메뉴 건너뛰기




Volumn 46, Issue , 2017, Pages 505-529

CRISPR-Cas9 Structures and Mechanisms

Author keywords

Cas9; CRISPR; Genome engineering; Mechanism; Off target; Structure

Indexed keywords

APOENZYME; CURVED DNA; DEOXYRIBONUCLEASE; GUIDE RNA; HETERODUPLEX; NUCLEASE; RNA; CRISPR ASSOCIATED PROTEIN; DNA;

EID: 85019742802     PISSN: 1936122X     EISSN: 19361238     Source Type: Book Series    
DOI: 10.1146/annurev-biophys-062215-010822     Document Type: Review
Times cited : (1346)

References (110)
  • 1
    • 84954537942 scopus 로고    scopus 로고
    • CRISPR-Cas adaptation: Insights into the mechanism of action
    • Amitai G, Sorek R. 2016. CRISPR-Cas adaptation: Insights into the mechanism of action. Nat. Rev. Microbiol. 14(2):67-76
    • (2016) Nat. Rev. Microbiol. , vol.14 , Issue.2 , pp. 67-76
    • Amitai, G.1    Sorek, R.2
  • 2
    • 84962514403 scopus 로고    scopus 로고
    • Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
    • Anders C, Bargsten K, Jinek M. 2016. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61(6):895-902
    • (2016) Mol. Cell , vol.61 , Issue.6 , pp. 895-902
    • Anders, C.1    Bargsten, K.2    Jinek, M.3
  • 3
    • 84908508061 scopus 로고    scopus 로고
    • Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    • Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569-73
    • (2014) Nature , vol.513 , Issue.7519 , pp. 569-573
    • Anders, C.1    Niewoehner, O.2    Duerst, A.3    Jinek, M.4
  • 4
    • 84986898390 scopus 로고    scopus 로고
    • Applications of CRISPR technologies in research and beyond
    • Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34(9):933-41
    • (2016) Nat. Biotechnol. , vol.34 , Issue.9 , pp. 933-941
    • Barrangou, R.1    Doudna, J.A.2
  • 5
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709-12
    • (2007) Science , vol.315 , Issue.5819 , pp. 1709-1712
    • Barrangou, R.1    Fremaux, C.2    Deveau, H.3    Richards, M.4    Boyaval, P.5
  • 6
    • 84865144676 scopus 로고    scopus 로고
    • CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
    • Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. CellHostMicrobe 12(2):177-86
    • (2012) Cell Host Microbe , vol.12 , Issue.2 , pp. 177-186
    • Bikard, D.1    Hatoum-Aslan, A.2    Mucida, D.3    Marraffini, L.A.4
  • 7
    • 23844505202 scopus 로고    scopus 로고
    • Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
    • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551-61
    • (2005) Microbiology , vol.151 , Issue.8 , pp. 2551-2561
    • Bolotin, A.1    Quinquis, B.2    Sorokin, A.3    Ehrlich, S.D.4
  • 9
    • 84907546073 scopus 로고    scopus 로고
    • Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage
    • Cencic R, Miura H, Malina A, Robert F, Ethier S, et al. 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLOS ONE 9(10):e109213
    • (2014) PLOS ONE , vol.9 , Issue.10 , pp. e109213
    • Cencic, R.1    Miura, H.2    Malina, A.3    Robert, F.4    Ethier, S.5
  • 10
    • 84960832490 scopus 로고    scopus 로고
    • Origins of programmable nucleases for genome engineering
    • Chandrasegaran S, Carroll D. 2016. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428(5):963-89
    • (2016) J. Mol. Biol. , vol.428 , Issue.5 , pp. 963-989
    • Chandrasegaran, S.1    Carroll, D.2
  • 11
    • 84874745737 scopus 로고    scopus 로고
    • Biotechnology: Rewriting a genome
    • Charpentier E, Doudna JA. 2013. Biotechnology: Rewriting a genome. Nature 495(7439):50-51
    • (2013) Nature , vol.495 , Issue.7439 , pp. 50-51
    • Charpentier, E.1    Doudna, J.A.2
  • 12
    • 84904468142 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas9 immunity for genetic engineering
    • Charpentier E, Marraffini LA. 2014. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr. Opin. Microbiol. 19:114-19
    • (2014) Curr. Opin. Microbiol. , vol.19 , pp. 114-119
    • Charpentier, E.1    Marraffini, L.A.2
  • 13
    • 84900395692 scopus 로고    scopus 로고
    • Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease
    • Chen H, Choi J, Bailey S. 2014. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J. Biol. Chem. 289(19):13284-94
    • (2014) J. Biol. Chem. , vol.289 , Issue.19 , pp. 13284-13294
    • Chen, H.1    Choi, J.2    Bailey, S.3
  • 15
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819-23
    • (2013) Science , vol.339 , Issue.6121 , pp. 819-823
    • Cong, L.1    Ran, F.A.2    Cox, D.3    Lin, S.4    Barretto, R.5
  • 16
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: Prospects and challenges
    • Cox DBT, Platt RJ, Zhang F. 2015. Therapeutic genome editing: Prospects and challenges. Nat. Med. 21(2):121-31
    • (2015) Nat. Med. , vol.21 , Issue.2 , pp. 121-131
    • Cox, D.B.T.1    Platt, R.J.2    Zhang, F.3
  • 17
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-7
    • (2011) Nature , vol.471 , Issue.7340 , pp. 602-607
    • Deltcheva, E.1    Chylinski, K.2    Sharma, C.M.3    Gonzales, K.4    Chao, Y.5
  • 18
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPRencoded resistance in Streptococcus thermophilus
    • Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, et al. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190(4):1390-400
    • (2008) J. Bacteriol. , vol.190 , Issue.4 , pp. 1390-1400
    • Deveau, H.1    Barrangou, R.2    Garneau, J.E.3    Labonté, J.4    Fremaux, C.5
  • 19
    • 84952639685 scopus 로고    scopus 로고
    • Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation
    • Dominguez AA, Lim WA, Qi LS. 2016. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17(1):5-15
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , Issue.1 , pp. 5-15
    • Dominguez, A.A.1    Lim, W.A.2    Qi, L.S.3
  • 20
    • 84913594397 scopus 로고    scopus 로고
    • The new frontier of genome engineering with CRISPR-Cas9
    • Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096
    • (2014) Science , vol.346 , Issue.6213 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 21
    • 84951782881 scopus 로고    scopus 로고
    • Genome editing: The end of the beginning
    • Doudna JA, Gersbach CA. 2015. Genome editing: The end of the beginning. Genome Biol. 16(1):292
    • (2015) Genome Biol. , vol.16 , Issue.1 , pp. 292
    • Doudna, J.A.1    Gersbach, C.A.2
  • 23
    • 84895832944 scopus 로고    scopus 로고
    • Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
    • Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain A-L, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42(4):2577-90
    • (2014) Nucleic Acids Res. , vol.42 , Issue.4 , pp. 2577-2590
    • Fonfara, I.1    Le Rhun, A.2    Chylinski, K.3    Makarova, K.S.4    Lécrivain, A.-L.5
  • 24
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31(9):822-26
    • (2013) Nat. Biotechnol. , vol.31 , Issue.9 , pp. 822-826
    • Fu, Y.1    Foden, J.A.2    Khayter, C.3    Maeder, M.L.4    Reyon, D.5
  • 25
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32(3):279-84
    • (2014) Nat. Biotechnol. , vol.32 , Issue.3 , pp. 279-284
    • Fu, Y.1    Sander, J.D.2    Reyon, D.3    Cascio, V.M.4    Joung, J.K.5
  • 26
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau JE, DupuisM-È, Villion M, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67-71
    • (2010) Nature , vol.468 , Issue.7320 , pp. 67-71
    • Garneau, J.E.1    Dupuis, M.-E.2    Villion, M.3    Romero, D.A.4    Barrangou, R.5
  • 27
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109(39):E2579-86
    • (2012) PNAS , vol.109 , Issue.39 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 28
    • 70449753811 scopus 로고    scopus 로고
    • RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex
    • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009. RNA-guidedRNAcleavage by a CRISPR RNA-Cas protein complex. Cell 139(5):945-56
    • (2009) Cell , vol.139 , Issue.5 , pp. 945-956
    • Hale, C.R.1    Zhao, P.2    Olson, S.3    Duff, M.O.4    Graveley, B.R.5
  • 29
    • 84959422840 scopus 로고    scopus 로고
    • Structural basis for promiscuous PAM recognition in type I-E Cascade from E. Coli
    • Hayes RP, Xiao Y, Ding F, van Erp PBG, Rajashankar K, et al. 2016. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature 530(7591):499-503
    • (2016) Nature , vol.530 , Issue.7591 , pp. 499-503
    • Hayes, R.P.1    Xiao, Y.2    Ding, F.3    Van Erp, P.B.G.4    Rajashankar, K.5
  • 30
    • 84951568684 scopus 로고    scopus 로고
    • Applications of CRISPR-Cas systems in neuroscience
    • Heidenreich M, Zhang F. 2016. Applications of CRISPR-Cas systems in neuroscience. Nat. Rev.Neurosci. 17(1):36-44
    • (2016) Nat. Rev.Neurosci. , vol.17 , Issue.1 , pp. 36-44
    • Heidenreich, M.1    Zhang, F.2
  • 31
    • 84903471734 scopus 로고    scopus 로고
    • Adapting to new threats: The generation of memory by CRISPRCas immune systems
    • Heler R, Marraffini LA, Bikard D. 2014. Adapting to new threats: The generation of memory by CRISPRCas immune systems. Mol. Microbiol. 93(1):1-9
    • (2014) Mol. Microbiol. , vol.93 , Issue.1 , pp. 1-9
    • Heler, R.1    Marraffini, L.A.2    Bikard, D.3
  • 32
    • 84924705939 scopus 로고    scopus 로고
    • Cas9 specifies functional viral targets during CRISPR-Cas adaptation
    • Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, et al. 2015. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519(7542):199-202
    • (2015) Nature , vol.519 , Issue.7542 , pp. 199-202
    • Heler, R.1    Samai, P.2    Modell, J.W.3    Weiner, C.4    Goldberg, G.W.5
  • 33
    • 84949032804 scopus 로고    scopus 로고
    • Nucleosomes inhibit Cas9 endonuclease activity in vitro
    • Hinz JM, Laughery MF, Wyrick JJ. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54(48):7063-66
    • (2015) Biochemistry , vol.54 , Issue.48 , pp. 7063-7066
    • Hinz, J.M.1    Laughery, M.F.2    Wyrick, J.J.3
  • 34
    • 84959440451 scopus 로고    scopus 로고
    • Structure and engineering of Francisella novicida Cas9
    • Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, et al. 2016. Structure and engineering of Francisella novicida Cas9. Cell 164(5):950-61
    • (2016) Cell , vol.164 , Issue.5 , pp. 950-961
    • Hirano, H.1    Gootenberg, J.S.2    Horii, T.3    Abudayyeh, O.O.4    Kimura, M.5
  • 35
    • 84962580403 scopus 로고    scopus 로고
    • Structural basis for the altered PAM specificities of engineered CRISPR-Cas9
    • Hirano S, Nishimasu H, Ishitani R, Nureki O. 2016. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61(6):886-94
    • (2016) Mol. Cell , vol.61 , Issue.6 , pp. 886-894
    • Hirano, S.1    Nishimasu, H.2    Ishitani, R.3    Nureki, O.4
  • 38
    • 84884663630 scopus 로고    scopus 로고
    • Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
    • Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F, et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. PNAS 110(39):15644-49
    • (2013) PNAS , vol.110 , Issue.39 , pp. 15644-15649
    • Hou, Z.1    Zhang, Y.2    Propson, N.E.3    Howden, S.E.4    Chu, L.-F.5
  • 39
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262-78
    • (2014) Cell , vol.157 , Issue.6 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 41
    • 84965050728 scopus 로고    scopus 로고
    • Chemical Biology approaches to genome editing: Understanding, controlling, delivering programmable nucleases
    • Hu JH, Davis KM, Liu DR. 2016. Chemical Biology approaches to genome editing: Understanding, controlling, delivering programmable nucleases. Cell Chem. Biol. 23(1):57-73
    • (2016) Cell Chem. Biol. , vol.23 , Issue.1 , pp. 57-73
    • Hu, J.H.1    Davis, K.M.2    Liu, D.R.3
  • 43
    • 84907208955 scopus 로고    scopus 로고
    • Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
    • Jackson RN, Golden SM, van Erp PBG, Carter J, Westra ER, et al. 2014. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345(6203):1473-79
    • (2014) Science , vol.345 , Issue.6203 , pp. 1473-1479
    • Jackson, R.N.1    Golden, S.M.2    Van Erp, P.B.G.3    Carter, J.4    Westra, E.R.5
  • 44
    • 84923279931 scopus 로고    scopus 로고
    • The structural biology of CRISPR-Cas systems
    • Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100-11
    • (2015) Curr. Opin. Struct. Biol. , vol.30 , pp. 100-111
    • Jiang, F.1    Doudna, J.A.2
  • 45
    • 84958953000 scopus 로고    scopus 로고
    • Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
    • Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, et al. 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351(6275):867-71
    • (2016) Science , vol.351 , Issue.6275 , pp. 867-871
    • Jiang, F.1    Taylor, D.W.2    Chen, J.S.3    Kornfeld, J.E.4    Zhou, K.5
  • 46
    • 84933574487 scopus 로고    scopus 로고
    • Structural Biology. A Cas9-guide RNA complex preorganized for target DNA recognition
    • Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. Structural Biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477-81
    • (2015) Science , vol.348 , Issue.6242 , pp. 1477-1481
    • Jiang, F.1    Zhou, K.2    Ma, L.3    Gressel, S.4    Doudna, J.A.5
  • 47
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31(3):233-39
    • (2013) Nat. Biotechnol. , vol.31 , Issue.3 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 48
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816-21
    • (2012) Science , vol.337 , Issue.6096 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 50
    • 84893157352 scopus 로고    scopus 로고
    • Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
    • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997
    • (2014) Science , vol.343 , Issue.6176 , pp. 1247997
    • Jinek, M.1    Jiang, F.2    Taylor, D.W.3    Sternberg, S.H.4    Kaya, E.5
  • 51
    • 84955569035 scopus 로고    scopus 로고
    • Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage
    • Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. 2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res. 43(18):8924-41
    • (2015) Nucleic Acids Res. , vol.43 , Issue.18 , pp. 8924-8941
    • Josephs, E.A.1    Kocak, D.D.2    Fitzgibbon, C.J.3    McMenemy, J.4    Gersbach, C.A.5    Marszalek, P.E.6
  • 52
    • 84963941043 scopus 로고    scopus 로고
    • High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490-95
    • (2016) Nature , vol.529 , Issue.7587 , pp. 490-495
    • Kleinstiver, B.P.1    Pattanayak, V.2    Prew, M.S.3    Tsai, S.Q.4    Nguyen, N.T.5
  • 53
    • 84949791988 scopus 로고    scopus 로고
    • Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
    • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33(12):1293-98
    • (2015) Nat. Biotechnol. , vol.33 , Issue.12 , pp. 1293-1298
    • Kleinstiver, B.P.1    Prew, M.S.2    Tsai, S.Q.3    Nguyen, N.T.4    Topkar, V.V.5
  • 54
    • 84937908208 scopus 로고    scopus 로고
    • Engineered CRISPR-Cas9 nucleases with altered PAM specificities
    • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481-85
    • (2015) Nature , vol.523 , Issue.7561 , pp. 481-485
    • Kleinstiver, B.P.1    Prew, M.S.2    Tsai, S.Q.3    Topkar, V.V.4    Nguyen, N.T.5
  • 55
    • 84946919064 scopus 로고    scopus 로고
    • Dynamics of CRISPR-Cas9 genome interrogation in living cells
    • Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350(6262):823-26
    • (2015) Science , vol.350 , Issue.6262 , pp. 823-826
    • Knight, S.C.1    Xie, L.2    Deng, W.3    Guglielmi, B.4    Witkowsky, L.B.5
  • 56
    • 84903545084 scopus 로고    scopus 로고
    • Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease
    • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32(7):677-83
    • (2014) Nat. Biotechnol. , vol.32 , Issue.7 , pp. 677-683
    • Kuscu, C.1    Arslan, S.2    Singh, R.3    Thorpe, J.4    Adli, M.5
  • 57
    • 84893693085 scopus 로고    scopus 로고
    • Planting the seed: Target recognition of short guide RNAs
    • Künne T, Swarts DC, Brouns SJJ. 2014. Planting the seed: Target recognition of short guide RNAs. Trends Microbiol. 22(2):74-83
    • (2014) Trends Microbiol. , vol.22 , Issue.2 , pp. 74-83
    • Künne, T.1    Swarts, D.C.2    Brouns, S.J.J.3
  • 58
    • 84960449403 scopus 로고    scopus 로고
    • The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells
    • Lee CM, Cradick TJ, Bao G. 2016. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 24(3):645-54
    • (2016) Mol. Ther. , vol.24 , Issue.3 , pp. 645-654
    • Lee, C.M.1    Cradick, T.J.2    Bao, G.3
  • 59
    • 84979464834 scopus 로고    scopus 로고
    • Identifying and visualizing functional PAM diversity across CRISPR-Cas systems
    • Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, et al. 2016. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 62(1):137-47
    • (2016) Mol. Cell , vol.62 , Issue.1 , pp. 137-147
    • Leenay, R.T.1    Maksimchuk, K.R.2    Slotkowski, R.A.3    Agrawal, R.N.4    Gomaa, A.A.5
  • 60
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181-211
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 61
    • 84990862095 scopus 로고    scopus 로고
    • CRISPR-Cas9 nuclear dynamics and target recognition in living cells
    • Ma H, Tu L-C, Naseri A, Huisman M, Zhang S, et al. 2016. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 214(5):529-37
    • (2016) J. Cell Biol. , vol.214 , Issue.5 , pp. 529-537
    • Ma, H.1    Tu, L.-C.2    Naseri, A.3    Huisman, M.4    Zhang, S.5
  • 62
    • 84960431733 scopus 로고    scopus 로고
    • Genome-editing technologies for gene and cell therapy
    • Maeder ML, Gersbach CA. 2016. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24(3):430-46
    • (2016) Mol. Ther. , vol.24 , Issue.3 , pp. 430-446
    • Maeder, M.L.1    Gersbach, C.A.2
  • 63
    • 34248374277 scopus 로고    scopus 로고
    • A putative RNA-interferencebased immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, hypothetical mechanisms of action
    • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interferencebased immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, hypothetical mechanisms of action. Biol. Direct 1:7
    • (2006) Biol. Direct , vol.1 , pp. 7
    • Makarova, K.S.1    Grishin, N.V.2    Shabalina, S.A.3    Wolf, Y.I.4    Koonin, E.V.5
  • 65
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121):823-26
    • (2013) Science , vol.339 , Issue.6121 , pp. 823-826
    • Mali, P.1    Yang, L.2    Esvelt, K.M.3    Aach, J.4    Guell, M.5
  • 66
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature 526(7571):55-61
    • (2015) Nature , vol.526 , Issue.7571 , pp. 55-61
    • Marraffini, L.A.1
  • 67
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
    • Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843-45
    • (2008) Science , vol.322 , Issue.5909 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 68
    • 75749118174 scopus 로고    scopus 로고
    • Self versus non-self discrimination during CRISPR RNA-directed immunity
    • Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463(7280):568-71
    • (2010) Nature , vol.463 , Issue.7280 , pp. 568-571
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 69
    • 84963831923 scopus 로고    scopus 로고
    • Kinetics of the CRISPRCas9 effector complex assembly and the role of 3-terminal segment of guide RNA
    • Mekler V, Minakhin L, Semenova E, Kuznedelov K, Severinov K. 2016. Kinetics of the CRISPRCas9 effector complex assembly and the role of 3--terminal segment of guide RNA. Nucleic Acids Res. 44(6):2837-45
    • (2016) Nucleic Acids Res. , vol.44 , Issue.6 , pp. 2837-2845
    • Mekler, V.1    Minakhin, L.2    Semenova, E.3    Kuznedelov, K.4    Severinov, K.5
  • 70
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica FJM, Déz-Villase nor C, Garcá-Martnez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(3):733-40
    • (2009) Microbiology , vol.155 , Issue.3 , pp. 733-740
    • Mojica, F.J.M.1    Déz-Villasenõr, C.2    Garcá-Martnez, J.3    Almendros, C.4
  • 71
    • 84986214322 scopus 로고    scopus 로고
    • The discovery of CRISPR in archaea and bacteria
    • Mojica FJM, Rodriguez-Valera F. 2016. The discovery of CRISPR in archaea and bacteria. FEBS J. 283(17):3162-69
    • (2016) FEBS J. , vol.283 , Issue.17 , pp. 3162-3169
    • Mojica, F.J.M.1    Rodriguez-Valera, F.2
  • 72
    • 84907204893 scopus 로고    scopus 로고
    • Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
    • Mulepati S, Héroux A, Bailey S. 2014. Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345(6203):1479-84
    • (2014) Science , vol.345 , Issue.6203 , pp. 1479-1484
    • Mulepati, S.1    Héroux, A.2    Bailey, S.3
  • 73
    • 84940368054 scopus 로고    scopus 로고
    • Crystal structure of Staphylococcus aureus Cas9
    • Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, et al. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell 162(5):1113-26
    • (2015) Cell , vol.162 , Issue.5 , pp. 1113-1126
    • Nishimasu, H.1    Cong, L.2    Yan, W.X.3    Ran, F.A.4    Zetsche, B.5
  • 74
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935-49
    • (2014) Cell , vol.156 , Issue.5 , pp. 935-949
    • Nishimasu, H.1    Ran, F.A.2    Hsu, P.D.3    Konermann, S.4    Shehata, S.I.5
  • 76
    • 84938836171 scopus 로고    scopus 로고
    • A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
    • O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. 2015. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43(6):3389-404
    • (2015) Nucleic Acids Res. , vol.43 , Issue.6 , pp. 3389-3404
    • O'Geen, H.1    Henry, I.M.2    Bhakta, M.S.3    Meckler, J.F.4    Segal, D.J.5
  • 77
    • 85016604142 scopus 로고    scopus 로고
    • Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations
    • Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. 2016. Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations. ACS Cent. Sci. 2(10):756-63
    • (2016) ACS Cent. Sci. , vol.2 , Issue.10 , pp. 756-763
    • Palermo, G.1    Miao, Y.2    Walker, R.C.3    Jinek, M.4    McCammon, J.A.5
  • 78
    • 84884155038 scopus 로고    scopus 로고
    • High-throughput profiling of offtarget DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
    • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of offtarget DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31(9):839-43
    • (2013) Nat. Biotechnol. , vol.31 , Issue.9 , pp. 839-843
    • Pattanayak, V.1    Lin, S.2    Guilinger, J.P.3    Ma, E.4    Doudna, J.A.5    Liu, D.R.6
  • 79
    • 84923358406 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase II-Mediator core initiation complex
    • Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, et al. 2015. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 518(7539):376-80
    • (2015) Nature , vol.518 , Issue.7539 , pp. 376-380
    • Plaschka, C.1    Larivière, L.2    Wenzeck, L.3    Seizl, M.4    Hemann, M.5
  • 80
    • 84992189595 scopus 로고    scopus 로고
    • Optimizing sgRNA positionmarkedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression
    • Radzisheuskaya A, Shlyueva D, Müller I, Helin K. 2016. Optimizing sgRNA positionmarkedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res. 44(18):e141
    • (2016) Nucleic Acids Res. , vol.44 , Issue.18 , pp. e141
    • Radzisheuskaya, A.1    Shlyueva, D.2    Müller, I.3    Helin, K.4
  • 81
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186-91
    • (2015) Nature , vol.520 , Issue.7546 , pp. 186-191
    • Ran, F.A.1    Cong, L.2    Yan, W.X.3    Scott, D.A.4    Gootenberg, J.S.5
  • 82
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380-89
    • (2013) Cell , vol.154 , Issue.6 , pp. 1380-1389
    • Ran, F.A.1    Hsu, P.D.2    Lin, C.-Y.3    Gootenberg, J.S.4    Konermann, S.5
  • 84
    • 84924592451 scopus 로고    scopus 로고
    • Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection
    • Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. 2015. Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep. 10(9):1534-43
    • (2015) Cell Rep. , vol.10 , Issue.9 , pp. 1534-1543
    • Rutkauskas, M.1    Sinkunas, T.2    Songailiene, I.3    Tikhomirova, M.S.4    Siksnys, V.5    Seidel, R.6
  • 85
    • 84877782955 scopus 로고    scopus 로고
    • A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
    • Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497(7448):254-57
    • (2013) Nature , vol.497 , Issue.7448 , pp. 254-257
    • Sampson, T.R.1    Saroj, S.D.2    Llewellyn, A.C.3    Tzeng, Y.-L.4    Weiss, D.S.5
  • 86
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J, Sung P, Klein H. 2008. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77:229-57
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 87
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32(4):347-55
    • (2014) Nat. Biotechnol. , vol.32 , Issue.4 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 88
    • 79959963663 scopus 로고    scopus 로고
    • Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
    • Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108(25):10098-103
    • (2011) PNAS , vol.108 , Issue.25 , pp. 10098-10103
    • Semenova, E.1    Jore, M.M.2    Datsenko, K.A.3    Semenova, A.4    Westra, E.R.5
  • 89
    • 84928205754 scopus 로고    scopus 로고
    • High-throughput functional genomics using CRISPR-Cas9
    • Shalem O, Sanjana NE, Zhang F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16(5):299-311
    • (2015) Nat. Rev. Genet. , vol.16 , Issue.5 , pp. 299-311
    • Shalem, O.1    Sanjana, N.E.2    Zhang, F.3
  • 90
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
    • Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, et al. 2015. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 60(3):385-97
    • (2015) Mol. Cell , vol.60 , Issue.3 , pp. 385-397
    • Shmakov, S.1    Abudayyeh, O.O.2    Makarova, K.S.3    Wolf, Y.I.4    Gootenberg, J.S.5
  • 91
    • 84987837936 scopus 로고    scopus 로고
    • Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9
    • Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. 2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778
    • (2016) Nat. Commun. , vol.7 , pp. 12778
    • Singh, D.1    Sternberg, S.H.2    Fei, J.3    Doudna, J.A.4    Ha, T.5
  • 92
  • 93
    • 84946215320 scopus 로고    scopus 로고
    • Conformational control ofDNAtarget cleavage by CRISPR-Cas9
    • Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control ofDNAtarget cleavage by CRISPR-Cas9. Nature 527(7576):110-13
    • (2015) Nature , vol.527 , Issue.7576 , pp. 110-113
    • Sternberg, S.H.1    LaFrance, B.2    Kaplan, M.3    Doudna, J.A.4
  • 94
    • 84895871173 scopus 로고    scopus 로고
    • DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62-67
    • (2014) Nature , vol.507 , Issue.7490 , pp. 62-67
    • Sternberg, S.H.1    Redding, S.2    Jinek, M.3    Greene, E.C.4    Doudna, J.A.5
  • 95
    • 84986634232 scopus 로고    scopus 로고
    • Genome editing in cardiovascular diseases
    • Strong A, Musunuru K. 2017. Genome editing in cardiovascular diseases. Nat. Rev. Cardiol. 14(1):11-20
    • (2017) Nat. Rev. Cardiol. , vol.14 , Issue.1 , pp. 11-20
    • Strong, A.1    Musunuru, K.2
  • 96
    • 84903975702 scopus 로고    scopus 로고
    • Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
    • Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111(27):9798-803
    • (2014) PNAS , vol.111 , Issue.27 , pp. 9798-9803
    • Szczelkun, M.D.1    Tikhomirova, M.S.2    Sinkunas, T.3    Gasiunas, G.4    Karvelis, T.5
  • 97
    • 84964253170 scopus 로고    scopus 로고
    • Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases
    • Tsai SQ, Joung JK. 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17(5):300-12
    • (2016) Nat. Rev. Genet. , vol.17 , Issue.5 , pp. 300-312
    • Tsai, S.Q.1    Joung, J.K.2
  • 98
    • 84992743464 scopus 로고    scopus 로고
    • Methods for optimizing CRISPR-Cas9 genome editing specificity
    • Tycko J, Myer VE, Hsu PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 63(3):355-70
    • (2016) Mol. Cell , vol.63 , Issue.3 , pp. 355-370
    • Tycko, J.1    Myer, V.E.2    Hsu, P.D.3
  • 100
    • 0037071844 scopus 로고    scopus 로고
    • Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6A° resolution
    • Vassylyev DG, Sekine S-i, Laptenko O, Lee J, Vassylyeva MN, et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6A° resolution. Nature 417(6890):712-19
    • (2002) Nature , vol.417 , Issue.6890 , pp. 712-719
    • Vassylyev, D.G.1    Sekine, S.-I.2    Laptenko, O.3    Lee, J.4    Vassylyeva, M.N.5
  • 101
  • 102
    • 84857097177 scopus 로고    scopus 로고
    • RNA-guided genetic silencing systems in bacteria and archaea
    • Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331-38
    • (2012) Nature , vol.482 , Issue.7385 , pp. 331-338
    • Wiedenheft, B.1    Sternberg, S.H.2    Doudna, J.A.3
  • 103
    • 79960029056 scopus 로고    scopus 로고
    • RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
    • Wiedenheft B, van Duijn E, Bultema JB, Bultema J, Waghmare SP, et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108(25):10092-97
    • (2011) PNAS , vol.108 , Issue.25 , pp. 10092-10097
    • Wiedenheft, B.1    Van Duijn, E.2    Bultema, J.B.3    Bultema, J.4    Waghmare, S.P.5
  • 104
    • 84954214717 scopus 로고    scopus 로고
    • Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering
    • Wright AV, Nu nez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering. Cell 164(1-2):29-44
    • (2016) Cell , vol.164 , Issue.1-2 , pp. 29-44
    • Wright, A.V.1    Nuñez, J.K.2    Doudna, J.A.3
  • 106
    • 84902095352 scopus 로고    scopus 로고
    • Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
    • Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32(7):670-76
    • (2014) Nat. Biotechnol. , vol.32 , Issue.7 , pp. 670-676
    • Wu, X.1    Scott, D.A.2    Kriz, A.J.3    Chiu, A.C.4    Hsu, P.D.5
  • 108
    • 55549123481 scopus 로고    scopus 로고
    • An equivalent metal ion in one-A nd two-metal-ion catalysis
    • Yang W. 2008. An equivalent metal ion in one-A nd two-metal-ion catalysis. Nat. Struct. Mol. Biol. 15(11):1228-31
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , Issue.11 , pp. 1228-1231
    • Yang, W.1
  • 109
    • 84878193178 scopus 로고    scopus 로고
    • Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
    • Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, et al. 2013. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50(4):488-503
    • (2013) Mol. Cell , vol.50 , Issue.4 , pp. 488-503
    • Zhang, Y.1    Heidrich, N.2    Ampattu, B.J.3    Gunderson, C.W.4    Seifert, H.S.5
  • 110
    • 84908445494 scopus 로고    scopus 로고
    • Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli
    • Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, et al. 2014. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515(7525):147-50
    • (2014) Nature , vol.515 , Issue.7525 , pp. 147-150
    • Zhao, H.1    Sheng, G.2    Wang, J.3    Wang, M.4    Bunkoczi, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.