-
1
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi: 10.1126/science.1258096.
-
(2014)
Science
, vol.346
, Issue.6213
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
2
-
-
84946558100
-
Diversity of CRISPR-Cas immune systems and molecular machines
-
Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 2015;16:247. doi: 10.1186/s13059-015-0816-9.
-
(2015)
Genome Biol
, vol.16
, pp. 247
-
-
Barrangou, R.1
-
3
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.4
, pp. 2577-2590
-
-
Fonfara, I.1
Rhun, A.2
Chylinski, K.3
Makarova, K.S.4
Lecrivain, A.L.5
Bzdrenga, J.6
-
4
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681.
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
5
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186-91. doi: 10.1038/nature14299.
-
(2015)
Nature
, vol.520
, Issue.7546
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
-
6
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038.
-
(2015)
Cell
, vol.163
, Issue.3
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
-
7
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
-
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60(3):385-97. doi: 10.1016/j.molcel.2015.10.008.
-
(2015)
Mol Cell
, vol.60
, Issue.3
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
Semenova, E.6
-
8
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015;16:253. doi: 10.1186/s13059-015-0818-7.
-
(2015)
Genome Biol
, vol.16
, pp. 253
-
-
Karvelis, T.1
Gasiunas, G.2
Young, J.3
Bigelyte, G.4
Silanskas, A.5
Cigan, M.6
-
9
-
-
84946919064
-
Dynamics of CRISPR-Cas9 genome interrogation in living cells
-
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015;350(6262):823-6. doi: 10.1126/science.aac6572.
-
(2015)
Science
, vol.350
, Issue.6262
, pp. 823-826
-
-
Knight, S.C.1
Xie, L.2
Deng, W.3
Guglielmi, B.4
Witkowsky, L.B.5
Bosanac, L.6
-
10
-
-
84946215320
-
Conformational control of DNA target cleavage by CRISPR-Cas9
-
Sternberg SH, LaFrance B, Kaplan M, Doudna JA. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. 2015;527(7576):110-3. doi: 10.1038/nature15544.
-
(2015)
Nature
, vol.527
, Issue.7576
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
11
-
-
84870766296
-
Repair of strand breaks by homologous recombination
-
Jasin M, Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740.
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
, Issue.11
, pp. a012740
-
-
Jasin, M.1
Rothstein, R.2
-
12
-
-
84955749431
-
Resources for the design of CRISPR gene editing experiments
-
Graham DB, Root DE. Resources for the design of CRISPR gene editing experiments. Genome Biol. 2015;16:260. doi: 10.1186/s13059-015-0823-x.
-
(2015)
Genome Biol
, vol.16
, pp. 260
-
-
Graham, D.B.1
Root, D.E.2
-
13
-
-
84945926658
-
WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system
-
Wong N, Liu W, Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 2015;16:218. doi: 10.1186/s13059-015-0784-0.
-
(2015)
Genome Biol
, vol.16
, pp. 218
-
-
Wong, N.1
Liu, W.2
Wang, X.3
-
14
-
-
84946567748
-
A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression
-
Xi L, Schmidt JC, Zaug AJ, Ascarrunz DR, Cech TR. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol. 2015;16:231. doi: 10.1186/s13059-015-0791-1.
-
(2015)
Genome Biol
, vol.16
, pp. 231
-
-
Xi, L.1
Schmidt, J.C.2
Zaug, A.J.3
Ascarrunz, D.R.4
Cech, T.R.5
-
15
-
-
84945567414
-
Network analysis of gene essentiality in functional genomics experiments
-
Jiang P, Wang H, Li W, Zang C, Li B, Wong YJ, et al. Network analysis of gene essentiality in functional genomics experiments. Genome Biol. 2015;16:239. doi: 10.1186/s13059-015-0808-9.
-
(2015)
Genome Biol
, vol.16
, pp. 239
-
-
Jiang, P.1
Wang, H.2
Li, W.3
Zang, C.4
Li, B.5
Wong, Y.J.6
-
16
-
-
84946919356
-
Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining
-
Singer M, Marshall J, Heiss K, Mair GR, Grimm D, Mueller AK, et al. Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining. Genome Biol. 2015;16:249. doi: 10.1186/s13059-015-0811-1.
-
(2015)
Genome Biol
, vol.16
, pp. 249
-
-
Singer, M.1
Marshall, J.2
Heiss, K.3
Mair, G.R.4
Grimm, D.5
Mueller, A.K.6
-
17
-
-
84946416320
-
High-frequency, precise modification of the tomato genome
-
Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF. High-frequency, precise modification of the tomato genome. Genome Biol. 2015;16:232. doi: 10.1186/s13059-015-0796-9.
-
(2015)
Genome Biol
, vol.16
, pp. 232
-
-
Cermak, T.1
Baltes, N.J.2
Cegan, R.3
Zhang, Y.4
Voytas, D.F.5
-
18
-
-
84937568562
-
Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation
-
Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 2015;16:144. doi: 10.1186/s13059-015-0715-0.
-
(2015)
Genome Biol
, vol.16
, pp. 144
-
-
Wang, Z.P.1
Xing, H.L.2
Dong, L.3
Zhang, H.Y.4
Han, C.Y.5
Wang, X.C.6
-
19
-
-
84946745735
-
CRISPR/Cas9-mediated viral interference in plants
-
Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015;16:238. doi: 10.1186/s13059-015-0799-6.
-
(2015)
Genome Biol
, vol.16
, pp. 238
-
-
Ali, Z.1
Abulfaraj, A.2
Idris, A.3
Ali, S.4
Tashkandi, M.5
Mahfouz, M.M.6
-
20
-
-
84948761978
-
Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease
-
Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron N, et al. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 2015;16:258. doi: 10.1186/s13059-015-0826-7.
-
(2015)
Genome Biol
, vol.16
, pp. 258
-
-
Lawrenson, T.1
Shorinola, O.2
Stacey, N.3
Li, C.4
Ostergaard, L.5
Patron, N.6
-
21
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 2015;33:1162-4. doi: 10.1038/nbt.3389.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
Kim, J.2
Kwon, S.I.3
Corvalan, C.4
Cho, S.W.5
Kim, H.6
-
22
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947-51. doi: 10.1038/nbt.2969.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.9
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
Zhang, Y.4
Liu, J.5
Gao, C.6
-
23
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686-8. doi: 10.1038/nbt.2650.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Zhang, Y.4
Chen, K.5
Liang, Z.6
-
24
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691-3. doi: 10.1038/nbt.2655.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.4
Kamoun, S.5
-
25
-
-
84951813219
-
Towards a new era in medicine: therapeutic genome editing
-
Porteus MH. Towards a new era in medicine: therapeutic genome editing. Genome Biol. 2015;16:286.
-
(2015)
Genome Biol
, vol.16
, pp. 286
-
-
Porteus, M.H.1
-
26
-
-
84947714470
-
Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
-
Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 2015;16:257. doi: 10.1186/s13059-015-0817-8.
-
(2015)
Genome Biol
, vol.16
, pp. 257
-
-
Friedland, A.E.1
Baral, R.2
Singhal, P.3
Loveluck, K.4
Shen, S.5
Sanchez, M.6
-
27
-
-
84942912469
-
Enabling functional genomics with genome engineering
-
Hilton IB, Gersbach CA. Enabling functional genomics with genome engineering. Genome Res. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
-
(2015)
Genome Res
, vol.25
, Issue.10
, pp. 1442-1455
-
-
Hilton, I.B.1
Gersbach, C.A.2
-
28
-
-
84890048526
-
Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins
-
Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31(12):1137-42. doi: 10.1038/nbt.2726.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.12
, pp. 1137-1142
-
-
Maeder, M.L.1
Angstman, J.F.2
Richardson, M.E.3
Linder, S.J.4
Cascio, V.M.5
Tsai, S.Q.6
-
29
-
-
84886084801
-
Locus-specific editing of histone modifications at endogenous enhancers
-
Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol. 2013;31(12):1133-6. doi: 10.1038/nbt.2701.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.12
, pp. 1133-1136
-
-
Mendenhall, E.M.1
Williamson, K.E.2
Reyon, D.3
Zou, J.Y.4
Ram, O.5
Joung, J.K.6
-
30
-
-
84882976110
-
Optical control of mammalian endogenous transcription and epigenetic states
-
Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature. 2013;500(7463):472-6. doi: 10.1038/nature12466.
-
(2013)
Nature
, vol.500
, Issue.7463
, pp. 472-476
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Hsu, P.D.4
Heidenreich, M.5
Cong, L.6
-
31
-
-
84928924333
-
Functional annotation of native enhancers with a Cas9-histone demethylase fusion
-
Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods. 2015;12(5):401-3. doi: 10.1038/nmeth.3325.
-
(2015)
Nat Methods
, vol.12
, Issue.5
, pp. 401-403
-
-
Kearns, N.A.1
Pham, H.2
Tabak, B.3
Genga, R.M.4
Silverstein, N.J.5
Garber, M.6
-
32
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510-7. doi: 10.1038/nbt.3199.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.5
, pp. 510-517
-
-
Hilton, I.B.1
D'Ippolito, A.M.2
Vockley, C.M.3
Thakore, P.I.4
Crawford, G.E.5
Reddy, T.E.6
-
33
-
-
84947930919
-
P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis
-
Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, et al. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 2015;16:252. doi: 10.1186/s13059-015-0819-6.
-
(2015)
Genome Biol
, vol.16
, pp. 252
-
-
Cui, C.1
Gan, Y.2
Gu, L.3
Wilson, J.4
Liu, Z.5
Zhang, B.6
-
34
-
-
84949100864
-
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
-
Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12(12):1143-9. doi: 10.1038/nmeth.3630.
-
(2015)
Nat Methods
, vol.12
, Issue.12
, pp. 1143-1149
-
-
Thakore, P.I.1
D'Ippolito, A.M.2
Song, L.3
Safi, A.4
Shivakumar, N.K.5
Kabadi, A.M.6
-
35
-
-
84946716449
-
Mammoth 2.0: will genome engineering resurrect extinct species?
-
Shapiro B. Mammoth 2.0: will genome engineering resurrect extinct species? Genome Biol. 2015;16:228. doi: 10.1186/s13059-015-0800-4.
-
(2015)
Genome Biol
, vol.16
, pp. 228
-
-
Shapiro, B.1
-
36
-
-
84946402356
-
The societal opportunities and challenges of genome editing
-
Carroll D, Charo RA. The societal opportunities and challenges of genome editing. Genome Biol. 2015;16:242. doi: 10.1186/s13059-015-0812-0.
-
(2015)
Genome Biol
, vol.16
, pp. 242
-
-
Carroll, D.1
Charo, R.A.2
-
37
-
-
84947740923
-
Accelerating research through reagent repositories: the genome editing example
-
Joung JK, Voytas DF, Kamens J. Accelerating research through reagent repositories: the genome editing example. Genome Biol. 2015;16:255. doi: 10.1186/s13059-015-0830-y.
-
(2015)
Genome Biol
, vol.16
, pp. 255
-
-
Joung, J.K.1
Voytas, D.F.2
Kamens, J.3
|