-
1
-
-
0024656069
-
The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935
-
discussion 172
-
McCay C.M., et al. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5 (1989) 155-171 discussion 172
-
(1989)
Nutrition
, vol.5
, pp. 155-171
-
-
McCay, C.M.1
-
3
-
-
0037312020
-
How does calorie restriction work?
-
Koubova J., and Guarente L. How does calorie restriction work?. Genes Dev. 17 (2003) 313-321
-
(2003)
Genes Dev.
, vol.17
, pp. 313-321
-
-
Koubova, J.1
Guarente, L.2
-
4
-
-
0033377625
-
Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk
-
Lane M.A., et al. Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk. Toxicol. Sci. 52 (1999) 41-48
-
(1999)
Toxicol. Sci.
, vol.52
, pp. 41-48
-
-
Lane, M.A.1
-
5
-
-
0028301766
-
Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys
-
Kemnitz J.W., et al. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am. J. Physiol. 266 (1994) E540-E547
-
(1994)
Am. J. Physiol.
, vol.266
-
-
Kemnitz, J.W.1
-
6
-
-
0030658012
-
Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta)
-
Verdery R.B., et al. Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am. J. Physiol. 273 (1997) E714-E719
-
(1997)
Am. J. Physiol.
, vol.273
-
-
Verdery, R.B.1
-
7
-
-
0037238322
-
Energy expenditure of rhesus monkeys subjected to 11 years of dietary restriction
-
Blanc S., et al. Energy expenditure of rhesus monkeys subjected to 11 years of dietary restriction. J. Clin. Endocrinol. Metab. 88 (2003) 16-23
-
(2003)
J. Clin. Endocrinol. Metab.
, vol.88
, pp. 16-23
-
-
Blanc, S.1
-
8
-
-
0029994960
-
Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents
-
Lane M.A., et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 4159-4164
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 4159-4164
-
-
Lane, M.A.1
-
9
-
-
0033817976
-
Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle
-
Zainal T.A., et al. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J. 14 (2000) 1825-1836
-
(2000)
FASEB J.
, vol.14
, pp. 1825-1836
-
-
Zainal, T.A.1
-
10
-
-
33845898766
-
Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates
-
Messaoudi I., et al. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 19448-19453
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 19448-19453
-
-
Messaoudi, I.1
-
11
-
-
34447316421
-
Caloric restriction in humans
-
Holloszy J.O., and Fontana L. Caloric restriction in humans. Exp. Gerontol. 42 (2007) 709-712
-
(2007)
Exp. Gerontol.
, vol.42
, pp. 709-712
-
-
Holloszy, J.O.1
Fontana, L.2
-
12
-
-
0037470539
-
Genetics and the specificity of the aging process
-
Hekimi S., and Guarente L. Genetics and the specificity of the aging process. Science 299 (2003) 1351-1354
-
(2003)
Science
, vol.299
, pp. 1351-1354
-
-
Hekimi, S.1
Guarente, L.2
-
14
-
-
0024446461
-
Natural selection for extended longevity from food restriction
-
Harrison D.E., and Archer J.R. Natural selection for extended longevity from food restriction. Growth Dev. Aging 53 (1989) 3
-
(1989)
Growth Dev. Aging
, vol.53
, pp. 3
-
-
Harrison, D.E.1
Archer, J.R.2
-
15
-
-
0024655426
-
Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation?
-
Holliday R. Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation?. Bioessays 10 (1989) 125-127
-
(1989)
Bioessays
, vol.10
, pp. 125-127
-
-
Holliday, R.1
-
16
-
-
0021418719
-
The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature
-
Golden J.W., and Riddle D.L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102 (1984) 368-378
-
(1984)
Dev. Biol.
, vol.102
, pp. 368-378
-
-
Golden, J.W.1
Riddle, D.L.2
-
17
-
-
0141790263
-
Invited review: theories of aging
-
Weinert B.T., and Timiras P.S. Invited review: theories of aging. J. Appl. Physiol. 95 (2003) 1706-1716
-
(2003)
J. Appl. Physiol.
, vol.95
, pp. 1706-1716
-
-
Weinert, B.T.1
Timiras, P.S.2
-
18
-
-
36148957445
-
Molecular mechanisms of life- and health-span extension: role of calorie restriction and exercise intervention
-
Carter C.S., et al. Molecular mechanisms of life- and health-span extension: role of calorie restriction and exercise intervention. Appl. Physiol. Nutr. Metab. 32 (2007) 954-966
-
(2007)
Appl. Physiol. Nutr. Metab.
, vol.32
, pp. 954-966
-
-
Carter, C.S.1
-
19
-
-
0031459980
-
Extrachromosomal rDNA circles - a cause of aging in yeast
-
Sinclair D.A., and Guarente L. Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91 (1997) 1033-1042
-
(1997)
Cell
, vol.91
, pp. 1033-1042
-
-
Sinclair, D.A.1
Guarente, L.2
-
20
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M., et al. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13 (1999) 2570-2780
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2780
-
-
Kaeberlein, M.1
-
21
-
-
0024536650
-
A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA
-
Gottlieb S., and Esposito R.E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56 (1989) 771-776
-
(1989)
Cell
, vol.56
, pp. 771-776
-
-
Gottlieb, S.1
Esposito, R.E.2
-
22
-
-
0028897013
-
Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae
-
Kennedy B.K., et al. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80 (1995) 485-496
-
(1995)
Cell
, vol.80
, pp. 485-496
-
-
Kennedy, B.K.1
-
23
-
-
0021734287
-
Characterization of two genes required for the position-effect control of yeast mating-type genes
-
Shore D., et al. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 3 (1984) 2817-2823
-
(1984)
EMBO J.
, vol.3
, pp. 2817-2823
-
-
Shore, D.1
-
24
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403 (2000) 795-800
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
-
25
-
-
0034687694
-
Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner K.G., et al. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 14178-14182
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 14178-14182
-
-
Tanner, K.G.1
-
26
-
-
0034193776
-
Sir2 links chromatin silencing, metabolism, and aging
-
Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14 (2000) 1021-1026
-
(2000)
Genes Dev.
, vol.14
, pp. 1021-1026
-
-
Guarente, L.1
-
27
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz K.T., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425 (2003) 191-196
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
-
28
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin S.J., et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289 (2000) 2126-2128
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
-
29
-
-
0035815414
-
Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein
-
Clancy D.J., et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292 (2001) 104-106
-
(2001)
Science
, vol.292
, pp. 104-106
-
-
Clancy, D.J.1
-
30
-
-
18744416824
-
Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction
-
Rogina B., et al. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298 (2002) 1745
-
(2002)
Science
, vol.298
, pp. 1745
-
-
Rogina, B.1
-
31
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B., and Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 15998-16003
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
32
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
Wood J.G., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430 (2004) 686-689
-
(2004)
Nature
, vol.430
, pp. 686-689
-
-
Wood, J.G.1
-
33
-
-
0017763799
-
Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span
-
Klass M.R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6 (1977) 413-429
-
(1977)
Mech. Ageing Dev.
, vol.6
, pp. 413-429
-
-
Klass, M.R.1
-
34
-
-
0024385843
-
Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions
-
Hosono R., et al. Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp. Gerontol. 24 (1989) 251-264
-
(1989)
Exp. Gerontol.
, vol.24
, pp. 251-264
-
-
Hosono, R.1
-
35
-
-
33751203889
-
Dietary deprivation extends lifespan in Caenorhabditis elegans
-
Lee G.D., et al. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5 (2006) 515-524
-
(2006)
Aging Cell
, vol.5
, pp. 515-524
-
-
Lee, G.D.1
-
36
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273 (2000) 793-798
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
37
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum H.A., and Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410 (2001) 227-230
-
(2001)
Nature
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
38
-
-
27644585190
-
A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span
-
Viswanathan M., et al. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9 (2005) 605-615
-
(2005)
Dev. Cell
, vol.9
, pp. 605-615
-
-
Viswanathan, M.1
-
39
-
-
34250365395
-
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
-
Tanno M., et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282 (2007) 6823-6832
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 6823-6832
-
-
Tanno, M.1
-
40
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita E., et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16 (2005) 4623-4635
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
-
41
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
Mostoslavsky R., et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124 (2006) 315-329
-
(2006)
Cell
, vol.124
, pp. 315-329
-
-
Mostoslavsky, R.1
-
42
-
-
34247271282
-
SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
-
Scher M.B., et al. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21 (2007) 920-928
-
(2007)
Genes Dev.
, vol.21
, pp. 920-928
-
-
Scher, M.B.1
-
43
-
-
44649119816
-
Transcriptional targets of sirtuins in the coordination of mammalian physiology
-
Feige J.N., and Auwerx J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr. Opin. Cell Biol. 20 (2008) 303-309
-
(2008)
Curr. Opin. Cell Biol.
, vol.20
, pp. 303-309
-
-
Feige, J.N.1
Auwerx, J.2
-
44
-
-
41549135942
-
FoxO transcription factors in the maintenance of cellular homeostasis during aging
-
Salih D.A., and Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20 (2008) 126-136
-
(2008)
Curr. Opin. Cell Biol.
, vol.20
, pp. 126-136
-
-
Salih, D.A.1
Brunet, A.2
-
45
-
-
37349110355
-
Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways
-
Rodgers J.T., et al. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 582 (2008) 46-53
-
(2008)
FEBS Lett.
, vol.582
, pp. 46-53
-
-
Rodgers, J.T.1
-
46
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen H.Y., et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305 (2004) 390-392
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
-
47
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Nisoli E., et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310 (2005) 314-317
-
(2005)
Science
, vol.310
, pp. 314-317
-
-
Nisoli, E.1
-
48
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22 (2008) 1753-1757
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
-
49
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26 (2007) 1913-1923
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
-
50
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434 (2005) 113-118
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
51
-
-
0037207475
-
The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
-
McBurney M.W., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 23 (2003) 38-54
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
-
52
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng H.L., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 10794-10799
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
-
53
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Chen D., et al. Increase in activity during calorie restriction requires Sirt1. Science 310 (2005) 1641
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, D.1
-
54
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G., et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3 (2008) e1759
-
(2008)
PLoS ONE
, vol.3
-
-
Boily, G.1
-
55
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L., et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6 (2007) 759-767
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
-
56
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks A.S., et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8 (2008) 333-341
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
-
57
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger P.T., et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 9793-9798
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
-
58
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127 (2006) 1109-1122
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
59
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444 (2006) 337-342
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
60
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne J.C., et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450 (2007) 712-716
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
-
61
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige J.N., et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8 (2008) 347-358
-
(2008)
Cell Metab.
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
-
62
-
-
33947710793
-
Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
-
Civitarese A.E., et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4 (2007) e76
-
(2007)
PLoS Med.
, vol.4
-
-
Civitarese, A.E.1
-
63
-
-
58749099124
-
SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention - the TULIP Study
-
Weyrich P., et al. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention - the TULIP Study. BMC Med. Genet. 9 (2008) 100
-
(2008)
BMC Med. Genet.
, vol.9
, pp. 100
-
-
Weyrich, P.1
-
64
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin S.J., et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418 (2002) 344-348
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.J.1
-
65
-
-
0347128279
-
Calorie restriction extends yeast life span by lowering the level of NADH
-
Lin S.J., et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18 (2004) 12-16
-
(2004)
Genes Dev.
, vol.18
, pp. 12-16
-
-
Lin, S.J.1
-
66
-
-
4544243684
-
Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation
-
Schmidt M.T., et al. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem. 279 (2004) 40122-40129
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 40122-40129
-
-
Schmidt, M.T.1
-
67
-
-
34347354447
-
Sir2 and calorie restriction in yeast: a skeptical perspective
-
Kaeberlein M., and Powers III R.W. Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 6 (2007) 128-140
-
(2007)
Ageing Res. Rev.
, vol.6
, pp. 128-140
-
-
Kaeberlein, M.1
Powers III, R.W.2
-
68
-
-
0037466652
-
DAF-16 target genes that control C. elegans life-span and metabolism
-
Lee S.S., et al. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300 (2003) 644-647
-
(2003)
Science
, vol.300
, pp. 644-647
-
-
Lee, S.S.1
-
69
-
-
33645472504
-
New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen
-
Hansen M., et al. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet. 1 (2005) 119-128
-
(2005)
PLoS Genet.
, vol.1
, pp. 119-128
-
-
Hansen, M.1
-
70
-
-
0037147103
-
Rates of behavior and aging specified by mitochondrial function during development
-
Dillin A., et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298 (2002) 2398-2401
-
(2002)
Science
, vol.298
, pp. 2398-2401
-
-
Dillin, A.1
-
71
-
-
33947521255
-
Calorie restriction and the nutrient sensing signaling pathways
-
Dilova I., et al. Calorie restriction and the nutrient sensing signaling pathways. Cell. Mol. Life Sci. 64 (2007) 752-767
-
(2007)
Cell. Mol. Life Sci.
, vol.64
, pp. 752-767
-
-
Dilova, I.1
-
72
-
-
0037829279
-
Reconstructing eukaryotic NAD metabolism
-
Rongvaux A., et al. Reconstructing eukaryotic NAD metabolism. Bioessays 25 (2003) 683-690
-
(2003)
Bioessays
, vol.25
, pp. 683-690
-
-
Rongvaux, A.1
-
73
-
-
41649119244
-
The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast
-
Easlon E., et al. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev. 22 (2008) 931-944
-
(2008)
Genes Dev.
, vol.22
, pp. 931-944
-
-
Easlon, E.1
-
74
-
-
0038329323
-
Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
-
Anderson R.M., et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423 (2003) 181-185
-
(2003)
Nature
, vol.423
, pp. 181-185
-
-
Anderson, R.M.1
-
75
-
-
0036190727
-
Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1
-
Ghislain M., et al. Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast 19 (2002) 215-224
-
(2002)
Yeast
, vol.19
, pp. 215-224
-
-
Ghislain, M.1
-
76
-
-
1642580758
-
Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity
-
Gallo C.M., et al. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol. Cell. Biol. 24 (2004) 1301-1312
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 1301-1312
-
-
Gallo, C.M.1
-
77
-
-
55549129616
-
Life span extension and neuronal cell protection by Drosophila nicotinamidase
-
Balan V., et al. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J. Biol. Chem. 283 (2008) 27810-27819
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 27810-27819
-
-
Balan, V.1
-
78
-
-
34247166642
-
The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival
-
van der Horst A., et al. The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival. Mech. Ageing Dev. 128 (2007) 346-349
-
(2007)
Mech. Ageing Dev.
, vol.128
, pp. 346-349
-
-
van der Horst, A.1
-
79
-
-
10944270187
-
The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
-
Revollo J.R., et al. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279 (2004) 50754-50763
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 50754-50763
-
-
Revollo, J.R.1
-
80
-
-
34249696938
-
Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
-
van der Veer E., et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 282 (2007) 10841-10845
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 10841-10845
-
-
van der Veer, E.1
-
81
-
-
34548627517
-
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
-
Yang H., et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130 (2007) 1095-1107
-
(2007)
Cell
, vol.130
, pp. 1095-1107
-
-
Yang, H.1
-
82
-
-
35549002189
-
Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme
-
Revollo J.R., et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6 (2007) 363-375
-
(2007)
Cell Metab.
, vol.6
, pp. 363-375
-
-
Revollo, J.R.1
-
83
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14 (2008) 661-673
-
(2008)
Dev. Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
-
84
-
-
19344374925
-
Sir2-independent life span extension by calorie restriction in yeast
-
Kaeberlein M., et al. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2 (2004) E296
-
(2004)
PLoS Biol.
, vol.2
-
-
Kaeberlein, M.1
-
85
-
-
0033738362
-
An intervention resembling caloric restriction prolongs life span and retards aging in yeast
-
Jiang J.C., et al. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J. 14 (2000) 2135-2137
-
(2000)
FASEB J.
, vol.14
, pp. 2135-2137
-
-
Jiang, J.C.1
-
86
-
-
24944559665
-
HST2 mediates SIR2-independent life-span extension by calorie restriction
-
Lamming D.W., et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309 (2005) 1861-1864
-
(2005)
Science
, vol.309
, pp. 1861-1864
-
-
Lamming, D.W.1
-
87
-
-
13944255453
-
Genes determining yeast replicative life span in a long-lived genetic background
-
Kaeberlein M., et al. Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126 (2005) 491-504
-
(2005)
Mech. Ageing Dev.
, vol.126
, pp. 491-504
-
-
Kaeberlein, M.1
-
88
-
-
27744511769
-
Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients
-
Kaeberlein M., et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310 (2005) 1193-1196
-
(2005)
Science
, vol.310
, pp. 1193-1196
-
-
Kaeberlein, M.1
-
89
-
-
29244489494
-
Increased life span due to calorie restriction in respiratory-deficient yeast
-
Kaeberlein M., et al. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet. 1 (2005) e69
-
(2005)
PLoS Genet.
, vol.1
-
-
Kaeberlein, M.1
-
91
-
-
48349144852
-
Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
-
Pearson K.J., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 8 (2008) 157-168
-
(2008)
Cell Metab.
, vol.8
, pp. 157-168
-
-
Pearson, K.J.1
-
92
-
-
31944450272
-
Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate
-
Valenzano D.R., et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 16 (2006) 296-300
-
(2006)
Curr. Biol.
, vol.16
, pp. 296-300
-
-
Valenzano, D.R.1
-
93
-
-
48349110303
-
A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
-
Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3 (2008) e2264
-
(2008)
PLoS ONE
, vol.3
-
-
Barger, J.L.1
-
94
-
-
0033065221
-
Effects of resveratrol on the rat brain respiratory chain
-
Zini R., et al. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp. Clin. Res. 25 (1999) 87-97
-
(1999)
Drugs Exp. Clin. Res.
, vol.25
, pp. 87-97
-
-
Zini, R.1
-
95
-
-
20444431507
-
Substrate-specific activation of sirtuins by resveratrol
-
Kaeberlein M., et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280 (2005) 17038-17045
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17038-17045
-
-
Kaeberlein, M.1
-
96
-
-
33749349202
-
Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice
-
Zang M., et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55 (2006) 2180-2191
-
(2006)
Diabetes
, vol.55
, pp. 2180-2191
-
-
Zang, M.1
-
97
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
Dasgupta B., and Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217-7222
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
98
-
-
34247600642
-
Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase
-
Park C.E., et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp. Mol. Med. 39 (2007) 222-229
-
(2007)
Exp. Mol. Med.
, vol.39
, pp. 222-229
-
-
Park, C.E.1
-
99
-
-
47749148061
-
Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK
-
Breen D.M., et al. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem. Biophys. Res. Commun. 374 (2008) 117-122
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.374
, pp. 117-122
-
-
Breen, D.M.1
-
100
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X., et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283 (2008) 20015-20026
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
-
101
-
-
53049091294
-
Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt
-
Chan A.Y., et al. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J. Biol. Chem. 283 (2008) 24194-24201
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24194-24201
-
-
Chan, A.Y.1
-
102
-
-
0033870805
-
Sip2p and its partner snf1p kinase affect aging in S. cerevisiae
-
Ashrafi K., et al. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14 (2000) 1872-1885
-
(2000)
Genes Dev.
, vol.14
, pp. 1872-1885
-
-
Ashrafi, K.1
-
103
-
-
33646926969
-
Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways
-
Curtis R., et al. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5 (2006) 119-126
-
(2006)
Aging Cell
, vol.5
, pp. 119-126
-
-
Curtis, R.1
-
104
-
-
10644282295
-
The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans
-
Apfeld J., et al. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18 (2004) 3004-3009
-
(2004)
Genes Dev.
, vol.18
, pp. 3004-3009
-
-
Apfeld, J.1
-
105
-
-
34848850156
-
An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans
-
Greer E.L., et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17 (2007) 1646-1656
-
(2007)
Curr. Biol.
, vol.17
, pp. 1646-1656
-
-
Greer, E.L.1
-
106
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458 (2009) 1056-1060
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
107
-
-
34247502715
-
Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+
-
Belenky P., et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129 (2007) 473-484
-
(2007)
Cell
, vol.129
, pp. 473-484
-
-
Belenky, P.1
-
108
-
-
2342550554
-
Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
-
Bieganowski P., and Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 117 (2004) 495-502
-
(2004)
Cell
, vol.117
, pp. 495-502
-
-
Bieganowski, P.1
Brenner, C.2
|