메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; ALCOHOL; F1F0-ATP SYNTHASE; GALACTOSE; GLUCOSE; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84959560542     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep22264     Document Type: Article
Times cited : (114)

References (59)
  • 1
    • 0034214335 scopus 로고    scopus 로고
    • An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
    • Van Dijken, J. P. et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706-714 (2000).
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 706-714
    • Van Dijken, J.P.1
  • 2
    • 0012926979 scopus 로고    scopus 로고
    • Effect of specific growth rate on fermentative capacity of baker's yeast
    • van Hoek, P., van Dijken, J. P. & Pronk, J. T. Effect of specific growth rate on fermentative capacity of baker's yeast. Appl. Environ. Microbiol. 64, 4226-4233 (1998).
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 4226-4233
    • Van Hoek, P.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 3
    • 84858717996 scopus 로고    scopus 로고
    • Redox balance is key to explaining full vs. Partial switching to low-yield metabolism
    • van Hoek, M. J. & Merks, R. M. Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst. Biol. 6, 22 (2012).
    • (2012) BMC Syst. Biol. , vol.6 , pp. 22
    • Van Hoek, M.J.1    Merks, R.M.2
  • 4
    • 79955761880 scopus 로고    scopus 로고
    • Molecular crowding defines a common origin for the warburg effect in proliferating cells and the lactate threshold in muscle physiology
    • Vazquez, A. & Oltvai, Z. N. Molecular crowding defines a common origin for the warburg effect in proliferating cells and the lactate threshold in muscle physiology. PLoS One 6, e19538 (2011).
    • (2011) PLoS One , vol.6
    • Vazquez, A.1    Oltvai, Z.N.2
  • 5
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network
    • Famili, I., Forster, J., Nielsen, J. & Palsson, B. O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134-13139 (2003).
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 13134-13139
    • Famili, I.1    Forster, J.2    Nielsen, J.3    Palsson, B.O.4
  • 7
    • 51649124324 scopus 로고    scopus 로고
    • The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae
    • de Jongh, W. A. et al. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol. Bioeng. 101, 317-326 (2008). URL http://dx.doi.org/10.1002/bit.21890.
    • (2008) Biotechnol. Bioeng. , vol.101 , pp. 317-326
    • De Jongh, W.A.1
  • 8
    • 0033664269 scopus 로고    scopus 로고
    • Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
    • Ostergaard, S., Olsson, L., Johnston, M. & Nielsen, J. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotech 18, 1283-1286 (2000). URL http://dx.doi. org/10.1038/82400.
    • (2000) Nat Biotech , vol.18 , pp. 1283-1286
    • Ostergaard, S.1    Olsson, L.2    Johnston, M.3    Nielsen, J.4
  • 9
    • 0009042009 scopus 로고
    • Monitoring and control of batch and Fedbatch Cultures of Saccharomyces cerevisiae by Calorimetry
    • Larsson, C., Lidén, G., Blomberg, A. & Niklasson, C. Monitoring and control of batch and Fedbatch Cultures of Saccharomyces cerevisiae by Calorimetry. Pure Appl. Chem. 65, 1933-1937 (1993).
    • (1993) Pure Appl. Chem. , vol.65 , pp. 1933-1937
    • Larsson, C.1    Lidén, G.2    Blomberg, A.3    Niklasson, C.4
  • 10
    • 84878524493 scopus 로고    scopus 로고
    • How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism
    • Berkhout, J. et al. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism. Genetics 194, 505-512 (2013).
    • (2013) Genetics , vol.194 , pp. 505-512
    • Berkhout, J.1
  • 11
    • 84923658662 scopus 로고    scopus 로고
    • Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
    • Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015). URL http://dx.doi.org/10.15252/msb.20145697.
    • (2015) Mol. Syst. Biol. , vol.11 , pp. 784
    • Hui, S.1
  • 12
    • 34547887655 scopus 로고    scopus 로고
    • Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity
    • Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 104, 12663-12668 (2007).
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 12663-12668
    • Beg, Q.K.1
  • 13
    • 84889990425 scopus 로고    scopus 로고
    • Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. Coli cells
    • Zhou, Y. et al. Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells. BMC Syst. Biol. 7, 138 (2013). URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924228/.
    • (2013) BMC Syst. Biol. , vol.7 , pp. 138
    • Zhou, Y.1
  • 14
    • 84864584520 scopus 로고    scopus 로고
    • Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters
    • Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters. PLoS Comput. Biol. 8, e1002575 (2012).
    • (2012) PLoS Comput. Biol. , vol.8
    • Adadi, R.1    Volkmer, B.2    Milo, R.3    Heinemann, M.4    Shlomi, T.5
  • 15
    • 79953661070 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the warburg effect
    • Shlomi, T., Benyamini, T., Gottlieb, E., Sharan, R. & Ruppin, E. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the warburg effect. PLoS Comput. Biol. 7, e1002018 (2011).
    • (2011) PLoS Comput. Biol. , vol.7
    • Shlomi, T.1    Benyamini, T.2    Gottlieb, E.3    Sharan, R.4    Ruppin, E.5
  • 16
    • 0031015551 scopus 로고    scopus 로고
    • Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Nissen, T. L., Schulze, U., Nielsen, J. & Villadsen, J. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143 Pt 1, 203-218 (1997).
    • (1997) Microbiology , vol.143 , pp. 203-218
    • Nissen, T.L.1    Schulze, U.2    Nielsen, J.3    Villadsen, J.4
  • 17
    • 0041877649 scopus 로고    scopus 로고
    • A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation
    • Aguilar-Uscanga, B. & François, J. M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 37, 268-274 (2003). URL http://dx.doi.org/10.1046/j.1472-765X.2003.01394.x.
    • (2003) Lett. Appl. Microbiol. , vol.37 , pp. 268-274
    • Aguilar-Uscanga, B.1    François, J.M.2
  • 18
    • 55249096894 scopus 로고    scopus 로고
    • Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
    • de Godoy, L. M. F. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251-1254 (2008). URL http://dx.doi.org/10.1038/nature07341.
    • (2008) Nature , vol.455 , pp. 1251-1254
    • De Godoy, L.M.F.1
  • 19
    • 0024615221 scopus 로고
    • Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • Postma, E., Verduyn, C., Scheffers, W. A. & Van Dijken, J. P. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 55, 468-477 (1989).
    • (1989) Appl. Environ. Microbiol. , vol.55 , pp. 468-477
    • Postma, E.1    Verduyn, C.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 20
    • 0027250347 scopus 로고
    • Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon-and nitrogen-limiting conditions
    • Larsson, C., Von Stockar, U., Marison, I. & Gustafsson, L. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon-and nitrogen-limiting conditions. J. Bacteriol. 175, 4809-4816 (1993).
    • (1993) J. Bacteriol. , vol.175 , pp. 4809-4816
    • Larsson, C.1    Von Stockar, U.2    Marison, I.3    Gustafsson, L.4
  • 21
    • 75649152860 scopus 로고    scopus 로고
    • Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations
    • Boer, V. M., Crutchfield, C. A., Bradley, P. H., Botstein, D. & Rabinowitz, J. D. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol. Biol. Cell 21, 198-211 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 198-211
    • Boer, V.M.1    Crutchfield, C.A.2    Bradley, P.H.3    Botstein, D.4    Rabinowitz, J.D.5
  • 22
    • 71449083602 scopus 로고    scopus 로고
    • Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae
    • Heyland, J., Fu, J. & Blank, L. M. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology 155, 3827-3837 (2009).
    • (2009) Microbiology , vol.155 , pp. 3827-3837
    • Heyland, J.1    Fu, J.2    Blank, L.M.3
  • 23
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis
    • Frick, O. & Wittmann, C. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb. Cell Fact. 4, 30 (2005).
    • (2005) Microb. Cell Fact. , vol.4 , pp. 30
    • Frick, O.1    Wittmann, C.2
  • 24
    • 1042266670 scopus 로고    scopus 로고
    • The Yeast Mitochondrial Proteome, a Study of Fermentative and Respiratory Growth
    • Ohlmeier, S., Kastaniotis, A. J., Hiltunen, J. K. & Bergmann, U. The Yeast Mitochondrial Proteome, a Study of Fermentative and Respiratory Growth. J. Biol. Chem. 279, 3956-3979 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 3956-3979
    • Ohlmeier, S.1    Kastaniotis, A.J.2    Hiltunen, J.K.3    Bergmann, U.4
  • 25
    • 0037133634 scopus 로고    scopus 로고
    • Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast
    • Egner, A., Jakobs, S. & Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 3370-3375
    • Egner, A.1    Jakobs, S.2    Hell, S.W.3
  • 26
    • 0033982452 scopus 로고    scopus 로고
    • Growth of the yeast Saccharomyces cerevisiae on a non-fermentable substrate: Control of energetic yield by the amount of mitochondria
    • Dejean, L., Beauvoit, B., Guérin, B. & Rigoulet, M. Growth of the yeast Saccharomyces cerevisiae on a non-fermentable substrate: Control of energetic yield by the amount of mitochondria. Biochim. Biophys. Acta-Bioenerg. 1457, 45-56 (2000).
    • (2000) Biochim. Biophys. Acta-Bioenerg. , vol.1457 , pp. 45-56
    • Dejean, L.1    Beauvoit, B.2    Guérin, B.3    Rigoulet, M.4
  • 27
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn, C., Postma, E., Scheffers, W. a. & Van Dijken, J. P. Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501-517 (1992).
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 29
    • 79951571474 scopus 로고    scopus 로고
    • Mitochondrial membrane potential probes and the proton gradient: A practical usage guide
    • Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. & Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 50, 98-115 (2011).
    • (2011) Biotechniques , vol.50 , pp. 98-115
    • Perry, S.W.1    Norman, J.P.2    Barbieri, J.3    Brown, E.B.4    Gelbard, H.A.5
  • 30
    • 77956239754 scopus 로고    scopus 로고
    • Proton transport coupled ATP synthesis by the purified yeast H+-ATP synthase in proteoliposomes
    • Förster, K. et al. Proton transport coupled ATP synthesis by the purified yeast H+-ATP synthase in proteoliposomes. Biochim. Biophys. Acta-Bioenerg. 1797, 1828-1837 (2010).
    • (2010) Biochim. Biophys. Acta-Bioenerg. , vol.1797 , pp. 1828-1837
    • Förster, K.1
  • 31
    • 34147185685 scopus 로고    scopus 로고
    • Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source
    • Fonseca, G. G., Gombert, A. K., Heinzle, E. & Wittmann, C. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res. 7, 422-435 (2007).
    • (2007) FEMS Yeast Res. , vol.7 , pp. 422-435
    • Fonseca, G.G.1    Gombert, A.K.2    Heinzle, E.3    Wittmann, C.4
  • 32
    • 4644316145 scopus 로고    scopus 로고
    • Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex i (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore
    • Andreani, A. et al. Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore. Bioorg. Med. Chem. 12, 5525-5532 (2004).
    • (2004) Bioorg. Med. Chem. , vol.12 , pp. 5525-5532
    • Andreani, A.1
  • 33
    • 84891783174 scopus 로고    scopus 로고
    • Activities at the Universal Protein Resource (UniProt)
    • UNIPROT. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191-8 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. D191-D198
    • UNIPROT.1
  • 34
    • 0024288671 scopus 로고
    • Purification and characterization of a rotenone-insensitive NADH: Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae
    • de Vries, S. & Grivell, L. A. Purification and characterization of a rotenone-insensitive NADH: Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur. J. Biochem. 176, 377-384 (1988). URL http://dx.doi.org/10.1111/j.1432-1033.1988. tb14292.x.
    • (1988) Eur. J. Biochem. , vol.176 , pp. 377-384
    • De Vries, S.1    Grivell, L.A.2
  • 35
    • 84925014516 scopus 로고    scopus 로고
    • Proteome reallocation in Escherichia coli with increasing specific growth rate
    • Peebo, K. et al. Proteome reallocation in Escherichia coli with increasing specific growth rate. Mol. Biosyst. 11, 1184-93 (2015). URL http://dx.doi.org/10.1039/C4MB00721B.
    • (2015) Mol. Biosyst. , vol.11 , pp. 1184-1193
    • Peebo, K.1
  • 36
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • van Dijken, J. P. & Scheffers, W. A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Lett. 32, 199-224 (1986).
    • (1986) FEMS Microbiol. Lett. , vol.32 , pp. 199-224
    • Van Dijken, J.P.1    Scheffers, W.A.2
  • 37
    • 73249132434 scopus 로고    scopus 로고
    • Active proton leak in mitochondria: A new way to regulate substrate oxidation
    • Mourier, A., Devin, A. & Rigoulet, M. Active proton leak in mitochondria: A new way to regulate substrate oxidation. Biochim. Biophys. Acta-Bioenerg. 1797, 255-261 (2010).
    • (2010) Biochim. Biophys. Acta-Bioenerg. , vol.1797 , pp. 255-261
    • Mourier, A.1    Devin, A.2    Rigoulet, M.3
  • 38
    • 84883776628 scopus 로고    scopus 로고
    • The mitochondrial permeability transition pore: A mystery solved?
    • Bernardi, P. The mitochondrial permeability transition pore: A mystery solved? Front. Physiol. 4, 95 (2013). URL http://dx.doi. org/10.3389/fphys.2013.00095.
    • (2013) Front. Physiol. , vol.4 , pp. 95
    • Bernardi, P.1
  • 39
    • 61449216130 scopus 로고    scopus 로고
    • In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth
    • Orij, R., Postmus, J., Ter Beek, A., Brul, S. & Smits, G. J. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155, 268-278 (2009).
    • (2009) Microbiology , vol.155 , pp. 268-278
    • Orij, R.1    Postmus, J.2    Ter Beek, A.3    Brul, S.4    Smits, G.J.5
  • 40
    • 68049100110 scopus 로고    scopus 로고
    • Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    • Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593-599 (2009).
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 593-599
    • Bennett, B.D.1
  • 41
    • 84884659937 scopus 로고    scopus 로고
    • Steady-State Metabolite Concentrations Reflect a Balance between Maximizing Enzyme Efficiency and Minimizing Total Metabolite Load
    • Tepper, N. et al. Steady-State Metabolite Concentrations Reflect a Balance between Maximizing Enzyme Efficiency and Minimizing Total Metabolite Load. PLoS One 8, e75370 (2013).
    • (2013) PLoS One , vol.8
    • Tepper, N.1
  • 42
    • 0014487554 scopus 로고
    • Magnesium and the aconitase equilibrium: Determination of apparent stability constants of magnesium substrate complexes from equilibrium data
    • Blair, J. M. Magnesium and the Aconitase Equilibrium: Determination of Apparent Stability Constants of Magnesium Substrate Complexes from Equilibrium Data. Eur. J. Biochem. 8, 287-291 (1969). URL http://dx.doi.org/10.1111/j.1432-1033.1969.tb00526.x.
    • (1969) Eur. J. Biochem. , vol.8 , pp. 287-291
    • Blair, J.M.1
  • 43
    • 0036892455 scopus 로고    scopus 로고
    • Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters
    • Maier, A., Völker, B., Boles, E. & Fuhrmann, G. F. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2, 539-550 (2002).
    • (2002) FEMS Yeast Res. , vol.2 , pp. 539-550
    • Maier, A.1    Völker, B.2    Boles, E.3    Fuhrmann, G.F.4
  • 44
    • 0022736565 scopus 로고
    • Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis
    • Sonnleitner, B. & Käppeli, O. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotechnol. Bioeng. 28, 927-937 (1986).
    • (1986) Biotechnol. Bioeng. , vol.28 , pp. 927-937
    • Sonnleitner, B.1    Käppeli, O.2
  • 45
    • 0025405421 scopus 로고
    • Simple constrained-optimization view of acetate overflow in E. Coli
    • Majewski, R. A. & Domach, M. M. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35, 732-738 (1990).
    • (1990) Biotechnol. Bioeng. , vol.35 , pp. 732-738
    • Majewski, R.A.1    Domach, M.M.2
  • 46
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. Coli are consistent with computed optimal growth from genome-scale models
    • Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 390
    • Lewis, N.E.1
  • 47
    • 84969401338 scopus 로고    scopus 로고
    • Resource allocation in metabolic networks: Kinetic optimization and approximations by FBA
    • Müller, S., Regensburger, G. & Steuer, R. Resource allocation in metabolic networks: kinetic optimization and approximations by FBA. Biochem. Soc. Trans. 43, 1195-1200 (2015).
    • (2015) Biochem. Soc. Trans. , vol.43 , pp. 1195-1200
    • Müller, S.1    Regensburger, G.2    Steuer, R.3
  • 48
    • 79551600149 scopus 로고    scopus 로고
    • Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics
    • Costenoble, R. et al. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol. Syst. Biol. 7, 464 (2011).
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 464
    • Costenoble, R.1
  • 49
    • 35648972123 scopus 로고    scopus 로고
    • The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels
    • Daran-Lapujade, P. et al. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc. Natl. Acad. Sci. USA 104, 15753-15758 (2007).
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15753-15758
    • Daran-Lapujade, P.1
  • 50
    • 19044396051 scopus 로고    scopus 로고
    • Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity
    • Jansen, M. L. A. et al. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology 151, 1657-1669 (2005).
    • (2005) Microbiology , vol.151 , pp. 1657-1669
    • Jansen, M.L.A.1
  • 51
    • 0034213554 scopus 로고    scopus 로고
    • Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae
    • Van Hoek, P., Van Dijken, J. P. & Pronk, J. T. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb. Technol. 26, 724-736 (2000).
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 724-736
    • Van Hoek, P.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 52
    • 77649245472 scopus 로고    scopus 로고
    • Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape
    • Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl. Acad. Sci. USA 107, 3475-3480 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 3475-3480
    • Savir, Y.1    Noor, E.2    Milo, R.3    Tlusty, T.4
  • 53
    • 78449268845 scopus 로고    scopus 로고
    • Interdependence of cell growth origins and consequences
    • Scott, M., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of Cell Growth Origins and Consequences. Science (80-). 330, 1099-1102 (2010).
    • (2010) Science , vol.330 , Issue.80 , pp. 1099-1102
    • Scott, M.1    Mateescu, E.M.2    Zhang, Z.3    Hwa, T.4
  • 54
    • 84876522835 scopus 로고    scopus 로고
    • BRENDA in 2013: Integrated reactions, kinetic data, enzyme function data, improved disease classification: New options and contents in BRENDA
    • Schomburg, I. et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 41, D764-72 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. D764-D772
    • Schomburg, I.1
  • 55
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253 (2003).
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 56
    • 84875973063 scopus 로고    scopus 로고
    • The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum
    • Agren, R. et al. The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum. PLoS Comput. Biol. 9, e1002980 (2013).
    • (2013) PLoS Comput. Biol. , vol.9
    • Agren, R.1
  • 57
    • 0032919364 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29-34 (1999).
    • (1999) Nucleic Acids Res. , vol.27 , pp. 29-34
    • Ogata, H.1
  • 58
    • 38449101120 scopus 로고    scopus 로고
    • Integration of biological networks and gene expression data using Cytoscape
    • Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366-2382 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 2366-2382
    • Cline, M.S.1
  • 59
    • 84864817904 scopus 로고    scopus 로고
    • PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life
    • Wang, M. et al. PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life. Mol. Cell. Proteomics 11, 492-500 (2012).
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 492-500
    • Wang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.