-
1
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
2
-
-
80755169456
-
Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms
-
Juliano C., et al. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 2011, 45:447-469.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 447-469
-
-
Juliano, C.1
-
3
-
-
79751485564
-
The many faces of RNAi
-
Ketting R.F. The many faces of RNAi. Dev. Cell 2011, 20:148-161.
-
(2011)
Dev. Cell
, vol.20
, pp. 148-161
-
-
Ketting, R.F.1
-
4
-
-
58749096360
-
On the road to reading the RNA-interference code
-
Siomi H., Siomi M.C. On the road to reading the RNA-interference code. Nature 2009, 457:396-404.
-
(2009)
Nature
, vol.457
, pp. 396-404
-
-
Siomi, H.1
Siomi, M.C.2
-
5
-
-
80053019485
-
Regulation by small RNAs in bacteria: expanding frontiers
-
Storz G., et al. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 2011, 43:880-891.
-
(2011)
Mol. Cell
, vol.43
, pp. 880-891
-
-
Storz, G.1
-
6
-
-
60149089144
-
Regulatory RNAs in bacteria
-
Waters L.S., Storz G. Regulatory RNAs in bacteria. Cell 2009, 136:615.
-
(2009)
Cell
, vol.136
, pp. 615
-
-
Waters, L.S.1
Storz, G.2
-
7
-
-
84878936806
-
CRISPR-mediated adaptive immune systems in bacteria and archaea
-
Sorek R., et al. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 2013, 82:237-266.
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 237-266
-
-
Sorek, R.1
-
8
-
-
84870180587
-
The CRISPRs, they are a-Changin': how prokaryotes generate adaptive immunity
-
Westra E.R., et al. The CRISPRs, they are a-Changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 2012, 46:311-339.
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 311-339
-
-
Westra, E.R.1
-
9
-
-
84864643089
-
Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis
-
Vourekas A., et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol. 2012, 19:773-781.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 773-781
-
-
Vourekas, A.1
-
10
-
-
18044377963
-
Principles of microRNA-target recognition
-
Brennecke J., et al. Principles of microRNA-target recognition. PLoS Biol. 2005, 3:e85. 10.1371/journal.pbio.0030085.
-
(2005)
PLoS Biol.
, vol.3
-
-
Brennecke, J.1
-
11
-
-
0346094457
-
Prediction of mammalian microRNA targets
-
Lewis B.P., et al. Prediction of mammalian microRNA targets. Cell 2003, 115:787-798.
-
(2003)
Cell
, vol.115
, pp. 787-798
-
-
Lewis, B.P.1
-
12
-
-
84870038812
-
Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties
-
Wee L.M., et al. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 2012, 151:1055-1067.
-
(2012)
Cell
, vol.151
, pp. 1055-1067
-
-
Wee, L.M.1
-
13
-
-
78649638977
-
Persistence of seed-based activity following segmentation of a microRNA guide strand
-
Chorn G., et al. Persistence of seed-based activity following segmentation of a microRNA guide strand. RNA 2010, 16:2336-2340.
-
(2010)
RNA
, vol.16
, pp. 2336-2340
-
-
Chorn, G.1
-
14
-
-
1642374097
-
Specificity of microRNA target selection in translational repression
-
Doench J.G., Sharp P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 2004, 18:504-511.
-
(2004)
Genes Dev.
, vol.18
, pp. 504-511
-
-
Doench, J.G.1
Sharp, P.A.2
-
15
-
-
34250805982
-
MicroRNA targeting specificity in mammals: determinants beyond seed pairing
-
Grimson A., et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 2007, 27:91-105.
-
(2007)
Mol. Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
-
16
-
-
58749086586
-
Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect
-
Ui-Tei K., et al. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res. 2008, 36:7100-7109.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 7100-7109
-
-
Ui-Tei, K.1
-
17
-
-
33749438388
-
Designing siRNA that distinguish between genes that differ by a single nucleotide
-
Schwarz D.S., et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet. 2006, 2:e140. 10.1371/journal.pgen.0020140.
-
(2006)
PLoS Genet.
, vol.2
-
-
Schwarz, D.S.1
-
18
-
-
2142654329
-
MicroRNA-directed cleavage of HOXB8 mRNA
-
Yekta S., et al. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304:594-596.
-
(2004)
Science
, vol.304
, pp. 594-596
-
-
Yekta, S.1
-
19
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis B.P., et al. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
-
20
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman R.C., et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19:92-105.
-
(2009)
Genome Res.
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
-
21
-
-
34447102459
-
Molecular basis for target RNA recognition and cleavage by human RISC
-
Ameres S.L., et al. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 2007, 130:101-112.
-
(2007)
Cell
, vol.130
, pp. 101-112
-
-
Ameres, S.L.1
-
22
-
-
0035803583
-
Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate
-
Elbashir S.M., et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001, 20:6877-6888.
-
(2001)
EMBO J.
, vol.20
, pp. 6877-6888
-
-
Elbashir, S.M.1
-
23
-
-
0037144546
-
A microRNA in a multiple-turnover RNAi enzyme complex
-
Hutvágner G., Zamore P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297:2056-2060.
-
(2002)
Science
, vol.297
, pp. 2056-2060
-
-
Hutvágner, G.1
Zamore, P.D.2
-
24
-
-
44449149276
-
Analysis of siRNA specificity on targets with double-nucleotide mismatches
-
Dahlgren C., et al. Analysis of siRNA specificity on targets with double-nucleotide mismatches. Nucleic Acids Res. 2008, 36:e53. 10.1093/nar/gkn190.
-
(2008)
Nucleic Acids Res.
, vol.36
-
-
Dahlgren, C.1
-
25
-
-
3042602447
-
Kinetic analysis of the RNAi enzyme complex
-
Haley B., Zamore P.D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 2004, 11:599-606.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 599-606
-
-
Haley, B.1
Zamore, P.D.2
-
26
-
-
84862558196
-
Structure of yeast Argonaute with guide RNA
-
Nakanishi K., et al. Structure of yeast Argonaute with guide RNA. Nature 2012, 486:368-374.
-
(2012)
Nature
, vol.486
, pp. 368-374
-
-
Nakanishi, K.1
-
27
-
-
0344668868
-
Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA
-
Pusch O., et al. Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA. Nucleic Acids Res. 2003, 31:6444-6449.
-
(2003)
Nucleic Acids Res.
, vol.31
, pp. 6444-6449
-
-
Pusch, O.1
-
28
-
-
84863624199
-
The structure of human Argonaute-2 in complex with miR-20a
-
Elkayam E., et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 2012, 150:100-110.
-
(2012)
Cell
, vol.150
, pp. 100-110
-
-
Elkayam, E.1
-
29
-
-
84861451595
-
The crystal structure of human Argonaute2
-
Schirle N.T., MacRae I.J. The crystal structure of human Argonaute2. Science 2012, 336:1037-1040.
-
(2012)
Science
, vol.336
, pp. 1037-1040
-
-
Schirle, N.T.1
MacRae, I.J.2
-
30
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
31
-
-
0142165224
-
Functional siRNAs and miRNAs exhibit strand bias
-
Khvorova A., et al. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115:209-216.
-
(2003)
Cell
, vol.115
, pp. 209-216
-
-
Khvorova, A.1
-
32
-
-
10744225153
-
Asymmetry in the assembly of the RNAi enzyme complex
-
Schwarz D.S., et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115:199-208.
-
(2003)
Cell
, vol.115
, pp. 199-208
-
-
Schwarz, D.S.1
-
33
-
-
84871913482
-
Stability of miRNA 5'terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy
-
Hibio N., et al. Stability of miRNA 5'terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy. Sci. Rep. 2012, 10.1038/srep00996.
-
(2012)
Sci. Rep.
-
-
Hibio, N.1
-
34
-
-
69949127421
-
Structural determinants of miRNAs for RISC loading and slicer-independent unwinding
-
Kawamata T., et al. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol. 2009, 16:953-960.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 953-960
-
-
Kawamata, T.1
-
35
-
-
77449128456
-
ATP-dependent human RISC assembly pathways
-
Yoda M., et al. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 2009, 17:17-23.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 17-23
-
-
Yoda, M.1
-
36
-
-
79958047291
-
Cis-antisense RNA, another level of gene regulation in bacteria
-
Georg J., Hess W.R. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 2011, 75:286-300.
-
(2011)
Microbiol. Mol. Biol. Rev.
, vol.75
, pp. 286-300
-
-
Georg, J.1
Hess, W.R.2
-
37
-
-
57149111586
-
Small RNA binding to 5' mRNA coding region inhibits translational initiation
-
Bouvier M., et al. Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol. Cell 2008, 32:827-837.
-
(2008)
Mol. Cell
, vol.32
, pp. 827-837
-
-
Bouvier, M.1
-
38
-
-
4344682527
-
The small RNA regulators of Escherichia coli: roles and mechanisms
-
Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 2004, 58:303-328.
-
(2004)
Annu. Rev. Microbiol.
, vol.58
, pp. 303-328
-
-
Gottesman, S.1
-
39
-
-
84866788439
-
The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E
-
Bandyra K.J., et al. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol. Cell 2012, 47:943-953.
-
(2012)
Mol. Cell
, vol.47
, pp. 943-953
-
-
Bandyra, K.J.1
-
40
-
-
84881478217
-
Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation
-
Shao Y., et al. Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. EMBO J. 2013, 32:2158-2171.
-
(2013)
EMBO J.
, vol.32
, pp. 2158-2171
-
-
Shao, Y.1
-
41
-
-
84887826391
-
A small RNA activates CFA synthase by isoform-specific mRNA stabilization
-
Frohlich K.S., et al. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J. 2013, 32:2963-2979.
-
(2013)
EMBO J.
, vol.32
, pp. 2963-2979
-
-
Frohlich, K.S.1
-
42
-
-
84876234571
-
Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis
-
Papenfort K., et al. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 2013, 153:426-437.
-
(2013)
Cell
, vol.153
, pp. 426-437
-
-
Papenfort, K.1
-
43
-
-
78649346987
-
Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica
-
Balbontín R., et al. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Mol. Microbiol. 2010, 78:380-394.
-
(2010)
Mol. Microbiol.
, vol.78
, pp. 380-394
-
-
Balbontín, R.1
-
44
-
-
84863924309
-
Bacterial small RNA regulators: versatile roles and rapidly evolving variations
-
Gottesman S., Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 2011, 10.1101/cshperspect.a003798.
-
(2011)
Cold Spring Harb. Perspect. Biol.
-
-
Gottesman, S.1
Storz, G.2
-
45
-
-
33746553370
-
Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq
-
Kawamoto H., et al. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol. 2006, 61:1013-1022.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 1013-1022
-
-
Kawamoto, H.1
-
46
-
-
57149118846
-
The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator
-
Guillier M., Gottesman S. The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res. 2008, 36:6781-6794.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 6781-6794
-
-
Guillier, M.1
Gottesman, S.2
-
47
-
-
78650532236
-
Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA
-
Papenfort K., et al. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:20435-20440.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 20435-20440
-
-
Papenfort, K.1
-
48
-
-
68249156618
-
Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation
-
Pfeiffer V., et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 2009, 16:840-846.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 840-846
-
-
Pfeiffer, V.1
-
49
-
-
79952786136
-
Accessibility and evolutionary conservation mark bacterial small-RNA target-binding regions
-
Peer A., Margalit H. Accessibility and evolutionary conservation mark bacterial small-RNA target-binding regions. J. Bacteriol. 2011, 193:1690-1701.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 1690-1701
-
-
Peer, A.1
Margalit, H.2
-
50
-
-
84859915108
-
Multiple factors dictate target selection by Hfq-binding small RNAs
-
Beisel C.L., et al. Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J. 2012, 31:1961-1974.
-
(2012)
EMBO J.
, vol.31
, pp. 1961-1974
-
-
Beisel, C.L.1
-
51
-
-
78049393967
-
Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism
-
Bohn C., et al. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res. 2010, 38:6620-6636.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6620-6636
-
-
Bohn, C.1
-
52
-
-
73849116916
-
A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation
-
Geissmann T., et al. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res. 2009, 37:7239-7257.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 7239-7257
-
-
Geissmann, T.1
-
53
-
-
52049089226
-
Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP-and sigmaE-dependent CyaR-ompX regulatory case
-
Johansen J., et al. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP-and sigmaE-dependent CyaR-ompX regulatory case. J. Mol. Biol. 2008, 383:1.
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 1
-
-
Johansen, J.1
-
54
-
-
42549165769
-
Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis
-
Papenfort K., et al. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol. Microbiol. 2008, 68:890-906.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 890-906
-
-
Papenfort, K.1
-
55
-
-
79960433506
-
Hfq and its constellation of RNA
-
Vogel J., Luisi B.F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 2011, 9:578-589.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 578-589
-
-
Vogel, J.1
Luisi, B.F.2
-
56
-
-
79551650983
-
Disruption of small RNA signaling caused by competition for Hfq
-
Hussein R., Lim H.N. Disruption of small RNA signaling caused by competition for Hfq. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:1110-1115.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 1110-1115
-
-
Hussein, R.1
Lim, H.N.2
-
57
-
-
83355177980
-
Competition among Hfq-binding small RNAs in Escherichia coli
-
Moon K., Gottesman S. Competition among Hfq-binding small RNAs in Escherichia coli. Mol. Microbiol. 2011, 82:1545-1562.
-
(2011)
Mol. Microbiol.
, vol.82
, pp. 1545-1562
-
-
Moon, K.1
Gottesman, S.2
-
58
-
-
84867577054
-
An atlas of Hfq-bound transcripts reveals 3[prime] UTRs as a genomic reservoir of regulatory small RNAs
-
Chao Y., et al. An atlas of Hfq-bound transcripts reveals 3[prime] UTRs as a genomic reservoir of regulatory small RNAs. EMBO J. 2012, 31:4005-4019.
-
(2012)
EMBO J.
, vol.31
, pp. 4005-4019
-
-
Chao, Y.1
-
59
-
-
33745616103
-
Identification of small Hfq-binding RNAs in Listeria monocytogenes
-
Christiansen J.K., et al. Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 2006, 12:1383-1396.
-
(2006)
RNA
, vol.12
, pp. 1383-1396
-
-
Christiansen, J.K.1
-
60
-
-
84879005493
-
Structure and RNA-binding properties of the bacterial LSm protein Hfq
-
Sauer E. Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biol. 2013, 10:610-618.
-
(2013)
RNA Biol.
, vol.10
, pp. 610-618
-
-
Sauer, E.1
-
61
-
-
78649885541
-
RNAs actively cycle on the Sm-like protein Hfq
-
Fender A., et al. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev. 2010, 24:2621-2626.
-
(2010)
Genes Dev.
, vol.24
, pp. 2621-2626
-
-
Fender, A.1
-
62
-
-
0037367939
-
RNA chaperone activity of the Sm-like Hfq protein
-
Moll I., et al. RNA chaperone activity of the Sm-like Hfq protein. EMBO Rep. 2003, 4:284-289.
-
(2003)
EMBO Rep.
, vol.4
, pp. 284-289
-
-
Moll, I.1
-
63
-
-
0002782867
-
Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction
-
Møller T., et al. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol. Cell 2002, 9:23-30.
-
(2002)
Mol. Cell
, vol.9
, pp. 23-30
-
-
Møller, T.1
-
64
-
-
79961098409
-
Quantifying the sequence-function relation in gene silencing by bacterial small RNAs
-
Hao Y., et al. Quantifying the sequence-function relation in gene silencing by bacterial small RNAs. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12473-12478.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 12473-12478
-
-
Hao, Y.1
-
65
-
-
79960441320
-
Major role for mRNA binding and restructuring in sRNA recruitment by Hfq
-
Soper T.J., et al. Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 2011, 17:1544-1550.
-
(2011)
RNA
, vol.17
, pp. 1544-1550
-
-
Soper, T.J.1
-
66
-
-
34247099372
-
Regulatory mechanisms employed by cis-encoded antisense RNAs
-
Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr. Opin. Microbiol. 2007, 10:102-109.
-
(2007)
Curr. Opin. Microbiol.
, vol.10
, pp. 102-109
-
-
Brantl, S.1
-
67
-
-
77957221326
-
Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family
-
Han K., et al. Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Res. 2010, 38:5851-5866.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 5851-5866
-
-
Han, K.1
-
68
-
-
78650244167
-
Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers
-
Gudbergsdottir S., et al. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol. Microbiol. 2011, 79:35-49.
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 35-49
-
-
Gudbergsdottir, S.1
-
69
-
-
84871111437
-
Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis
-
Millen A.M., et al. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS ONE 2012, 7:e51663. 10.1371/journal.pone.0051663.
-
(2012)
PLoS ONE
, vol.7
-
-
Millen, A.M.1
-
70
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova E., et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10098-10103.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
-
71
-
-
79960029056
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
Wiedenheft B., et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10092-10097.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10092-10097
-
-
Wiedenheft, B.1
-
72
-
-
84868143545
-
The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages
-
Cady K.C., et al. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 2012, 194:5728-5738.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 5728-5738
-
-
Cady, K.C.1
-
73
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
Vercoe R.B., et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013, 9:e1003454. 10.1371/journal.pgen.1003454.
-
(2013)
PLoS Genet.
, vol.9
-
-
Vercoe, R.B.1
-
74
-
-
84879011562
-
Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B
-
Maier L-K., et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol. 2013, 10:865-874.
-
(2013)
RNA Biol.
, vol.10
, pp. 865-874
-
-
Maier, L.-K.1
-
75
-
-
79955574254
-
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
-
Jore M.M., et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 2011, 18:529-536.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 529-536
-
-
Jore, M.M.1
-
76
-
-
80053169737
-
Structures of the RNA-guided surveillance complex from a bacterial immune system
-
Wiedenheft B., et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 2011, 477:486-489.
-
(2011)
Nature
, vol.477
, pp. 486-489
-
-
Wiedenheft, B.1
-
77
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31:233-239.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
-
78
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468:67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
-
79
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
80
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2579-E2586.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Gasiunas, G.1
-
81
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
Deveau H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 2008, 190:1390-1400.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
-
82
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011, 39:9275-9282.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
-
83
-
-
84873129118
-
Phage mutations in response to CRISPR diversification in a bacterial population
-
Sun C.L., et al. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 2013, 15:463-470.
-
(2013)
Environ. Microbiol.
, vol.15
, pp. 463-470
-
-
Sun, C.L.1
-
84
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
85
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P., et al. RNA-guided human genome engineering via Cas9. Science 2013, 339:823-826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
86
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran F.A., et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8:2281-2308.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
-
87
-
-
84861990812
-
Mechanism of foreign DNA selection in a bacterial adaptive immune system
-
Sashital D.G., et al. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 2012, 46:606-615.
-
(2012)
Mol. Cell
, vol.46
, pp. 606-615
-
-
Sashital, D.G.1
-
88
-
-
84884687531
-
Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition
-
Westra E.R., et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 2013, 9:e1003742. 10.1371/journal.pgen.1003742.
-
(2013)
PLoS Genet.
, vol.9
-
-
Westra, E.R.1
-
89
-
-
84873571066
-
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
-
Sinkunas T., et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 2013, 32:385-394.
-
(2013)
EMBO J.
, vol.32
, pp. 385-394
-
-
Sinkunas, T.1
-
91
-
-
84861892611
-
A rule of seven in Watson-Crick base-pairing of mismatched sequences
-
Cisse I.I., et al. A rule of seven in Watson-Crick base-pairing of mismatched sequences. Nat. Struct. Mol. Biol. 2012, 19:623-627.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 623-627
-
-
Cisse, I.I.1
-
92
-
-
49449107340
-
Visualizing one-dimensional diffusion of proteins along DNA
-
Gorman J., Greene E.C. Visualizing one-dimensional diffusion of proteins along DNA. Nat. Struct. Mol. Biol. 2008, 15:768-774.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 768-774
-
-
Gorman, J.1
Greene, E.C.2
-
93
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko K.A., et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 2012, 3:945.
-
(2012)
Nat. Commun.
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
-
94
-
-
77955155869
-
Base pairing small RNAs and their roles in global regulatory networks
-
Beisel C.L., Storz G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 2010, 34:866-882.
-
(2010)
FEMS Microbiol. Rev.
, vol.34
, pp. 866-882
-
-
Beisel, C.L.1
Storz, G.2
-
95
-
-
67349192582
-
Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level
-
Papenfort K., Vogel J. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res. Microbiol. 2009, 160:278-287.
-
(2009)
Res. Microbiol.
, vol.160
, pp. 278-287
-
-
Papenfort, K.1
Vogel, J.2
-
96
-
-
84859451156
-
The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single GU wobble pair
-
Papenfort K., et al. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single GU wobble pair. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E757-E764.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Papenfort, K.1
-
97
-
-
46149104377
-
Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution
-
Carroll S.B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008, 134:25-36.
-
(2008)
Cell
, vol.134
, pp. 25-36
-
-
Carroll, S.B.1
-
98
-
-
38649132338
-
Evo-devo: variations on ancestral themes
-
De Robertis E. Evo-devo: variations on ancestral themes. Cell 2008, 132:185-195.
-
(2008)
Cell
, vol.132
, pp. 185-195
-
-
De Robertis, E.1
-
99
-
-
60149092301
-
Deep homology and the origins of evolutionary novelty
-
Shubin N., et al. Deep homology and the origins of evolutionary novelty. Nature 2009, 457:818-823.
-
(2009)
Nature
, vol.457
, pp. 818-823
-
-
Shubin, N.1
-
100
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra E.R., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 2012, 46:595-605.
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
-
101
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
102
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini L.A., Sontheimer E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322:1843-1845.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
103
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale C.R., et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009, 139:945-956.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
-
104
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
105
-
-
84861639567
-
Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
-
Yosef I., et al. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 2012, 40:5569-5576.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
-
106
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns S.J.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321:960-964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
-
107
-
-
77956498326
-
Sequence-and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz R.E., et al. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 2010, 329:1355-1358.
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
-
108
-
-
79958825675
-
An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3
-
Sashital D.G., et al. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 2011, 18:680-687.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 680-687
-
-
Sashital, D.G.1
|