메뉴 건너뛰기




Volumn 11, Issue 8, 2016, Pages 1110-1117

EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9

Author keywords

3 hydroxypropionic acid; CRISPR Cas9; Metabolic engineering; Saccharomyces cerevisiae

Indexed keywords

GENES; INDUSTRIAL CHEMICALS; INTEGRATION; METABOLIC ENGINEERING; RECOMBINANT PROTEINS; VECTORS;

EID: 84979746885     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201600147     Document Type: Article
Times cited : (190)

References (34)
  • 2
    • 84899976199 scopus 로고    scopus 로고
    • Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    • Borodina, I., Nielsen, J., Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 2014, 9, 609–620.
    • (2014) Biotechnol. J. , vol.9 , pp. 609-620
    • Borodina, I.1    Nielsen, J.2
  • 3
    • 84933518878 scopus 로고    scopus 로고
    • Recent applications of synthetic biology tools for yeast metabolic engineering
    • Jensen, M. K., Keasling, J. D., Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 2015, 15, DOI: 10.1111/1567-1364.12185.
    • (2015) FEMS Yeast Res , vol.15
    • Jensen, M.K.1    Keasling, J.D.2
  • 4
    • 0025777047 scopus 로고
    • Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae
    • Schiestl, R. H., Petes, T. D., Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1991, 88, 7585–7589.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 7585-7589
    • Schiestl, R.H.1    Petes, T.D.2
  • 5
    • 84896122676 scopus 로고    scopus 로고
    • EasyClone: Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae
    • Jensen, N. B., Strucko, T., Kildegaard, K. R., David, F. et al., EasyClone: Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 2014, 14, 238–248.
    • (2014) FEMS Yeast Res , vol.14 , pp. 238-248
    • Jensen, N.B.1    Strucko, T.2    Kildegaard, K.R.3    David, F.4
  • 6
    • 84944275832 scopus 로고    scopus 로고
    • EasyClone 2.0: Expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains
    • Stovicek, V., Borja, G. M., Forster, J., Borodina, I., EasyClone 2.0: Expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains. J. Ind. Microbiol. Biotechnol. 2015, 42, 1519–1531.
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 1519-1531
    • Stovicek, V.1    Borja, G.M.2    Forster, J.3    Borodina, I.4
  • 7
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk, J. T., Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 2002, 68, 2095–2100.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 2095-2100
    • Pronk, J.T.1
  • 8
    • 84997404935 scopus 로고    scopus 로고
    • The metabolic background is a global player in Saccharomyces gene expression epistasis
    • Alam, M. T., Zelezniak, A., Mülleder, M., Shliaha, P. et al., The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat. Microbiol. 2016, 1, 1–10.
    • (2016) Nat. Microbiol. , vol.1 , pp. 1-10
    • Alam, M.T.1    Zelezniak, A.2    Mülleder, M.3    Shliaha, P.4
  • 9
    • 0345166826 scopus 로고    scopus 로고
    • Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast
    • Storici, F., Durham, C. L., Gordenin, D. A., Resnick, M. A., Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc. Natl. Acad. Sci. USA 2003, 100, 14994–14999.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 14994-14999
    • Storici, F.1    Durham, C.L.2    Gordenin, D.A.3    Resnick, M.A.4
  • 10
    • 80053064386 scopus 로고    scopus 로고
    • Reiterative recombination for the in vivo assembly of libraries of multigene pathways
    • Wingler, L. M., Cornish, V. W., Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc. Natl. Acad. Sci. USA 2011, 108, 15135–15140.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 15135-15140
    • Wingler, L.M.1    Cornish, V.W.2
  • 11
    • 84887606266 scopus 로고    scopus 로고
    • One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae
    • Kuijpers, N. G., Chroumpi, S., Vos, T., Solis-Escalante, D. et al., One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 769–781.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 769-781
    • Kuijpers, N.G.1    Chroumpi, S.2    Vos, T.3    Solis-Escalante, D.4
  • 12
    • 84877272995 scopus 로고    scopus 로고
    • A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences
    • Kuijpers, N. G., Solis-Escalante, D., Bosman, L., van den Broek, M. et al., A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb. Cell Fact. 2013, 12, 47.
    • (2013) Microb. Cell Fact. , vol.12 , pp. 47
    • Kuijpers, N.G.1    Solis-Escalante, D.2    Bosman, L.3    van den Broek, M.4
  • 13
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X. et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336–4343.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4
  • 14
    • 84865070369 scopus 로고    scopus 로고
    • Hauer, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3
  • 15
    • 84923021733 scopus 로고    scopus 로고
    • Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
    • Jakočiūnas, T., Bonde, I., Herrgård, M. J., Harrison, S. J. et al., Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 213–222.
    • (2015) Metab. Eng. , vol.28 , pp. 213-222
    • Jakočiūnas, T.1    Bonde, I.2    Herrgård, M.J.3    Harrison, S.J.4
  • 16
    • 84933569948 scopus 로고    scopus 로고
    • Arsovska, D. et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae
    • Jakočiūnas, T., Rajkumar, A. S., Zhang, J., Arsovska, D. et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth. Biol. 2015, 4, 1226–1234.
    • (2015) ACS Synth. Biol , vol.4 , pp. 1226-1234
    • Jakočiūnas, T.1    Rajkumar, A.S.2    Zhang, J.3
  • 17
    • 84927920113 scopus 로고    scopus 로고
    • CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
    • Stovicek, V., Borodina, I., Forster, J., CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun. 2015, 2, 13–22.
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 13-22
    • Stovicek, V.1    Borodina, I.2    Forster, J.3
  • 18
    • 84935426318 scopus 로고    scopus 로고
    • CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
    • Ronda, C., Maury, J., Jakočiūnas, T., Jacobsen, S. A. et al., CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 97.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 97
    • Ronda, C.1    Maury, J.2    Jakočiūnas, T.3    Jacobsen, S.A.4
  • 19
    • 84930638003 scopus 로고    scopus 로고
    • CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
    • Mans, R., van Rossum, H. M., Wijsman, M., Backx, A. et al. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, DOI: 10.1093/femsyr/fov004.
    • (2015) FEMS Yeast Res , vol.15
    • Mans, R.1    van Rossum, H.M.2    Wijsman, M.3    Backx, A.4
  • 20
    • 84955194993 scopus 로고    scopus 로고
    • New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae
    • Laughery, M. F., Hunter, T., Brown, A., Hoopes, J. et al. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 2015, 32, 711–720.
    • (2015) Yeast , vol.32 , pp. 711-720
    • Laughery, M.F.1    Hunter, T.2    Brown, A.3    Hoopes, J.4
  • 21
    • 84935513637 scopus 로고    scopus 로고
    • Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
    • Horwitz, A. A., Walter, J. M., Schubert, M. G., Kung, S. H. et al., Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems 2015, 1, 88–96.
    • (2015) Cell Systems , vol.1 , pp. 88-96
    • Horwitz, A.A.1    Walter, J.M.2    Schubert, M.G.3    Kung, S.H.4
  • 22
    • 84952682854 scopus 로고    scopus 로고
    • CRISPR/Cas9 advances engineering of microbial cell factories
    • Jakočiūnas, T., Jensen, M. K., Keasling, K. D., CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 2016, 34, 44–59.
    • (2016) Metab. Eng. , vol.34 , pp. 44-59
    • Jakočiūnas, T.1    Jensen, M.K.2    Keasling, K.D.3
  • 23
    • 84857995434 scopus 로고    scopus 로고
    • Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform
    • Mikkelsen, M. D., Buron, L. D., Salomonsen, B., Olsen, C. E. et al., Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 2012, 14, 104–111.
    • (2012) Metab. Eng. , vol.14 , pp. 104-111
    • Mikkelsen, M.D.1    Buron, L.D.2    Salomonsen, B.3    Olsen, C.E.4
  • 24
    • 0034636716 scopus 로고    scopus 로고
    • Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system
    • Delneri, D., Tomlin, G. C., Wixon,, J. L., Hutter, A. et al., Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system. Gene. 2000, 252, 127–135.
    • (2000) Gene. , vol.252 , pp. 127-135
    • Delneri, D.1    Tomlin, G.C.2    Wixon, J.L.3    Hutter, A.4
  • 25
    • 84905577099 scopus 로고    scopus 로고
    • Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae
    • Solis-Escalante, D., Kuijpers, N. G. A., van der Linden, F. H., Pronk, J. T. et al., Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res. 2014, 14, 741–754.
    • (2014) FEMS Yeast Res. , vol.14 , pp. 741-754
    • Solis-Escalante, D.1    Kuijpers, N.G.A.2    van der Linden, F.H.3    Pronk, J.T.4
  • 26
    • 77956941760 scopus 로고    scopus 로고
    • USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories
    • Nour-Eldin, H. H., Geu-Flores, F., Halkier, B. A., USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories. Methods Mol. Biol. 2010, 643, 185–200.
    • (2010) Methods Mol. Biol. , vol.643 , pp. 185-200
    • Nour-Eldin, H.H.1    Geu-Flores, F.2    Halkier, B.A.3
  • 27
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R. D., Schiestl, R. H., High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2, 31–34.
    • (2007) Nat. Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 28
    • 84909594451 scopus 로고    scopus 로고
    • Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine
    • Borodina, I., Kildegaard, K. R., Jensen, N. B., Blicher, T. H. et al., Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab. Eng. 2015, 27, 57–64.
    • (2015) Metab. Eng. , vol.27 , pp. 57-64
    • Borodina, I.1    Kildegaard, K.R.2    Jensen, N.B.3    Blicher, T.H.4
  • 29
    • 84927933565 scopus 로고    scopus 로고
    • Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae
    • Li, M., Borodina, I., Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2014, DOI: 10.1111/1567-1364.12213.
    • (2014) FEMS Yeast Res.
    • Li, M.1    Borodina, I.2
  • 30
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak, B. U., van Rossum, H. M., Luttik, M. A., Akeroyd, M. et al., Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio 2014, 5, e01696–e01614.
    • (2014) MBio , vol.5 , pp. e01614-e01696
    • Kozak, B.U.1    van Rossum, H.M.2    Luttik, M.A.3    Akeroyd, M.4
  • 31
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K., Keasling, J. D., Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9, 160–168.
    • (2007) Metab. Eng. , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.K.4    Keasling, J.D.5
  • 32
    • 84894040387 scopus 로고    scopus 로고
    • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
    • Chen, Y., Bao, J., Il-Kwon, K., Siewers, V., Nielsen, J., Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab. Eng. 2014, 22, 104–109.
    • (2014) Metab. Eng. , vol.22 , pp. 104-109
    • Chen, Y.1    Bao, J.2    Il-Kwon, K.3    Siewers, V.4    Nielsen, J.5
  • 34
    • 84946089934 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae
    • Kildegaard, K. R., Wang, Z., Chen, Y., Nielsen, J., Borodina, I., Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab. Eng. Comm. 2015, 2, 132–136.
    • (2015) Metab. Eng. Comm. , vol.2 , pp. 132-136
    • Kildegaard, K.R.1    Wang, Z.2    Chen, Y.3    Nielsen, J.4    Borodina, I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.