-
1
-
-
0023630807
-
Targeted correction of a mutant HPRT gene in mouse embryonic stem cells
-
Doetschman T, et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 330, 576-578 (1987).
-
(1987)
Nature
, vol.330
, pp. 576-578
-
-
Doetschman, T.1
-
2
-
-
0023646810
-
Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells
-
Thomas K. R, & Capecchi M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51, 503-512 (1987).
-
(1987)
Cell
, vol.51
, pp. 503-512
-
-
Thomas, K.R.1
Capecchi, M.R.2
-
3
-
-
0019826665
-
Establishment in culture of pluripotential cells from mouse embryos
-
Evans M. J, & Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 292, 154-156 (1981).
-
(1981)
Nature
, vol.292
, pp. 154-156
-
-
Evans, M.J.1
Kaufman, M.H.2
-
5
-
-
0028061666
-
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
-
Rouet P, Smih F, & Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096-8106 (1994).
-
(1994)
Mol. Cell. Biol
, vol.14
, pp. 8096-8106
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
6
-
-
79951694132
-
Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy
-
Silva G, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11, 11-27 (2011).
-
(2011)
Curr. Gene Ther
, vol.11
, pp. 11-27
-
-
Silva, G.1
-
7
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov F. D, Rebar E. J, Holmes M. C, Zhang H. S, & Gregory P. D. Genome editing with engineered zinc finger nucleases. Nature. 11, 636-646 (2010).
-
(2010)
Nature
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
Zhang, H.S.4
Gregory, P.D.5
-
8
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander J. D, & Joung J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
9
-
-
84902096048
-
Development and applications of CRISPR Cas9 for genome engineering
-
Hsu P. D, Lander E. S, & Zhang F. Development and applications of CRISPR Cas9 for genome engineering. Cell. 157, 1262-1278 (2014).
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
10
-
-
84913594397
-
Genome editing the new frontier of genome engineering with CRISPR Cas9
-
Doudna J. A, & Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR Cas9. Science. 346, 1258096 (2014).
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
11
-
-
0030032063
-
Hybrid restriction enzymes: Zinc finger fusions to Fok i cleavage domain
-
Kim Y. G, Cha J, & Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA. 93, 1156-1160 (1996).
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
12
-
-
79960064013
-
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
-
Cermak T, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).
-
(2011)
Nucleic Acids Res
, vol.39
, pp. e82
-
-
Cermak, T.1
-
13
-
-
79960034141
-
Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes
-
Li T, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39, 6315-6325 (2011).
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 6315-6325
-
-
Li, T.1
-
14
-
-
0032167717
-
FokI dimerization is required for DNA cleavage
-
Bitinaite J, Wah D. A, Aggarwal A. K, & Schildkraut I. FokI dimerization is required for DNA cleavage. Proc. Natl Acad. Sci. USA. 95, 10570-10575 (1998).
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 10570-10575
-
-
Bitinaite, J.1
Wah, D.A.2
Aggarwal, A.K.3
Schildkraut, I.4
-
15
-
-
0032169674
-
Structure of FokI has implications for DNA cleavage
-
Wah D. A, Bitinaite J, Schildkraut I, & Aggarwal A. K. Structure of FokI has implications for DNA cleavage. Proc. Natl Acad. Sci. USA. 95, 10564-10569 (1998).
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 10564-10569
-
-
Wah, D.A.1
Bitinaite, J.2
Schildkraut, I.3
Aggarwal, A.K.4
-
16
-
-
84895783187
-
MegaTALs: A rare-cleaving nuclease architecture for therapeutic genome engineering
-
Boissel S, et al. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. 42, 2591-2601 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2591-2601
-
-
Boissel, S.1
-
17
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, et al A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816-821 (2012).
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
18
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 339, 823-826 (2013).
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
19
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819-823 (2013).
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
20
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M, et al. RNA-programmed genome editing in human cells. eLife. 2, e00471 (2013).
-
(2013)
ELife
, vol.2
, pp. e00471
-
-
Jinek, M.1
-
21
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang W. Y, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227-229 (2013).
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
-
22
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran F. A, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520, 186-191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
23
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
Hou Z, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA. 110, 15644-15649 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 15644-15649
-
-
Hou, Z.1
-
24
-
-
84959354962
-
Off-Target effects in CRISPR/Cas9 mediated genome engineering
-
Zhang X. H, Tee L. Y, Wang X. G, Huang Q. S, & Yang S. H. Off-Target effects in CRISPR/Cas9 mediated genome engineering. Mol. Ther. Nucleic Acids. 4, e264 (2015).
-
(2015)
Mol. Ther. Nucleic Acids
, vol.4
, pp. e264
-
-
Zhang, X.H.1
Tee, L.Y.2
Wang, X.G.3
Huang, Q.S.4
Yang, S.H.5
-
25
-
-
84925441397
-
Determining the specificities of TALENs Cas9, and other genome-editing enzymes
-
Pattanayak V, Guilinger J. P, & Liu D. R. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 546, 47-78 (2014).
-
(2014)
Methods Enzymol
, vol.546
, pp. 47-78
-
-
Pattanayak, V.1
Guilinger, J.P.2
Liu, D.R.3
-
27
-
-
84939857195
-
Delivery and therapeutic applications of gene editing technologies ZFNs TALENs, and CRISPR/Cas9
-
LaFountaine J. S, Fathe K, & Smyth H. D. C. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494, 180-194 (2015).
-
(2015)
Int. J. Pharm
, vol.494
, pp. 180-194
-
-
LaFountaine, J.S.1
Fathe, K.2
Smyth, H.D.C.3
-
28
-
-
84947269151
-
Keeping CRISPR/Cas on target
-
Jamal M, et al. Keeping CRISPR/Cas on target. Curr. Issues Mol. Biol. 20, 1-20 (2015).
-
(2015)
Curr. Issues Mol. Biol
, vol.20
, pp. 1-20
-
-
Jamal, M.1
-
29
-
-
84945237492
-
Minimizing off-Target mutagenesis risks caused by programmable nucleases
-
Ishida K, Gee P, & Hotta A. Minimizing off-Target mutagenesis risks caused by programmable nucleases. Int. J. Mol. Sci. 16, 24751-24771 (2015).
-
(2015)
Int. J. Mol. Sci
, vol.16
, pp. 24751-24771
-
-
Ishida, K.1
Gee, P.2
Hotta, A.3
-
30
-
-
84955605556
-
Creating and evaluating accurate CRISPR Cas9 scalpels for genomic surgery
-
Bolukbasi M. F, Gupta A, & Wolfe S. A. Creating and evaluating accurate CRISPR Cas9 scalpels for genomic surgery. Nat. Methods. 13, 41-50 (2015).
-
(2015)
Nat. Methods
, vol.13
, pp. 41-50
-
-
Bolukbasi, M.F.1
Gupta, A.2
Wolfe, S.A.3
-
31
-
-
84884289608
-
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
-
Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 154, 1370-1379 (2013).
-
(2013)
Cell
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
-
32
-
-
84891710947
-
Analysis of off-Target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho S. W, et al. Analysis of off-Target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141 (2014).
-
(2014)
Genome Res
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
-
33
-
-
84930943161
-
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
-
Liang X, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44-53 (2015).
-
(2015)
J. Biotechnol
, vol.208
, pp. 44-53
-
-
Liang, X.1
-
34
-
-
84884155038
-
High-Throughput profiling of off-Target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
Pattanayak V, et al. High-Throughput profiling of off-Target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839-843 (2013).
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
-
35
-
-
84880570576
-
High-frequency off-Target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, et al. High-frequency off-Target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826 (2013).
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
-
36
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu P. D, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832 (2013).
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
-
37
-
-
84884950106
-
CRISPR/Cas9 systems targeting β globin and CCR5 genes have substantial off-Target activity
-
Cradick T. J, Fine E. J, Antico C. J, & Bao G. CRISPR/Cas9 systems targeting β globin and CCR5 genes have substantial off-Target activity. Nucleic Acids Res. 41, 9584-9592 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 9584-9592
-
-
Cradick, T.J.1
Fine, E.J.2
Antico, C.J.3
Bao, G.4
-
38
-
-
84903138336
-
CRISPR/Cas9 systems have off-Target activity with insertions or deletions between target DNA and guide RNA sequences
-
Lin Y, et al. CRISPR/Cas9 systems have off-Target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473-7485 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 7473-7485
-
-
Lin, Y.1
-
39
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang H, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807 (2014).
-
(2014)
Plant Biotechnol. J.
, vol.12
, pp. 797-807
-
-
Zhang, H.1
-
40
-
-
84866859751
-
Cas9 crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, & Siksnys V. Cas9 crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA. 109, E2579-E2586 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
41
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
Cho S. W, Kim S, Kim J. M, & Kim J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230-232 (2013).
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.S.4
-
42
-
-
84893287073
-
CRISP fast CRISPR target site identification
-
Heigwer F, Kerr G, & Boutros M. E CRISP: fast CRISPR target site identification. Nat. Methods. 11, 122-123 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 122-123
-
-
Heigwer, F.1
Kerr, G.2
Boutros, M.E.3
-
43
-
-
80052293623
-
Revealing off-Target cleavage specificities of zinc-finger nucleases by in vitro selection
-
Pattanayak V, Ramirez C. L, Joung J. K, & Liu D. R. Revealing off-Target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods. 8, 765-770 (2011).
-
(2011)
Nat. Methods
, vol.8
, pp. 765-770
-
-
Pattanayak, V.1
Ramirez, C.L.2
Joung, J.K.3
Liu, D.R.4
-
44
-
-
84897954502
-
Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
-
Guilinger J. P, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods. 11, 429-435 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 429-435
-
-
Guilinger, J.P.1
-
45
-
-
84885979507
-
In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-Target sites
-
Sander J. D, et al. In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-Target sites. Nucleic Acids Res. 41, e181 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. e181
-
-
Sander, J.D.1
-
46
-
-
84903943282
-
Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
-
Smith C, et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell. 15, 12-13 (2014).
-
(2014)
Cell Stem Cell
, vol.15
, pp. 12-13
-
-
Smith, C.1
-
47
-
-
84904010334
-
Low incidence of off-Target mutations in individual CRISPR Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
-
Veres A, et al. Low incidence of off-Target mutations in individual CRISPR Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 15, 27-30 (2014).
-
(2014)
Cell Stem Cell
, vol.15
, pp. 27-30
-
-
Veres, A.1
-
48
-
-
84930153818
-
Off-Target mutations are rare in Cas9 modified mice
-
Iyer V, et al. Off-Target mutations are rare in Cas9 modified mice. Nat. Methods. 12, 479-479 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 479
-
-
Iyer, V.1
-
49
-
-
84904018481
-
Whats changed with genome editing?
-
Tsai S. Q, & Joung J. K. Whats changed with genome editing?. Cell Stem Cell. 15, 3-4 (2014).
-
(2014)
Cell Stem Cell
, vol.15
, pp. 3-4
-
-
Tsai, S.Q.1
Joung, J.K.2
-
50
-
-
80052766645
-
An unbiased genome-wide analysis of zinc-finger nuclease specificity
-
Gabriel R, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 29, 816-823 (2011).
-
(2011)
Nat. Biotechnol
, vol.29
, pp. 816-823
-
-
Gabriel, R.1
-
51
-
-
84960393099
-
Evaluation of TCR gene editing achieved by TALENs CRISPR/Cas9 and megaTAL nucleases
-
Osborn M. J, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9 and megaTAL nucleases. Mol. Ther. 24, 570-581 (2016).
-
(2016)
Mol. Ther
, vol.24
, pp. 570-581
-
-
Osborn, M.J.1
-
52
-
-
84923221641
-
Unbiased detection of off-Target cleavage by CRISPR Cas9 and TALENs using integrase-defective lentiviral vectors
-
Wang X, et al. Unbiased detection of off-Target cleavage by CRISPR Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 33, 175-178 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 175-178
-
-
Wang, X.1
-
53
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-Target cleavage by CRISPR-Cas nucleases
-
Tsai S. Q, et al. GUIDE-seq enables genome-wide profiling of off-Target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
-
55
-
-
80053558376
-
Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
-
Chiarle R, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 147, 107-119 (2011).
-
(2011)
Cell
, vol.147
, pp. 107-119
-
-
Chiarle, R.1
-
56
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
Frock R. L, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179-186 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
-
57
-
-
84875754465
-
Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
-
Crosetto N, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods. 10, 361-365 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 361-365
-
-
Crosetto, N.1
-
58
-
-
84923846574
-
Digenome-seq: Genome-wide profiling of CRISPR Cas9 off-Target effects in human cells
-
Kim D, et al. Digenome-seq: genome-wide profiling of CRISPR Cas9 off-Target effects in human cells. Nat. Methods. 12, 237-243 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
-
59
-
-
84960392032
-
Genome-wide target specificities of CRISPR Cas9 nucleases revealed by multiplex Digenome-seq
-
Kim D, Kim S, Kim S, Park J, & Kim J. S. Genome-wide target specificities of CRISPR Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. http://dx.doi.org/10.1101/.gr.199588.115 (2016).
-
(2016)
Genome Res
-
-
Kim, D.1
Kim, S.2
Kim, S.3
Park, J.4
Kim, J.S.5
-
60
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander J. D, Reyon D, Cascio V. M, & Joung J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
61
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran F. A, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154, 1380-1389 (2013).
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
-
62
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali P, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838 (2013).
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 833-838
-
-
Mali, P.1
-
63
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai S. Q, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569-576 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
-
64
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
Guilinger J. P, Thompson D. B, & Liu D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577-582 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
65
-
-
84937575600
-
Dimeric CRISPR RNA-guided FokI dCas9 nucleases directed by truncated gRNAs for highly specific genome editing
-
Wyvekens N, Topkar V. V, Khayter C, Joung J. K, & Tsai S. Q. Dimeric CRISPR RNA-guided FokI dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum. Gene Ther. 26, 425-431 (2015).
-
(2015)
Hum. Gene Ther
, vol.26
, pp. 425-431
-
-
Wyvekens, N.1
Topkar, V.V.2
Khayter, C.3
Joung, J.K.4
Tsai, S.Q.5
-
66
-
-
84931292238
-
Generation of mutant mice via the CRISPR/Cas9 system using FokI dCas9
-
Hara S, et al. Generation of mutant mice via the CRISPR/Cas9 system using FokI dCas9. Sci. Rep. 5, 11221 (2015).
-
(2015)
Sci. Rep
, vol.5
, pp. 11221
-
-
Hara, S.1
-
67
-
-
84929468297
-
Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-Thawed fertilized oocytes
-
Nakagawa Y, et al. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-Thawed fertilized oocytes. BMC Biotechnol. 15, 33 (2015).
-
(2015)
BMC Biotechnol
, vol.15
, pp. 33
-
-
Nakagawa, Y.1
-
68
-
-
84963941043
-
High-fidelity CRISPR Cas9 nucleases with no detectable genome-wide off-Target effects
-
Kleinstiver B. P, et al. High-fidelity CRISPR Cas9 nucleases with no detectable genome-wide off-Target effects. Nature. 529, 490-495 (2016).
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
-
69
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker I. M, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 351, 84-88 (2016).
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
-
70
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders C, Niewoehner O, Duerst A, & Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 513, 569-573 (2014).
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
71
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 343, 1247997 (2014).
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
-
72
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156, 935-949 (2014).
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
-
73
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim S, Kim D, Cho S. W, Kim J, & Kim J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019 (2014).
-
(2014)
Genome Res
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.S.5
-
74
-
-
84961288301
-
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
-
Zuris J. A, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73-80 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 73-80
-
-
Zuris, J.A.1
-
75
-
-
84864439768
-
Targeted gene knockout by direct delivery of zinc-finger nuclease proteins
-
Gaj T, Guo J, Kato Y, Sirk S. J, & Barbas C. F. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods. 9, 805-807 (2012).
-
(2012)
Nat. Methods
, vol.9
, pp. 805-807
-
-
Gaj, T.1
Guo, J.2
Kato, Y.3
Sirk, S.J.4
Barbas, C.F.5
-
76
-
-
84924322574
-
Rational design of a split Cas9 enzyme complex
-
Wright A. V, et al. Rational design of a split Cas9 enzyme complex. Proc. Natl Acad. Sci. USA. 112, 2984-2989 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 2984-2989
-
-
Wright, A.V.1
-
77
-
-
84923297110
-
A split Cas9 architecture for inducible genome editing and transcription modulation
-
Zetsche B, Volz S. E, & Zhang F A split Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139-142 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 139-142
-
-
Zetsche, B.1
Volz, S.E.2
Zhang, F.3
-
78
-
-
84942793975
-
Photoactivatable CRISPR Cas9 for optogenetic genome editing
-
Nihongaki Y, Kawano F, Nakajima T, & Sato M. Photoactivatable CRISPR Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755-760 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 755-760
-
-
Nihongaki, Y.1
Kawano, F.2
Nakajima, T.3
Sato, M.4
-
79
-
-
84937764361
-
Small molecule-Triggered Cas9 protein with improved genome-editing specificity
-
Davis K. M, Pattanayak V, Thompson D. B, Zuris J. A, & Liu D. R. Small molecule-Triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316-318 (2015).
-
(2015)
Nat. Chem. Biol
, vol.11
, pp. 316-318
-
-
Davis, K.M.1
Pattanayak, V.2
Thompson, D.B.3
Zuris, J.A.4
Liu, D.R.5
-
80
-
-
84933574487
-
A A Cas9 guide RNA complex preorganized for target DNA recognition
-
Jiang F, Zhou K, Ma L, Gressel S, & Doudna J. A A Cas9 guide RNA complex preorganized for target DNA recognition. Science. 348, 1477-1481 (2015).
-
(2015)
Science
, vol.348
, pp. 1477-1481
-
-
Jiang, F.1
Zhou, K.2
Ma, L.3
Gressel, S.4
Doudna, J.5
-
81
-
-
84946919064
-
Dynamics of CRISPR Cas9 genome interrogation in living cells
-
Knight S. C, et al. Dynamics of CRISPR Cas9 genome interrogation in living cells. Science. 350, 823-826 (2015).
-
(2015)
Science
, vol.350
, pp. 823-826
-
-
Knight, S.C.1
-
82
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg S. H, Redding S, Jinek M, Greene E. C, & Doudna J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507, 62-67 (2014).
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
83
-
-
84937908208
-
Engineered CRISPR Cas9 nucleases with altered PAM specificities
-
Kleinstiver B. P, et al. Engineered CRISPR Cas9 nucleases with altered PAM specificities. Nature. 523, 481-485 (2015).
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
84
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR Cas9 by modifying PAM recognition
-
Kleinstiver B. P, et al. Broadening the targeting range of Staphylococcus aureus CRISPR Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293-1298 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
-
85
-
-
84959440451
-
Structure and engineering of Francisella novicida Cas9
-
Hirano H, et al. Structure and engineering of Francisella novicida Cas9. Cell. 164, 950-961 (2016).
-
(2016)
Cell
, vol.164
, pp. 950-961
-
-
Hirano, H.1
-
86
-
-
84949087122
-
DNA-binding-domain fusions enhance the targeting range and precision of Cas9
-
Bolukbasi M. F, et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods. 12, 1150-1156 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 1150-1156
-
-
Bolukbasi, M.F.1
-
87
-
-
84946215320
-
Conformational control of DNA target cleavage by CRISPR Cas9
-
Sternberg S. H, LaFrance B, Kaplan M, & Doudna J. A. Conformational control of DNA target cleavage by CRISPR Cas9. Nature. 527, 110-113 (2015).
-
(2015)
Nature
, vol.527
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
88
-
-
84958953000
-
Structures of a CRISPR Cas9 R loop complex primed for DNA cleavage
-
Jiang F, et al. Structures of a CRISPR Cas9 R loop complex primed for DNA cleavage. Science. 351, 867-871 (2016).
-
(2016)
Science
, vol.351
, pp. 867-871
-
-
Jiang, F.1
-
89
-
-
84946471431
-
Cas9 gRNA engineering for genome editing, activation and repression
-
Kiani S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods. 12, 1051-1054 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 1051-1054
-
-
Kiani, S.1
-
90
-
-
84947225411
-
Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
-
Dahlman J. E, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159-1161 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 1159-1161
-
-
Dahlman, J.E.1
-
91
-
-
84923086605
-
Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells
-
Yang L, et al. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat. Commun. 5, 5507 (2014).
-
(2014)
Nat. Commun
, vol.5
, pp. 5507
-
-
Yang, L.1
-
92
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471, 602-607 (2011).
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
93
-
-
84902095352
-
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
-
Wu X, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670-676 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 670-676
-
-
Wu, X.1
-
94
-
-
84907546073
-
Protospacer adjacent motif (PAM)- distal sequences engage CRISPR Cas9 DNA target cleavage
-
Cencic R, et al. Protospacer adjacent motif (PAM)- distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS ONE. 9, e109213 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e109213
-
-
Cencic, R.1
-
95
-
-
84938836171
-
A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture
-
OGeen H, Henry I. M, Bhakta M. S, Meckler J. F, & Segal D. J A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43, 3389-3404 (2015).
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 3389-3404
-
-
Ogeen, H.1
Henry, I.M.2
Bhakta, M.S.3
Meckler, J.F.4
Segal, D.J.5
|