4, e5627 (2009).
    • (2009) PLoS One , vol.4 , pp. e5627
    • Xiao, Z.1    Ma, C.2    Xu, P.3    Lu, J.R.4
  • 4
    • 84904084853 scopus 로고    scopus 로고
    • Accelerated green process of tetramethylpyrazine production from glucose and diammonium phosphate
    • Xiao, Z., Hou, X., Lyu, X., Xi, L. & Zhao, J. Accelerated green process of tetramethylpyrazine production from glucose and diammonium phosphate. Biotechnol. Biofuels 7, 106 (2014).
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 106
    • Xiao, Z.1    Hou, X.2    Lyu, X.3    Xi, L.4    Zhao, J.5
  • 5
    • 84886733248 scopus 로고    scopus 로고
    • Efficient bioconversion of 23-butanediol into acetoin using Gluconobacter oxydans DSM 2003
    • Wang, X. et al. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. Biotechnol. Biofuels 6, 155 (2013).
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 155
    • Wang, X.1
  • 6
    • 84892451287 scopus 로고    scopus 로고
    • Engineering of carboligase activity reaction in Candida glabrata for acetoin production
    • Li, S., Xu, N., Liu, L. & Chen, J. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab. Eng. 22, 32-39 (2014).
    • (2014) Metab. Eng. , vol.22 , pp. 32-39
    • Li, S.1    Xu, N.2    Liu, L.3    Chen, J.4
  • 7
    • 84940005446 scopus 로고    scopus 로고
    • Engineered Serratia marcescens for efficient (3R)-acetoin and (2R, 3R)-2,3-butanediol production
    • Bai, F. et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R, 3R)-2,3-butanediol production. J. Ind. Microbiol. Biotechnol. 42, 779-786 (2015).
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 779-786
    • Bai, F.1
  • 8
    • 34250166461 scopus 로고    scopus 로고
    • Acetoin metabolism in bacteria
    • Xiao, Z. & Xu, P. Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 33, 127-140 (2007).
    • (2007) Crit. Rev. Microbiol. , vol.33 , pp. 127-140
    • Xiao, Z.1    Xu, P.2
  • 9
    • 84884813430 scopus 로고    scopus 로고
    • Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase
    • Zhang, X. et al. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World J. Microbiol. Biotechnol. 29, 1783-1789 (2013).
    • (2013) World J. Microbiol. Biotechnol. , vol.29 , pp. 1783-1789
    • Zhang, X.1
  • 10
    • 84862318026 scopus 로고    scopus 로고
    • Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase
    • Sun, J. A., Zhang, L. Y., Rao, B., Shen, Y. L. & Wei, D. Z. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 119, 94-98 (2012).
    • (2012) Bioresour. Technol. , vol.119 , pp. 94-98
    • Sun, J.A.1    Zhang, L.Y.2    Rao, B.3    Shen, Y.L.4    Wei, D.Z.5
  • 11
    • 84896881649 scopus 로고    scopus 로고
    • The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
    • Zhang, X. et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 23, 34-41 (2014).
    • (2014) Metab. Eng. , vol.23 , pp. 34-41
    • Zhang, X.1
  • 12
    • 84961773607 scopus 로고    scopus 로고
    • Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae
    • Zhang, L. et al. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem. 18, 1560-1570 (2016).
    • (2016) Green Chem. , vol.18 , pp. 1560-1570
    • Zhang, L.1
  • 13
    • 33746238073 scopus 로고    scopus 로고
    • Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes
    • Cambon, B., Monteil, V., Remize, F., Camarasa, C. & Dequin, S. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl. Environ. Microbiol. 72, 4688-4694 (2006).
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 4688-4694
    • Cambon, B.1    Monteil, V.2    Remize, F.3    Camarasa, C.4    Dequin, S.5
  • 14
    • 84940033066 scopus 로고    scopus 로고
    • Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
    • Kim, S. & Hahn, J. S. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab. Eng. 31, 94-101 (2015).
    • (2015) Metab. Eng. , vol.31 , pp. 94-101
    • Kim, S.1    Hahn, J.S.2
  • 15
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • Kim, S. J., Seo, S. O., Jin, Y. S. & Seo, J. H. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 146, 274-281 (2013).
    • (2013) Bioresour. Technol. , vol.146 , pp. 274-281
    • Kim, S.J.1    Seo, S.O.2    Jin, Y.S.3    Seo, J.H.4
  • 16
    • 84896297653 scopus 로고    scopus 로고
    • Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol
    • Lian, J., Chao, R. & Zhao, H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol. Metab. Eng. 23, 92-99 (2014).
    • (2014) Metab. Eng. , vol.23 , pp. 92-99
    • Lian, J.1    Chao, R.2    Zhao, H.3
  • 17
    • 84925485660 scopus 로고    scopus 로고
    • Promoters inducible by aromatic amino acids and g-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae
    • Kim, S., Lee, K., Bae, S. J. & Hahn, J. S. Promoters inducible by aromatic amino acids and g-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99, 2705-2714 (2015).
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 2705-2714
    • Kim, S.1    Lee, K.2    Bae, S.J.3    Hahn, J.S.4
  • 18
    • 0030908893 scopus 로고    scopus 로고
    • The two isoenzymes for yeast NAD+dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M. & Adler, L. The two isoenzymes for yeast NAD+dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16, 2179-2187 (1997).
    • (1997) EMBO J. , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 19
    • 75749132831 scopus 로고    scopus 로고
    • Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol
    • Gonzalez, E. et al. Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol. Appl. Environ. Microbiol. 76, 670-679 (2010).
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 670-679
    • Gonzalez, E.1
  • 20
    • 84901001601 scopus 로고    scopus 로고
    • Engineering redox balance through cofactor systems
    • Chen, X. L., Li, S. B. & Liu, L. M. Engineering redox balance through cofactor systems. Trends Biotechnol. 32, 337-343 (2014).
    • (2014) Trends Biotechnol. , vol.32 , pp. 337-343
    • Chen, X.L.1    Li, S.B.2    Liu, L.M.3
  • 21
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Forster, J., Famili, I., Fu, P., Palsson, B. O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253 (2003).
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 22
    • 33746891860 scopus 로고    scopus 로고
    • Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism
    • Heux, S., Cachon, R. & Dequin, S. Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 8, 303-314 (2006).
    • (2006) Metab. Eng. , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 24
    • 0023891542 scopus 로고
    • Enterobacter: An emerging nosocomial pathogen
    • Gaston, M. A. Enterobacter: an emerging nosocomial pathogen. J. Hosp. Infect. 11, 197-208 (1988).
    • (1988) J. Hosp. Infect. , vol.11 , pp. 197-208
    • Gaston, M.A.1
  • 25
    • 84946498715 scopus 로고    scopus 로고
    • High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply
    • Dai, J. Y., Cheng, L., He, Q. F. & Xiu, Z. L. High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Process Biochem. 50, 1730-1734 (2015).
    • (2015) Process Biochem. , vol.50 , pp. 1730-1734
    • Dai, J.Y.1    Cheng, L.2    He, Q.F.3    Xiu, Z.L.4
  • 26
    • 84897445215 scopus 로고    scopus 로고
    • Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis
    • Zhang, X. et al. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One 9, e91187 (2014).
    • (2014) PLoS One , vol.9 , pp. e91187
    • Zhang, X.1
  • 27
    • 84904259537 scopus 로고    scopus 로고
    • Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance
    • Luo, Q., Wu, J. & Wu, M. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochem. 49, 1223-1230 (2014).
    • (2014) Process Biochem. , vol.49 , pp. 1223-1230
    • Luo, Q.1    Wu, J.2    Wu, M.3
  • 28
    • 84867640048 scopus 로고    scopus 로고
    • Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107
    • Zhang, L., Chen, S., Xie, H., Tian, Y. & Hu, K. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol. 87, 1551-1557 (2012).
    • (2012) J. Chem. Technol. Biotechnol. , vol.87 , pp. 1551-1557
    • Zhang, L.1    Chen, S.2    Xie, H.3    Tian, Y.4    Hu, K.5
  • 29
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119-122 (1995).
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.