-
1
-
-
84954537942
-
CRISPR-Cas adaptation: Insights into the mechanism of action
-
Amitai G, Sorek R. 2016. CRISPR-Cas adaptation: Insights into the mechanism of action. Nat. Rev. Microbiol. 14(2):67-76
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, Issue.2
, pp. 67-76
-
-
Amitai, G.1
Sorek, R.2
-
2
-
-
84962514403
-
Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
-
Anders C, Bargsten K, Jinek M. 2016. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61(6):895-902
-
(2016)
Mol. Cell
, vol.61
, Issue.6
, pp. 895-902
-
-
Anders, C.1
Bargsten, K.2
Jinek, M.3
-
3
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569-73
-
(2014)
Nature
, vol.513
, Issue.7519
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
4
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34(9):933-41
-
(2016)
Nat. Biotechnol.
, vol.34
, Issue.9
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
5
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709-12
-
(2007)
Science
, vol.315
, Issue.5819
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
-
6
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. CellHostMicrobe 12(2):177-86
-
(2012)
Cell Host Microbe
, vol.12
, Issue.2
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
7
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551-61
-
(2005)
Microbiology
, vol.151
, Issue.8
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
8
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960-64
-
(2008)
Science
, vol.321
, Issue.5891
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
-
9
-
-
84907546073
-
Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage
-
Cencic R, Miura H, Malina A, Robert F, Ethier S, et al. 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLOS ONE 9(10):e109213
-
(2014)
PLOS ONE
, vol.9
, Issue.10
, pp. e109213
-
-
Cencic, R.1
Miura, H.2
Malina, A.3
Robert, F.4
Ethier, S.5
-
10
-
-
84960832490
-
Origins of programmable nucleases for genome engineering
-
Chandrasegaran S, Carroll D. 2016. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428(5):963-89
-
(2016)
J. Mol. Biol.
, vol.428
, Issue.5
, pp. 963-989
-
-
Chandrasegaran, S.1
Carroll, D.2
-
11
-
-
84874745737
-
Biotechnology: Rewriting a genome
-
Charpentier E, Doudna JA. 2013. Biotechnology: Rewriting a genome. Nature 495(7439):50-51
-
(2013)
Nature
, vol.495
, Issue.7439
, pp. 50-51
-
-
Charpentier, E.1
Doudna, J.A.2
-
12
-
-
84904468142
-
Harnessing CRISPR-Cas9 immunity for genetic engineering
-
Charpentier E, Marraffini LA. 2014. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr. Opin. Microbiol. 19:114-19
-
(2014)
Curr. Opin. Microbiol.
, vol.19
, pp. 114-119
-
-
Charpentier, E.1
Marraffini, L.A.2
-
13
-
-
84900395692
-
Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease
-
Chen H, Choi J, Bailey S. 2014. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J. Biol. Chem. 289(19):13284-94
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.19
, pp. 13284-13294
-
-
Chen, H.1
Choi, J.2
Bailey, S.3
-
14
-
-
84902095351
-
Classification and evolution of type II CRISPR-Cas systems
-
Chylinski K, Makarova KS, Charpentier E, Koonin EV. 2014. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 42(10):6091-105
-
(2014)
Nucleic Acids Res.
, vol.42
, Issue.10
, pp. 6091-6105
-
-
Chylinski, K.1
Makarova, K.S.2
Charpentier, E.3
Koonin, E.V.4
-
15
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819-23
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
-
16
-
-
84923106217
-
Therapeutic genome editing: Prospects and challenges
-
Cox DBT, Platt RJ, Zhang F. 2015. Therapeutic genome editing: Prospects and challenges. Nat. Med. 21(2):121-31
-
(2015)
Nat. Med.
, vol.21
, Issue.2
, pp. 121-131
-
-
Cox, D.B.T.1
Platt, R.J.2
Zhang, F.3
-
17
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-7
-
(2011)
Nature
, vol.471
, Issue.7340
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
-
18
-
-
38949123143
-
Phage response to CRISPRencoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, et al. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190(4):1390-400
-
(2008)
J. Bacteriol.
, vol.190
, Issue.4
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonté, J.4
Fremaux, C.5
-
19
-
-
84952639685
-
Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation
-
Dominguez AA, Lim WA, Qi LS. 2016. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17(1):5-15
-
(2016)
Nat. Rev. Mol. Cell Biol.
, vol.17
, Issue.1
, pp. 5-15
-
-
Dominguez, A.A.1
Lim, W.A.2
Qi, L.S.3
-
20
-
-
84913594397
-
The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096
-
(2014)
Science
, vol.346
, Issue.6213
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
21
-
-
84951782881
-
Genome editing: The end of the beginning
-
Doudna JA, Gersbach CA. 2015. Genome editing: The end of the beginning. Genome Biol. 16(1):292
-
(2015)
Genome Biol.
, vol.16
, Issue.1
, pp. 292
-
-
Doudna, J.A.1
Gersbach, C.A.2
-
22
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10(11):1116-21
-
(2013)
Nat. Methods
, vol.10
, Issue.11
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
23
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain A-L, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42(4):2577-90
-
(2014)
Nucleic Acids Res.
, vol.42
, Issue.4
, pp. 2577-2590
-
-
Fonfara, I.1
Le Rhun, A.2
Chylinski, K.3
Makarova, K.S.4
Lécrivain, A.-L.5
-
24
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31(9):822-26
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.9
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
-
25
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32(3):279-84
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.3
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
26
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, DupuisM-È, Villion M, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67-71
-
(2010)
Nature
, vol.468
, Issue.7320
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.-E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
-
27
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109(39):E2579-86
-
(2012)
PNAS
, vol.109
, Issue.39
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
28
-
-
70449753811
-
RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009. RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex. Cell 139(5):945-56
-
(2009)
Cell
, vol.139
, Issue.5
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
-
29
-
-
84959422840
-
Structural basis for promiscuous PAM recognition in type I-E Cascade from E. Coli
-
Hayes RP, Xiao Y, Ding F, van Erp PBG, Rajashankar K, et al. 2016. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature 530(7591):499-503
-
(2016)
Nature
, vol.530
, Issue.7591
, pp. 499-503
-
-
Hayes, R.P.1
Xiao, Y.2
Ding, F.3
Van Erp, P.B.G.4
Rajashankar, K.5
-
30
-
-
84951568684
-
Applications of CRISPR-Cas systems in neuroscience
-
Heidenreich M, Zhang F. 2016. Applications of CRISPR-Cas systems in neuroscience. Nat. Rev.Neurosci. 17(1):36-44
-
(2016)
Nat. Rev.Neurosci.
, vol.17
, Issue.1
, pp. 36-44
-
-
Heidenreich, M.1
Zhang, F.2
-
31
-
-
84903471734
-
Adapting to new threats: The generation of memory by CRISPRCas immune systems
-
Heler R, Marraffini LA, Bikard D. 2014. Adapting to new threats: The generation of memory by CRISPRCas immune systems. Mol. Microbiol. 93(1):1-9
-
(2014)
Mol. Microbiol.
, vol.93
, Issue.1
, pp. 1-9
-
-
Heler, R.1
Marraffini, L.A.2
Bikard, D.3
-
32
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR-Cas adaptation
-
Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, et al. 2015. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519(7542):199-202
-
(2015)
Nature
, vol.519
, Issue.7542
, pp. 199-202
-
-
Heler, R.1
Samai, P.2
Modell, J.W.3
Weiner, C.4
Goldberg, G.W.5
-
33
-
-
84949032804
-
Nucleosomes inhibit Cas9 endonuclease activity in vitro
-
Hinz JM, Laughery MF, Wyrick JJ. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54(48):7063-66
-
(2015)
Biochemistry
, vol.54
, Issue.48
, pp. 7063-7066
-
-
Hinz, J.M.1
Laughery, M.F.2
Wyrick, J.J.3
-
34
-
-
84959440451
-
Structure and engineering of Francisella novicida Cas9
-
Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, et al. 2016. Structure and engineering of Francisella novicida Cas9. Cell 164(5):950-61
-
(2016)
Cell
, vol.164
, Issue.5
, pp. 950-961
-
-
Hirano, H.1
Gootenberg, J.S.2
Horii, T.3
Abudayyeh, O.O.4
Kimura, M.5
-
35
-
-
84962580403
-
Structural basis for the altered PAM specificities of engineered CRISPR-Cas9
-
Hirano S, Nishimasu H, Ishitani R, Nureki O. 2016. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61(6):886-94
-
(2016)
Mol. Cell
, vol.61
, Issue.6
, pp. 886-894
-
-
Hirano, S.1
Nishimasu, H.2
Ishitani, R.3
Nureki, O.4
-
36
-
-
84969195094
-
Nucleosomes impede Cas9 access to DNA in vivo and in vitro
-
Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5:e12677
-
(2016)
ELife
, vol.5
, pp. e12677
-
-
Horlbeck, M.A.1
Witkowsky, L.B.2
Guglielmi, B.3
Replogle, J.M.4
Gilbert, L.A.5
-
37
-
-
38949214103
-
Diversity, activity, evolution of CRISPR loci in Streptococcus thermophilus
-
Horvath P, Romero DA, Cô uté-Monvoisin A-C, Richards M, Deveau H, et al. 2008. Diversity, activity, evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190(4):1401-12
-
(2008)
J. Bacteriol.
, vol.190
, Issue.4
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coûté-Monvoisin, A.-C.3
Richards, M.4
Deveau, H.5
-
38
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F, et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. PNAS 110(39):15644-49
-
(2013)
PNAS
, vol.110
, Issue.39
, pp. 15644-15649
-
-
Hou, Z.1
Zhang, Y.2
Propson, N.E.3
Howden, S.E.4
Chu, L.-F.5
-
39
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262-78
-
(2014)
Cell
, vol.157
, Issue.6
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
40
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31(9):827-32
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.9
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
-
41
-
-
84965050728
-
Chemical Biology approaches to genome editing: Understanding, controlling, delivering programmable nucleases
-
Hu JH, Davis KM, Liu DR. 2016. Chemical Biology approaches to genome editing: Understanding, controlling, delivering programmable nucleases. Cell Chem. Biol. 23(1):57-73
-
(2016)
Cell Chem. Biol.
, vol.23
, Issue.1
, pp. 57-73
-
-
Hu, J.H.1
Davis, K.M.2
Liu, D.R.3
-
42
-
-
84971539053
-
Nucleosome breathing and remodeling constrain CRISPR-Cas9 function
-
Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R. 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 5:e13450
-
(2016)
ELife
, vol.5
, pp. e13450
-
-
Isaac, R.S.1
Jiang, F.2
Doudna, J.A.3
Lim, W.A.4
Narlikar, G.J.5
Almeida, R.6
-
43
-
-
84907208955
-
Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
-
Jackson RN, Golden SM, van Erp PBG, Carter J, Westra ER, et al. 2014. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345(6203):1473-79
-
(2014)
Science
, vol.345
, Issue.6203
, pp. 1473-1479
-
-
Jackson, R.N.1
Golden, S.M.2
Van Erp, P.B.G.3
Carter, J.4
Westra, E.R.5
-
44
-
-
84923279931
-
The structural biology of CRISPR-Cas systems
-
Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100-11
-
(2015)
Curr. Opin. Struct. Biol.
, vol.30
, pp. 100-111
-
-
Jiang, F.1
Doudna, J.A.2
-
45
-
-
84958953000
-
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
-
Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, et al. 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351(6275):867-71
-
(2016)
Science
, vol.351
, Issue.6275
, pp. 867-871
-
-
Jiang, F.1
Taylor, D.W.2
Chen, J.S.3
Kornfeld, J.E.4
Zhou, K.5
-
46
-
-
84933574487
-
Structural Biology. A Cas9-guide RNA complex preorganized for target DNA recognition
-
Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. Structural Biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477-81
-
(2015)
Science
, vol.348
, Issue.6242
, pp. 1477-1481
-
-
Jiang, F.1
Zhou, K.2
Ma, L.3
Gressel, S.4
Doudna, J.A.5
-
47
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31(3):233-39
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.3
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
48
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816-21
-
(2012)
Science
, vol.337
, Issue.6096
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
49
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 2013. RNA-programmed genome editing in human cells. eLife 2:e00471
-
(2013)
ELife
, vol.2
, pp. e00471
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.6
-
50
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
-
51
-
-
84955569035
-
Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage
-
Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. 2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res. 43(18):8924-41
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.18
, pp. 8924-8941
-
-
Josephs, E.A.1
Kocak, D.D.2
Fitzgibbon, C.J.3
McMenemy, J.4
Gersbach, C.A.5
Marszalek, P.E.6
-
52
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490-95
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Tsai, S.Q.4
Nguyen, N.T.5
-
53
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
-
Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33(12):1293-98
-
(2015)
Nat. Biotechnol.
, vol.33
, Issue.12
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
-
54
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481-85
-
(2015)
Nature
, vol.523
, Issue.7561
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
-
55
-
-
84946919064
-
Dynamics of CRISPR-Cas9 genome interrogation in living cells
-
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350(6262):823-26
-
(2015)
Science
, vol.350
, Issue.6262
, pp. 823-826
-
-
Knight, S.C.1
Xie, L.2
Deng, W.3
Guglielmi, B.4
Witkowsky, L.B.5
-
56
-
-
84903545084
-
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
-
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32(7):677-83
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.7
, pp. 677-683
-
-
Kuscu, C.1
Arslan, S.2
Singh, R.3
Thorpe, J.4
Adli, M.5
-
57
-
-
84893693085
-
Planting the seed: Target recognition of short guide RNAs
-
Künne T, Swarts DC, Brouns SJJ. 2014. Planting the seed: Target recognition of short guide RNAs. Trends Microbiol. 22(2):74-83
-
(2014)
Trends Microbiol.
, vol.22
, Issue.2
, pp. 74-83
-
-
Künne, T.1
Swarts, D.C.2
Brouns, S.J.J.3
-
58
-
-
84960449403
-
The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells
-
Lee CM, Cradick TJ, Bao G. 2016. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 24(3):645-54
-
(2016)
Mol. Ther.
, vol.24
, Issue.3
, pp. 645-654
-
-
Lee, C.M.1
Cradick, T.J.2
Bao, G.3
-
59
-
-
84979464834
-
Identifying and visualizing functional PAM diversity across CRISPR-Cas systems
-
Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, et al. 2016. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 62(1):137-47
-
(2016)
Mol. Cell
, vol.62
, Issue.1
, pp. 137-147
-
-
Leenay, R.T.1
Maksimchuk, K.R.2
Slotkowski, R.A.3
Agrawal, R.N.4
Gomaa, A.A.5
-
60
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181-211
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
61
-
-
84990862095
-
CRISPR-Cas9 nuclear dynamics and target recognition in living cells
-
Ma H, Tu L-C, Naseri A, Huisman M, Zhang S, et al. 2016. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 214(5):529-37
-
(2016)
J. Cell Biol.
, vol.214
, Issue.5
, pp. 529-537
-
-
Ma, H.1
Tu, L.-C.2
Naseri, A.3
Huisman, M.4
Zhang, S.5
-
62
-
-
84960431733
-
Genome-editing technologies for gene and cell therapy
-
Maeder ML, Gersbach CA. 2016. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24(3):430-46
-
(2016)
Mol. Ther.
, vol.24
, Issue.3
, pp. 430-446
-
-
Maeder, M.L.1
Gersbach, C.A.2
-
63
-
-
34248374277
-
A putative RNA-interferencebased immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, hypothetical mechanisms of action
-
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interferencebased immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, hypothetical mechanisms of action. Biol. Direct 1:7
-
(2006)
Biol. Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
64
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13(11):722-36
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, Issue.11
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
-
65
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121):823-26
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
-
66
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature 526(7571):55-61
-
(2015)
Nature
, vol.526
, Issue.7571
, pp. 55-61
-
-
Marraffini, L.A.1
-
67
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843-45
-
(2008)
Science
, vol.322
, Issue.5909
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
68
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463(7280):568-71
-
(2010)
Nature
, vol.463
, Issue.7280
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
69
-
-
84963831923
-
Kinetics of the CRISPRCas9 effector complex assembly and the role of 3-terminal segment of guide RNA
-
Mekler V, Minakhin L, Semenova E, Kuznedelov K, Severinov K. 2016. Kinetics of the CRISPRCas9 effector complex assembly and the role of 3--terminal segment of guide RNA. Nucleic Acids Res. 44(6):2837-45
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.6
, pp. 2837-2845
-
-
Mekler, V.1
Minakhin, L.2
Semenova, E.3
Kuznedelov, K.4
Severinov, K.5
-
70
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica FJM, Déz-Villase nor C, Garcá-Martnez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(3):733-40
-
(2009)
Microbiology
, vol.155
, Issue.3
, pp. 733-740
-
-
Mojica, F.J.M.1
Déz-Villasenõr, C.2
Garcá-Martnez, J.3
Almendros, C.4
-
71
-
-
84986214322
-
The discovery of CRISPR in archaea and bacteria
-
Mojica FJM, Rodriguez-Valera F. 2016. The discovery of CRISPR in archaea and bacteria. FEBS J. 283(17):3162-69
-
(2016)
FEBS J.
, vol.283
, Issue.17
, pp. 3162-3169
-
-
Mojica, F.J.M.1
Rodriguez-Valera, F.2
-
72
-
-
84907204893
-
Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
-
Mulepati S, Héroux A, Bailey S. 2014. Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345(6203):1479-84
-
(2014)
Science
, vol.345
, Issue.6203
, pp. 1479-1484
-
-
Mulepati, S.1
Héroux, A.2
Bailey, S.3
-
73
-
-
84940368054
-
Crystal structure of Staphylococcus aureus Cas9
-
Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, et al. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell 162(5):1113-26
-
(2015)
Cell
, vol.162
, Issue.5
, pp. 1113-1126
-
-
Nishimasu, H.1
Cong, L.2
Yan, W.X.3
Ran, F.A.4
Zetsche, B.5
-
74
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935-49
-
(2014)
Cell
, vol.156
, Issue.5
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
Konermann, S.4
Shehata, S.I.5
-
75
-
-
84913568580
-
Programmable RNA recognition and cleavage by CRISPR/Cas9
-
O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516(7530):263-66
-
(2014)
Nature
, vol.516
, Issue.7530
, pp. 263-266
-
-
O'Connell, M.R.1
Oakes, B.L.2
Sternberg, S.H.3
East-Seletsky, A.4
Kaplan, M.5
Doudna, J.A.6
-
76
-
-
84938836171
-
A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
-
O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. 2015. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43(6):3389-404
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.6
, pp. 3389-3404
-
-
O'Geen, H.1
Henry, I.M.2
Bhakta, M.S.3
Meckler, J.F.4
Segal, D.J.5
-
77
-
-
85016604142
-
Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations
-
Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. 2016. Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations. ACS Cent. Sci. 2(10):756-63
-
(2016)
ACS Cent. Sci.
, vol.2
, Issue.10
, pp. 756-763
-
-
Palermo, G.1
Miao, Y.2
Walker, R.C.3
Jinek, M.4
McCammon, J.A.5
-
78
-
-
84884155038
-
High-throughput profiling of offtarget DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of offtarget DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31(9):839-43
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.9
, pp. 839-843
-
-
Pattanayak, V.1
Lin, S.2
Guilinger, J.P.3
Ma, E.4
Doudna, J.A.5
Liu, D.R.6
-
79
-
-
84923358406
-
Architecture of the RNA polymerase II-Mediator core initiation complex
-
Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, et al. 2015. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 518(7539):376-80
-
(2015)
Nature
, vol.518
, Issue.7539
, pp. 376-380
-
-
Plaschka, C.1
Larivière, L.2
Wenzeck, L.3
Seizl, M.4
Hemann, M.5
-
80
-
-
84992189595
-
Optimizing sgRNA positionmarkedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression
-
Radzisheuskaya A, Shlyueva D, Müller I, Helin K. 2016. Optimizing sgRNA positionmarkedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res. 44(18):e141
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.18
, pp. e141
-
-
Radzisheuskaya, A.1
Shlyueva, D.2
Müller, I.3
Helin, K.4
-
81
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186-91
-
(2015)
Nature
, vol.520
, Issue.7546
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
-
82
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380-89
-
(2013)
Cell
, vol.154
, Issue.6
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.-Y.3
Gootenberg, J.S.4
Konermann, S.5
-
83
-
-
77950519937
-
Origins of specificity in protein-DNA recognition
-
Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. 2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79:233-69
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 233-269
-
-
Rohs, R.1
Jin, X.2
West, S.M.3
Joshi, R.4
Honig, B.5
Mann, R.S.6
-
84
-
-
84924592451
-
Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection
-
Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. 2015. Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep. 10(9):1534-43
-
(2015)
Cell Rep.
, vol.10
, Issue.9
, pp. 1534-1543
-
-
Rutkauskas, M.1
Sinkunas, T.2
Songailiene, I.3
Tikhomirova, M.S.4
Siksnys, V.5
Seidel, R.6
-
85
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497(7448):254-57
-
(2013)
Nature
, vol.497
, Issue.7448
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.-L.4
Weiss, D.S.5
-
87
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32(4):347-55
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.4
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
88
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108(25):10098-103
-
(2011)
PNAS
, vol.108
, Issue.25
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
-
89
-
-
84928205754
-
High-throughput functional genomics using CRISPR-Cas9
-
Shalem O, Sanjana NE, Zhang F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16(5):299-311
-
(2015)
Nat. Rev. Genet.
, vol.16
, Issue.5
, pp. 299-311
-
-
Shalem, O.1
Sanjana, N.E.2
Zhang, F.3
-
90
-
-
84947736727
-
Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
-
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, et al. 2015. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 60(3):385-97
-
(2015)
Mol. Cell
, vol.60
, Issue.3
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
-
91
-
-
84987837936
-
Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9
-
Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. 2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778
-
(2016)
Nat. Commun.
, vol.7
, pp. 12778
-
-
Singh, D.1
Sternberg, S.H.2
Fei, J.3
Doudna, J.A.4
Ha, T.5
-
92
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84-88
-
(2016)
Science
, vol.351
, Issue.6268
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
93
-
-
84946215320
-
Conformational control ofDNAtarget cleavage by CRISPR-Cas9
-
Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control ofDNAtarget cleavage by CRISPR-Cas9. Nature 527(7576):110-13
-
(2015)
Nature
, vol.527
, Issue.7576
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
94
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62-67
-
(2014)
Nature
, vol.507
, Issue.7490
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
95
-
-
84986634232
-
Genome editing in cardiovascular diseases
-
Strong A, Musunuru K. 2017. Genome editing in cardiovascular diseases. Nat. Rev. Cardiol. 14(1):11-20
-
(2017)
Nat. Rev. Cardiol.
, vol.14
, Issue.1
, pp. 11-20
-
-
Strong, A.1
Musunuru, K.2
-
96
-
-
84903975702
-
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111(27):9798-803
-
(2014)
PNAS
, vol.111
, Issue.27
, pp. 9798-9803
-
-
Szczelkun, M.D.1
Tikhomirova, M.S.2
Sinkunas, T.3
Gasiunas, G.4
Karvelis, T.5
-
97
-
-
84964253170
-
Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases
-
Tsai SQ, Joung JK. 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17(5):300-12
-
(2016)
Nat. Rev. Genet.
, vol.17
, Issue.5
, pp. 300-312
-
-
Tsai, S.Q.1
Joung, J.K.2
-
98
-
-
84992743464
-
Methods for optimizing CRISPR-Cas9 genome editing specificity
-
Tycko J, Myer VE, Hsu PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 63(3):355-70
-
(2016)
Mol. Cell
, vol.63
, Issue.3
, pp. 355-370
-
-
Tycko, J.1
Myer, V.E.2
Hsu, P.D.3
-
99
-
-
84902533278
-
Unravelling the structural andmechanistic basis of CRISPR-Cas systems
-
van der Oost J, Westra ER, Jackson RN, Wiedenheft B. 2014. Unravelling the structural andmechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12(7):479-92
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, Issue.7
, pp. 479-492
-
-
Van Der Oost, J.1
Westra, E.R.2
Jackson, R.N.3
Wiedenheft, B.4
-
100
-
-
0037071844
-
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6A° resolution
-
Vassylyev DG, Sekine S-i, Laptenko O, Lee J, Vassylyeva MN, et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6A° resolution. Nature 417(6890):712-19
-
(2002)
Nature
, vol.417
, Issue.6890
, pp. 712-719
-
-
Vassylyev, D.G.1
Sekine, S.-I.2
Laptenko, O.3
Lee, J.4
Vassylyeva, M.N.5
-
102
-
-
84857097177
-
RNA-guided genetic silencing systems in bacteria and archaea
-
Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331-38
-
(2012)
Nature
, vol.482
, Issue.7385
, pp. 331-338
-
-
Wiedenheft, B.1
Sternberg, S.H.2
Doudna, J.A.3
-
103
-
-
79960029056
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
Wiedenheft B, van Duijn E, Bultema JB, Bultema J, Waghmare SP, et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108(25):10092-97
-
(2011)
PNAS
, vol.108
, Issue.25
, pp. 10092-10097
-
-
Wiedenheft, B.1
Van Duijn, E.2
Bultema, J.B.3
Bultema, J.4
Waghmare, S.P.5
-
104
-
-
84954214717
-
Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering
-
Wright AV, Nu nez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell 164(1-2):29-44
-
(2016)
Cell
, vol.164
, Issue.1-2
, pp. 29-44
-
-
Wright, A.V.1
Nuñez, J.K.2
Doudna, J.A.3
-
105
-
-
84924322574
-
Rational design of a split-Cas9 enzyme complex
-
Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, et al. 2015. Rational design of a split-Cas9 enzyme complex. PNAS 112(10): 2984-89
-
(2015)
PNAS
, vol.112
, Issue.10
, pp. 29
-
-
Wright, A.V.1
Sternberg, S.H.2
Taylor, D.W.3
Staahl, B.T.4
Bardales, J.A.5
-
106
-
-
84902095352
-
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
-
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32(7):670-76
-
(2014)
Nat. Biotechnol.
, vol.32
, Issue.7
, pp. 670-676
-
-
Wu, X.1
Scott, D.A.2
Kriz, A.J.3
Chiu, A.C.4
Hsu, P.D.5
-
107
-
-
84984911537
-
CRISPR/Cas9 for human genome engineering and disease research
-
Xiong X, Chen M, Lim WA, Zhao D, Qi LS. 2016. CRISPR/Cas9 for human genome engineering and disease research. Annu. Rev. Genom. Hum. Genet. 17(1):131-54
-
(2016)
Annu. Rev. Genom. Hum. Genet.
, vol.17
, Issue.1
, pp. 131-154
-
-
Xiong, X.1
Chen, M.2
Lim, W.A.3
Zhao, D.4
Qi, L.S.5
-
108
-
-
55549123481
-
An equivalent metal ion in one-A nd two-metal-ion catalysis
-
Yang W. 2008. An equivalent metal ion in one-A nd two-metal-ion catalysis. Nat. Struct. Mol. Biol. 15(11):1228-31
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, Issue.11
, pp. 1228-1231
-
-
Yang, W.1
-
109
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, et al. 2013. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50(4):488-503
-
(2013)
Mol. Cell
, vol.50
, Issue.4
, pp. 488-503
-
-
Zhang, Y.1
Heidrich, N.2
Ampattu, B.J.3
Gunderson, C.W.4
Seifert, H.S.5
-
110
-
-
84908445494
-
Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli
-
Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, et al. 2014. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515(7525):147-50
-
(2014)
Nature
, vol.515
, Issue.7525
, pp. 147-150
-
-
Zhao, H.1
Sheng, G.2
Wang, J.3
Wang, M.4
Bunkoczi, G.5
|