메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages

Regulation of amino-acid metabolism controls flux to lipid accumulation in yarrowia lipolytica

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84991244043     PISSN: None     EISSN: 20567189     Source Type: Journal    
DOI: 10.1038/npjsba.2016.5     Document Type: Article
Times cited : (143)

References (56)
  • 1
    • 80052038417 scopus 로고    scopus 로고
    • Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica
    • Dulermo, T. & Nicaud, J.-M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab. Eng. 13, 482–491 (2011).
    • (2011) Metab. Eng , vol.13 , pp. 482-491
    • Dulermo, T.1    Nicaud, J.-M.2
  • 2
    • 84990056298 scopus 로고    scopus 로고
    • Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae
    • Zhou, Y. J., Buijs, N. A., Siewers, V. & Nielsen, J. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 2, 1–6 (2014).
    • (2014) Front. Bioeng. Biotechnol , vol.2 , pp. 1-6
    • Zhou, Y.J.1    Buijs, N.A.2    Siewers, V.3    Nielsen, J.4
  • 3
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • Tai, M. & Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013).
    • (2013) Metab. Eng , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 4
    • 84892840633 scopus 로고    scopus 로고
    • Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
    • Blazeck, J. et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5, 3131 (2014).
    • (2014) Nat. Commun , vol.5 , pp. 3131
    • Blazeck, J.1
  • 5
    • 84888233890 scopus 로고    scopus 로고
    • Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica
    • Seip, J., Jackson, R., He, H., Zhu, Q. & Hong, S.-P. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl. Environ. Microbiol. 79, 7360–7370 (2013).
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 7360-7370
    • Seip, J.1    Jackson, R.2    He, H.3    Zhu, Q.4    Hong, S.-P.5
  • 6
    • 84873450128 scopus 로고    scopus 로고
    • Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109
    • Wang, Z.-P., Xu, H.-M., Wang, G.-Y., Chi, Z. & Chi, Z.-M. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 675–682 (2013).
    • (2013) Biochim. Biophys. Acta Mol. Cell Biol. Lipids , vol.1831 , pp. 675-682
    • Wang, Z.-P.1    Xu, H.-M.2    Wang, G.-Y.3    Chi, Z.4    Chi, Z.-M.5
  • 7
    • 84938932084 scopus 로고    scopus 로고
    • Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant
    • Liu, L. et al. Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab. Eng. 31, 102–111 (2015).
    • (2015) Metab. Eng , vol.31 , pp. 102-111
    • Liu, L.1
  • 8
    • 84943659706 scopus 로고    scopus 로고
    • Applications of computational modeling in metabolic engineering of yeast
    • Kerkhoven, E. J., Lahtvee, P.-J. & Nielsen, J. Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Res. 15, 1–13 (2015).
    • (2015) FEMS Yeast Res , vol.15 , pp. 1-13
    • Kerkhoven, E.J.1    Lahtvee, P.-J.2    Nielsen, J.3
  • 9
    • 84889026043 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of lipid metabolism in Saccharomyces cerevisiae
    • Jewett, M. C. et al. Mapping condition-dependent regulation of lipid metabolism in Saccharomyces cerevisiae. G3 3, 1979–1995 (2013).
    • (2013) G3 , vol.3 , pp. 1979-1995
    • Jewett, M.C.1
  • 10
    • 84870867053 scopus 로고    scopus 로고
    • Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica
    • Pan, P. & Hua, Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS ONE 7, e51535 (2012).
    • (2012) Plos ONE , vol.7
    • Pan, P.1    Hua, Q.2
  • 11
    • 84860505042 scopus 로고    scopus 로고
    • Genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica
    • Loira, N., Dulermo, T., Nicaud, J.-M. & Sherman, D. J. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC. Syst Biol. 6, 35 (2012).
    • (2012) BMC. Syst Biol , vol.6 , pp. 35
    • Loira, N.1    Dulermo, T.2    Nicaud, J.-M.3    Sherman, D.4
  • 12
    • 84945151760 scopus 로고    scopus 로고
    • Optimization of lipid production with a genome-scale model of Yarrowia lipolytica
    • Kavšček, M., Bhutada, G., Madl, T. & Natter, K. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst. Biol. 9, 72 (2015).
    • (2015) BMC Syst. Biol , vol.9 , pp. 72
    • Kavšček, M.1    Bhutada, G.2    Madl, T.3    Natter, K.4
  • 13
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • (New Rochelle NY)
    • Aung, H. W., Henry, S. a. & Walker, L. P. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. (New Rochelle NY) 9, 215–228 (2013).
    • (2013) Ind. Biotechnol , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 14
    • 84887164716 scopus 로고    scopus 로고
    • Integrated analysis, transcriptomelipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast
    • Chumnanpuen, P., Nookaew, I. & Nielsen, J. Integrated analysis, transcriptomelipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst. Biol. 7(Suppl 3): S7 (2013).
    • (2013) BMC Syst. Biol , vol.7
    • Chumnanpuen, P.1    Nookaew, I.2    Nielsen, J.3
  • 15
    • 84924657793 scopus 로고    scopus 로고
    • Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
    • Qiao, K. et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 29, 56–65 (2015).
    • (2015) Metab. Eng , vol.29 , pp. 56-65
    • Qiao, K.1
  • 16
    • 0036431538 scopus 로고    scopus 로고
    • Different effectors of dimorphism in Yarrowia lipolytica
    • Ruiz-Herrera, J. & Sentandreu, R. Different effectors of dimorphism in Yarrowia lipolytica. Arch. Microbiol. 178, 477–483 (2002).
    • (2002) Arch. Microbiol , vol.178 , pp. 477-483
    • Ruiz-Herrera, J.1    Sentandreu, R.2
  • 17
    • 0035204542 scopus 로고    scopus 로고
    • Factors affecting the morphogenetic switch in Yarrowia lipolytica
    • Pérez-Campo, F. M. & Domínguez, A. Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr. Microbiol. 43, 429–433 (2001).
    • (2001) Curr. Microbiol , vol.43 , pp. 429-433
    • Pérez-Campo, F.M.1    Domínguez, A.2
  • 18
    • 0032618909 scopus 로고    scopus 로고
    • Dimorphism in Yarrowia lipolytica: Filament formation is suppressed by nitrogen starvation and inhibition of respiration
    • Szabo, R. Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol. (Praha) 44, 19–24 (1999).
    • (1999) Folia Microbiol. (Praha) , vol.44 , pp. 19-24
    • Szabo, R.1
  • 19
    • 0037005875 scopus 로고    scopus 로고
    • Presence of organic sources of nitrogen is critical for filament formation and pH-dependent morphogenesis in Yarrowia lipolytica
    • Szabo, R. & Štofaníková, V. Presence of organic sources of nitrogen is critical for filament formation and pH-dependent morphogenesis in Yarrowia lipolytica. FEMS Microbiol. Lett. 206, 45–50 (2002).
    • (2002) FEMS Microbiol. Lett , vol.206 , pp. 45-50
    • Szabo, R.1    Štofaníková, V.2
  • 20
    • 0027412785 scopus 로고
    • The role of polyamine metabolism in dimorphism of Yarrowia lipolytica
    • Guevara-Olvera, L., Calvo-Mendez, C. & Ruiz-Herrera, J. The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J. Gen. Microbiol. 139, 485–493 (1993).
    • (1993) J. Gen. Microbiol , vol.139 , pp. 485-493
    • Guevara-Olvera, L.1    Calvo-Mendez, C.2    Ruiz-Herrera, J.3
  • 21
    • 84897071084 scopus 로고    scopus 로고
    • Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment
    • Bellou, S., Makri, A., Triantaphyllidou, I. E., Papanikolaou, S. & Aggelis, G. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology 160(Pt 4): 807–817 (2014).
    • (2014) Microbiology , vol.160 , pp. 807-817
    • Bellou, S.1    Makri, A.2    Triantaphyllidou, I.E.3    Papanikolaou, S.4    Aggelis, G.5
  • 22
    • 0031837701 scopus 로고    scopus 로고
    • Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water
    • Zinjarde, S. S., Pant, A. & Deshpande, M. V. Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycol. Res. 102, 553–558 (1998).
    • (1998) Mycol. Res , vol.102 , pp. 553-558
    • Zinjarde, S.S.1    Pant, A.2    Deshpande, M.V.3
  • 23
    • 84891835832 scopus 로고    scopus 로고
    • Comparative lipidomic profiling of S. Cerevisiae and Four other hemiascomycetous yeasts
    • Hein, E.-M. & Hayen, H. Comparative lipidomic profiling of S. cerevisiae and Four other hemiascomycetous yeasts. Metabolites 2, 254–267 (2012).
    • (2012) Metabolites , vol.2 , pp. 254-267
    • Hein, E.-M.1    Hayen, H.2
  • 24
    • 33645092384 scopus 로고    scopus 로고
    • Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source
    • Athenstaedt, K. et al. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6, 1450–1459 (2006).
    • (2006) Proteomics , vol.6 , pp. 1450-1459
    • Athenstaedt, K.1
  • 25
    • 57449110525 scopus 로고    scopus 로고
    • Control of Lipid Accumulation in the Yeast Yarrowia lipolytica
    • Beopoulos, A. et al. Control of Lipid Accumulation in the Yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 74, 7779–7789 (2008).
    • (2008) Appl. Environ. Microbiol , vol.74 , pp. 7779-7789
    • Beopoulos, A.1
  • 26
    • 47749150637 scopus 로고    scopus 로고
    • Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae
    • Czabany, T. et al. Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 283, 17065–17074 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 17065-17074
    • Czabany, T.1
  • 27
    • 0022589174 scopus 로고
    • Cell wall composition of the yeast and mycelial forms of Yarrowia lipolytica
    • Vega, R. & Dominguez, A. Cell wall composition of the yeast and mycelial forms of Yarrowia lipolytica. Arch. Microbiol. 144, 124–130 (1986).
    • (1986) Arch. Microbiol , vol.144 , pp. 124-130
    • Vega, R.1    Dominguez, A.2
  • 28
    • 71549145607 scopus 로고    scopus 로고
    • Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi
    • Lavoie, H., Hogues, H. & Whiteway, M. Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr. Opin. Microbiol. 12, 655–663 (2009).
    • (2009) Curr. Opin. Microbiol , vol.12 , pp. 655-663
    • Lavoie, H.1    Hogues, H.2    Whiteway, M.3
  • 29
    • 84893791019 scopus 로고    scopus 로고
    • Zinc finger transcription factors displaced SREBP proteins as the major sterol regulators during saccharomycotina evolution
    • Maguire, S. L. et al. Zinc finger transcription factors displaced SREBP proteins as the major sterol regulators during saccharomycotina evolution. PLoS Genet. 10, e1004076 (2014).
    • (2014) Plos Genet , vol.10
    • Maguire, S.L.1
  • 31
    • 81555207963 scopus 로고    scopus 로고
    • Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica
    • Morin, N. et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS ONE 6, e27966 (2011).
    • (2011) Plos ONE , vol.6
    • Morin, N.1
  • 32
    • 84869387481 scopus 로고    scopus 로고
    • A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides
    • Zhu, Z. et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat. Commun. 3, 1112 (2012).
    • (2012) Nat. Commun , vol.3 , pp. 1112
    • Zhu, Z.1
  • 33
    • 21244496821 scopus 로고    scopus 로고
    • Convergent evolution of hydroxylation mechanisms in the fungal kingdom: Molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases
    • Cultrone, A. et al. Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases. Mol. Microbiol. 57, 276–290 (2005).
    • (2005) Mol. Microbiol , vol.57 , pp. 276-290
    • Cultrone, A.1
  • 34
    • 80855128291 scopus 로고    scopus 로고
    • Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae
    • Zhang, J. et al. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol. Syst. Biol. 7, 545 (2011).
    • (2011) Mol. Syst. Biol , vol.7 , pp. 545
    • Zhang, J.1
  • 35
    • 84903976212 scopus 로고    scopus 로고
    • Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
    • Shi, S., Chen, Y., Siewers, V. & Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. Mbio. 5, e01130–14 (2014).
    • (2014) Mbio , vol.5 , pp. e01130-e01134
    • Shi, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 36
    • 74749092962 scopus 로고    scopus 로고
    • Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures
    • Makri, A., Fakas, S. & Aggelis, G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 101, 2351–2358 (2010).
    • (2010) Bioresour. Technol , vol.101 , pp. 2351-2358
    • Makri, A.1    Fakas, S.2    Aggelis, G.3
  • 37
    • 74749090203 scopus 로고    scopus 로고
    • Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose
    • Papanikolaou, S. et al. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur. J. Lipid Sci. Technol. 111, 1221–1232 (2009).
    • (2009) Eur. J. Lipid Sci. Technol , vol.111 , pp. 1221-1232
    • Papanikolaou, S.1
  • 38
    • 0032859657 scopus 로고    scopus 로고
    • Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the N-alkane-assimilating yeast Yarrowia lipolytica
    • Wang, H. J. et al. Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the N-alkane-assimilating yeast Yarrowia lipolytica. J. Bacteriol. 181, 5140–5148 (1999).
    • (1999) J. Bacteriol , vol.181 , pp. 5140-5148
    • Wang, H.J.1
  • 39
    • 78049304837 scopus 로고    scopus 로고
    • Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes
    • Bordel, S., Agren, R. & Nielsen, J. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput. Biol. 6, e1000859 (2010).
    • (2010) Plos Comput. Biol , vol.6
    • Bordel, S.1    Agren, R.2    Nielsen, J.3
  • 40
    • 84859704385 scopus 로고    scopus 로고
    • Leucyl-tRNA Synthetase Controls TORC1 via the EGO Complex
    • Bonfils, G. et al. Leucyl-tRNA Synthetase Controls TORC1 via the EGO Complex. Mol. Cell. 46, 105–110 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 105-110
    • Bonfils, G.1
  • 41
    • 0022389117 scopus 로고
    • Possible regulatory roles of ATP: Citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14
    • Evans, C. T. & Ratledge, C. Possible regulatory roles of ATP: citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14. Can. J. Microbiol. 31, 1000–1005 (1985).
    • (1985) Can. J. Microbiol , vol.31 , pp. 1000-1005
    • Evans, C.T.1    Ratledge, C.2
  • 42
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517 (1992).
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 43
    • 84878268867 scopus 로고    scopus 로고
    • Rapid Quantification of Yeast Lipid using Microwave- Assisted Total Lipid Extraction and HPLC-CAD
    • Khoomrung, S. et al. Rapid Quantification of Yeast Lipid using Microwave- Assisted Total Lipid Extraction and HPLC-CAD. Anal. Chem. 85, 4912–4919 (2013).
    • (2013) Anal. Chem , vol.85 , pp. 4912-4919
    • Khoomrung, S.1
  • 44
    • 84867296561 scopus 로고    scopus 로고
    • Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae
    • Khoomrung, S., Chumnanpuen, P., Jansa-ard, S., Nookaew, I. & Nielsen, J. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 94, 1637–1646 (2012).
    • (2012) Appl. Microbiol. Biotechnol , vol.94 , pp. 1637-1646
    • Khoomrung, S.1    Chumnanpuen, P.2    Jansa-Ard, S.3    Nookaew, I.4    Nielsen, J.5
  • 45
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
    • (2009) Genome Biol , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 46
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq--a Python framework to work with high-throughput sequencing data
    • Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 47
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
    • (2014) Genome Biol , vol.15
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 48
    • 79960264362 scopus 로고    scopus 로고
    • Full-length transcriptome assembly from RNA-Seq data without a reference genome
    • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
    • (2011) Nat. Biotechnol , vol.29 , pp. 644-652
    • Grabherr, M.G.1
  • 49
    • 45549089420 scopus 로고    scopus 로고
    • High-throughput functional annotation and data mining with the Blast2GO suite
    • Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).
    • (2008) Nucleic Acids Res , vol.36 , pp. 3420-3435
    • Götz, S.1
  • 50
    • 3042720475 scopus 로고    scopus 로고
    • Genome evolution in yeasts
    • Dujon, B. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004).
    • (2004) Nature , vol.430 , pp. 35-44
    • Dujon, B.1
  • 51
    • 0036226603 scopus 로고    scopus 로고
    • BLAT—the BLAST-like alignment tool
    • Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
    • (2002) Genome Res , vol.12 , pp. 656-664
    • Kent, W.J.1
  • 52
    • 84875973063 scopus 로고    scopus 로고
    • The RAVEN toolbox and its use for generating a genome-scale metabolic model for penicillium chrysogenum
    • Agren, R. et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for penicillium chrysogenum. PLoS Comput. Biol. 9, e1002980 (2013).
    • (2013) Plos Comput. Biol , vol.9
    • Agren, R.1
  • 53
    • 84946037477 scopus 로고    scopus 로고
    • Ensembl 2015
    • Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43(D1): D662–D669 (2015).
    • (2015) Nucleic Acids Res , vol.43 , Issue.D1 , pp. D662-D669
    • Cunningham, F.1
  • 54
    • 84946074739 scopus 로고    scopus 로고
    • The InterPro protein families database: The classification resource after 15 years
    • Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43(D1): D213–D221 (2015).
    • (2015) Nucleic Acids Res , vol.43 , Issue.D1 , pp. D213-D221
    • Mitchell, A.1
  • 55
    • 84946069451 scopus 로고    scopus 로고
    • UniProt: A hub for protein information
    • The Uniprot Consortium
    • The Uniprot Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43(D1): D204–D212 (2015).
    • (2015) Nucleic Acids Res , vol.43 , Issue.D1 , pp. D204-D212
  • 56
    • 84877309040 scopus 로고    scopus 로고
    • Enriching the gene set analysis of genomewide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
    • Väremo, L., Nielsen, J. & Nookaew, I. Enriching the gene set analysis of genomewide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 41, 4378–4391 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 4378-4391
    • Väremo, L.1    Nielsen, J.2    Nookaew, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.