-
1
-
-
0030768919
-
Yeast as a model organism
-
Botstein, D., Chervitz, S. A., Cherry, J. M., Yeast as a model organism. Science 1997, 277, 1259–1260.
-
(1997)
Science
, vol.277
, pp. 1259-1260
-
-
Botstein, D.1
Chervitz, S.A.2
Cherry, J.M.3
-
2
-
-
84899976199
-
Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
-
Borodina, I., Nielsen, J., Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 2014, 9, 609–620.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 609-620
-
-
Borodina, I.1
Nielsen, J.2
-
3
-
-
84933518878
-
Recent applications of synthetic biology tools for yeast metabolic engineering
-
Jensen, M. K., Keasling, J. D., Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 2015, 15, DOI: 10.1111/1567-1364.12185.
-
(2015)
FEMS Yeast Res
, vol.15
-
-
Jensen, M.K.1
Keasling, J.D.2
-
4
-
-
0025777047
-
Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae
-
Schiestl, R. H., Petes, T. D., Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1991, 88, 7585–7589.
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 7585-7589
-
-
Schiestl, R.H.1
Petes, T.D.2
-
5
-
-
84896122676
-
EasyClone: Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae
-
Jensen, N. B., Strucko, T., Kildegaard, K. R., David, F. et al., EasyClone: Method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 2014, 14, 238–248.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 238-248
-
-
Jensen, N.B.1
Strucko, T.2
Kildegaard, K.R.3
David, F.4
-
6
-
-
84944275832
-
EasyClone 2.0: Expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains
-
Stovicek, V., Borja, G. M., Forster, J., Borodina, I., EasyClone 2.0: Expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains. J. Ind. Microbiol. Biotechnol. 2015, 42, 1519–1531.
-
(2015)
J. Ind. Microbiol. Biotechnol.
, vol.42
, pp. 1519-1531
-
-
Stovicek, V.1
Borja, G.M.2
Forster, J.3
Borodina, I.4
-
7
-
-
0036249933
-
Auxotrophic yeast strains in fundamental and applied research
-
Pronk, J. T., Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 2002, 68, 2095–2100.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 2095-2100
-
-
Pronk, J.T.1
-
8
-
-
84997404935
-
The metabolic background is a global player in Saccharomyces gene expression epistasis
-
Alam, M. T., Zelezniak, A., Mülleder, M., Shliaha, P. et al., The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat. Microbiol. 2016, 1, 1–10.
-
(2016)
Nat. Microbiol.
, vol.1
, pp. 1-10
-
-
Alam, M.T.1
Zelezniak, A.2
Mülleder, M.3
Shliaha, P.4
-
9
-
-
0345166826
-
Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast
-
Storici, F., Durham, C. L., Gordenin, D. A., Resnick, M. A., Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc. Natl. Acad. Sci. USA 2003, 100, 14994–14999.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 14994-14999
-
-
Storici, F.1
Durham, C.L.2
Gordenin, D.A.3
Resnick, M.A.4
-
10
-
-
80053064386
-
Reiterative recombination for the in vivo assembly of libraries of multigene pathways
-
Wingler, L. M., Cornish, V. W., Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc. Natl. Acad. Sci. USA 2011, 108, 15135–15140.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 15135-15140
-
-
Wingler, L.M.1
Cornish, V.W.2
-
11
-
-
84887606266
-
One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae
-
Kuijpers, N. G., Chroumpi, S., Vos, T., Solis-Escalante, D. et al., One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 769–781.
-
(2013)
FEMS Yeast Res.
, vol.13
, pp. 769-781
-
-
Kuijpers, N.G.1
Chroumpi, S.2
Vos, T.3
Solis-Escalante, D.4
-
12
-
-
84877272995
-
A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences
-
Kuijpers, N. G., Solis-Escalante, D., Bosman, L., van den Broek, M. et al., A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb. Cell Fact. 2013, 12, 47.
-
(2013)
Microb. Cell Fact.
, vol.12
, pp. 47
-
-
Kuijpers, N.G.1
Solis-Escalante, D.2
Bosman, L.3
van den Broek, M.4
-
13
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X. et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336–4343.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
-
14
-
-
84865070369
-
Hauer, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
-
15
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
-
Jakočiūnas, T., Bonde, I., Herrgård, M. J., Harrison, S. J. et al., Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 213–222.
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakočiūnas, T.1
Bonde, I.2
Herrgård, M.J.3
Harrison, S.J.4
-
16
-
-
84933569948
-
Arsovska, D. et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae
-
Jakočiūnas, T., Rajkumar, A. S., Zhang, J., Arsovska, D. et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth. Biol. 2015, 4, 1226–1234.
-
(2015)
ACS Synth. Biol
, vol.4
, pp. 1226-1234
-
-
Jakočiūnas, T.1
Rajkumar, A.S.2
Zhang, J.3
-
17
-
-
84927920113
-
CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
-
Stovicek, V., Borodina, I., Forster, J., CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun. 2015, 2, 13–22.
-
(2015)
Metab. Eng. Commun.
, vol.2
, pp. 13-22
-
-
Stovicek, V.1
Borodina, I.2
Forster, J.3
-
18
-
-
84935426318
-
CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
-
Ronda, C., Maury, J., Jakočiūnas, T., Jacobsen, S. A. et al., CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 97.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 97
-
-
Ronda, C.1
Maury, J.2
Jakočiūnas, T.3
Jacobsen, S.A.4
-
19
-
-
84930638003
-
CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
-
Mans, R., van Rossum, H. M., Wijsman, M., Backx, A. et al. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, DOI: 10.1093/femsyr/fov004.
-
(2015)
FEMS Yeast Res
, vol.15
-
-
Mans, R.1
van Rossum, H.M.2
Wijsman, M.3
Backx, A.4
-
20
-
-
84955194993
-
New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae
-
Laughery, M. F., Hunter, T., Brown, A., Hoopes, J. et al. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 2015, 32, 711–720.
-
(2015)
Yeast
, vol.32
, pp. 711-720
-
-
Laughery, M.F.1
Hunter, T.2
Brown, A.3
Hoopes, J.4
-
21
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
Horwitz, A. A., Walter, J. M., Schubert, M. G., Kung, S. H. et al., Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems 2015, 1, 88–96.
-
(2015)
Cell Systems
, vol.1
, pp. 88-96
-
-
Horwitz, A.A.1
Walter, J.M.2
Schubert, M.G.3
Kung, S.H.4
-
22
-
-
84952682854
-
CRISPR/Cas9 advances engineering of microbial cell factories
-
Jakočiūnas, T., Jensen, M. K., Keasling, K. D., CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 2016, 34, 44–59.
-
(2016)
Metab. Eng.
, vol.34
, pp. 44-59
-
-
Jakočiūnas, T.1
Jensen, M.K.2
Keasling, K.D.3
-
23
-
-
84857995434
-
Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform
-
Mikkelsen, M. D., Buron, L. D., Salomonsen, B., Olsen, C. E. et al., Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 2012, 14, 104–111.
-
(2012)
Metab. Eng.
, vol.14
, pp. 104-111
-
-
Mikkelsen, M.D.1
Buron, L.D.2
Salomonsen, B.3
Olsen, C.E.4
-
24
-
-
0034636716
-
Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system
-
Delneri, D., Tomlin, G. C., Wixon,, J. L., Hutter, A. et al., Exploring redundancy in the yeast genome: An improved strategy for use of the cre-loxP system. Gene. 2000, 252, 127–135.
-
(2000)
Gene.
, vol.252
, pp. 127-135
-
-
Delneri, D.1
Tomlin, G.C.2
Wixon, J.L.3
Hutter, A.4
-
25
-
-
84905577099
-
Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae
-
Solis-Escalante, D., Kuijpers, N. G. A., van der Linden, F. H., Pronk, J. T. et al., Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res. 2014, 14, 741–754.
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 741-754
-
-
Solis-Escalante, D.1
Kuijpers, N.G.A.2
van der Linden, F.H.3
Pronk, J.T.4
-
26
-
-
77956941760
-
USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories
-
Nour-Eldin, H. H., Geu-Flores, F., Halkier, B. A., USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories. Methods Mol. Biol. 2010, 643, 185–200.
-
(2010)
Methods Mol. Biol.
, vol.643
, pp. 185-200
-
-
Nour-Eldin, H.H.1
Geu-Flores, F.2
Halkier, B.A.3
-
27
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
Gietz, R. D., Schiestl, R. H., High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2, 31–34.
-
(2007)
Nat. Protoc
, vol.2
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
28
-
-
84909594451
-
Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine
-
Borodina, I., Kildegaard, K. R., Jensen, N. B., Blicher, T. H. et al., Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab. Eng. 2015, 27, 57–64.
-
(2015)
Metab. Eng.
, vol.27
, pp. 57-64
-
-
Borodina, I.1
Kildegaard, K.R.2
Jensen, N.B.3
Blicher, T.H.4
-
29
-
-
84927933565
-
Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae
-
Li, M., Borodina, I., Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2014, DOI: 10.1111/1567-1364.12213.
-
(2014)
FEMS Yeast Res.
-
-
Li, M.1
Borodina, I.2
-
30
-
-
84908409797
-
Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
-
Kozak, B. U., van Rossum, H. M., Luttik, M. A., Akeroyd, M. et al., Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio 2014, 5, e01696–e01614.
-
(2014)
MBio
, vol.5
, pp. e01614-e01696
-
-
Kozak, B.U.1
van Rossum, H.M.2
Luttik, M.A.3
Akeroyd, M.4
-
31
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
-
Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K., Keasling, J. D., Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9, 160–168.
-
(2007)
Metab. Eng.
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.K.4
Keasling, J.D.5
-
32
-
-
84894040387
-
Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
-
Chen, Y., Bao, J., Il-Kwon, K., Siewers, V., Nielsen, J., Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab. Eng. 2014, 22, 104–109.
-
(2014)
Metab. Eng.
, vol.22
, pp. 104-109
-
-
Chen, Y.1
Bao, J.2
Il-Kwon, K.3
Siewers, V.4
Nielsen, J.5
-
33
-
-
84941985791
-
-
Jensen, N. B., Borodina, I., Chen, Y., Maury, J. et al., Microbial production of 3-hydroxypropionic acid. WO-Patent 198831 A1, 2014.
-
(2014)
Microbial production of 3-hydroxypropionic acid
, pp. 1
-
-
Jensen, N.B.1
Borodina, I.2
Chen, Y.3
Maury, J.4
-
34
-
-
84946089934
-
Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae
-
Kildegaard, K. R., Wang, Z., Chen, Y., Nielsen, J., Borodina, I., Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab. Eng. Comm. 2015, 2, 132–136.
-
(2015)
Metab. Eng. Comm.
, vol.2
, pp. 132-136
-
-
Kildegaard, K.R.1
Wang, Z.2
Chen, Y.3
Nielsen, J.4
Borodina, I.5
|