메뉴 건너뛰기




Volumn 23, Issue 2, 2017, Pages 165-180

Inflammasome Priming in Sterile Inflammatory Disease

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEMENT; CRYOPYRIN; INFLAMMASOME; REACTIVE OXYGEN METABOLITE; INTERLEUKIN 1BETA; TOLL LIKE RECEPTOR;

EID: 85009724396     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2016.12.007     Document Type: Review
Times cited : (208)

References (156)
  • 1
    • 77950362382 scopus 로고    scopus 로고
    • The inflammasomes
    • 1 Schroder, K., Tschopp, J., The inflammasomes. Cell 140 (2010), 821–832.
    • (2010) Cell , vol.140 , pp. 821-832
    • Schroder, K.1    Tschopp, J.2
  • 2
    • 0026507126 scopus 로고
    • A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes
    • 2 Thornberry, N.A., et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356 (1992), 768–774.
    • (1992) Nature , vol.356 , pp. 768-774
    • Thornberry, N.A.1
  • 3
    • 0033940611 scopus 로고    scopus 로고
    • Identification of a locus on chromosome 1q44 for familial cold urticaria
    • 3 Hoffman, H.M., et al. Identification of a locus on chromosome 1q44 for familial cold urticaria. Am. J. Hum. Genet. 66 (2000), 1693–1698.
    • (2000) Am. J. Hum. Genet. , vol.66 , pp. 1693-1698
    • Hoffman, H.M.1
  • 4
    • 79953046719 scopus 로고    scopus 로고
    • The inflammasome NLRs in immunity, inflammation, and associated diseases
    • 4 Davis, B.K., et al. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29 (2011), 707–735.
    • (2011) Annu. Rev. Immunol. , vol.29 , pp. 707-735
    • Davis, B.K.1
  • 5
    • 77649179433 scopus 로고    scopus 로고
    • NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?
    • 5 Tschopp, J., Schroder, K., NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?. Nat. Rev. Immunol. 10 (2010), 210–215.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 210-215
    • Tschopp, J.1    Schroder, K.2
  • 6
    • 43349086139 scopus 로고    scopus 로고
    • Detection of immune danger signals by NALP3
    • 6 Martinon, F., Detection of immune danger signals by NALP3. J. Leukoc. Biol. 83 (2008), 507–511.
    • (2008) J. Leukoc. Biol. , vol.83 , pp. 507-511
    • Martinon, F.1
  • 7
    • 84995751273 scopus 로고    scopus 로고
    • Mechanism and regulation of NLRP3 inflammasome activation
    • 7 He, Y., et al. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41 (2016), 1012–1021.
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 1012-1021
    • He, Y.1
  • 8
    • 84858677223 scopus 로고    scopus 로고
    • Sensing and reacting to microbes through the inflammasomes
    • 8 Franchi, L., et al. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13 (2012), 325–332.
    • (2012) Nat. Immunol. , vol.13 , pp. 325-332
    • Franchi, L.1
  • 9
    • 70249138036 scopus 로고    scopus 로고
    • NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression
    • 9 Bauernfeind, F.G., et al. NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183 (2009), 787–791.
    • (2009) J. Immunol. , vol.183 , pp. 787-791
    • Bauernfeind, F.G.1
  • 10
    • 69549119940 scopus 로고    scopus 로고
    • Molecular mechanisms involved in inflammasome activation
    • 10 Bryant, C., Fitzgerald, K.A., Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 19 (2009), 455–464.
    • (2009) Trends Cell Biol. , vol.19 , pp. 455-464
    • Bryant, C.1    Fitzgerald, K.A.2
  • 11
    • 0033514959 scopus 로고    scopus 로고
    • Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells
    • 11 Puren, A.J., et al. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), 2256–2261.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 2256-2261
    • Puren, A.J.1
  • 12
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • 12 Zhou, R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 469 (2011), 221–225.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1
  • 13
    • 75649096002 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein links oxidative stress to inflammasome activation
    • 13 Zhou, R., et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11 (2010), 136–140.
    • (2010) Nat. Immunol. , vol.11 , pp. 136-140
    • Zhou, R.1
  • 14
    • 84862777872 scopus 로고    scopus 로고
    • Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
    • 14 Shimada, K., et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36 (2012), 401–414.
    • (2012) Immunity , vol.36 , pp. 401-414
    • Shimada, K.1
  • 15
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • 15 Nakahira, K., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12 (2011), 222–230.
    • (2011) Nat. Immunol. , vol.12 , pp. 222-230
    • Nakahira, K.1
  • 16
    • 84882614243 scopus 로고    scopus 로고
    • Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
    • 16 Iyer, S.S., et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39 (2013), 311–323.
    • (2013) Immunity , vol.39 , pp. 311-323
    • Iyer, S.S.1
  • 17
    • 84887086945 scopus 로고    scopus 로고
    • Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection
    • 17 Ichinohe, T., et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. 110 (2013), 17963–17968.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , pp. 17963-17968
    • Ichinohe, T.1
  • 18
    • 79960542894 scopus 로고    scopus 로고
    • Reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome
    • 18 Bauernfeind, F., et al. Reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol. 187 (2011), 613–617.
    • (2011) J. Immunol. , vol.187 , pp. 613-617
    • Bauernfeind, F.1
  • 19
    • 84937546116 scopus 로고    scopus 로고
    • Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients
    • 19 Zheng, Q., et al. Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients. Exp. Eye Res. 134 (2015), 133–140.
    • (2015) Exp. Eye Res. , vol.134 , pp. 133-140
    • Zheng, Q.1
  • 20
    • 84917736664 scopus 로고    scopus 로고
    • Moderate hypoxia potentiates interleukin-1β production in activated human macrophages
    • 20 Folco, E.J., et al. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ. Res. 115 (2014), 875–883.
    • (2014) Circ. Res. , vol.115 , pp. 875-883
    • Folco, E.J.1
  • 21
    • 73949118676 scopus 로고    scopus 로고
    • Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome
    • 21 Iyer, S.S., et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. 106 (2009), 20388–20393.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 20388-20393
    • Iyer, S.S.1
  • 22
    • 84939516010 scopus 로고    scopus 로고
    • Early upregulation of NLRP3 in the brain of neonatal mice exposed to hypoxia–ischemia: no early neuroprotective effects of NLRP3 deficiency
    • 22 Ystgaard, M.B., et al. Early upregulation of NLRP3 in the brain of neonatal mice exposed to hypoxia–ischemia: no early neuroprotective effects of NLRP3 deficiency. Neonatology 108 (2015), 211–219.
    • (2015) Neonatology , vol.108 , pp. 211-219
    • Ystgaard, M.B.1
  • 23
    • 84968763900 scopus 로고    scopus 로고
    • Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation
    • 23 Panchanathan, R., Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation. Oncotarget 10 (2016), 28183–28194.
    • (2016) Oncotarget , vol.10 , pp. 28183-28194
    • Panchanathan, R.1
  • 24
    • 33745003285 scopus 로고    scopus 로고
    • Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB
    • 24 Frede, S., et al. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB. Biochem. J. 396 (2006), 517–527.
    • (2006) Biochem. J. , vol.396 , pp. 517-527
    • Frede, S.1
  • 25
    • 84968763900 scopus 로고    scopus 로고
    • Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation
    • 25 Panchanathan, R., et al. Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation. Oncotarget 7 (2016), 28183–28194.
    • (2016) Oncotarget , vol.7 , pp. 28183-28194
    • Panchanathan, R.1
  • 26
    • 84921473827 scopus 로고    scopus 로고
    • Cobalt chloride-induced hypoxia ameliorates NLRP3-mediated caspase-1 activation in mixed glial cultures
    • 26 Kim, E.-H., et al. Cobalt chloride-induced hypoxia ameliorates NLRP3-mediated caspase-1 activation in mixed glial cultures. Immune Netw. 13 (2013), 141–147.
    • (2013) Immune Netw. , vol.13 , pp. 141-147
    • Kim, E.-H.1
  • 27
    • 84924530072 scopus 로고    scopus 로고
    • A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate
    • 27 Miljkovi, D., et al. A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate. J. Immunol. 194 (2015), 2493–2503.
    • (2015) J. Immunol. , vol.194 , pp. 2493-2503
    • Miljkovi, D.1
  • 28
    • 77952301752 scopus 로고    scopus 로고
    • Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation
    • 28 Wilms, H., et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J. Neuroinflammation, 7, 2010, 30.
    • (2010) J. Neuroinflammation , vol.7 , pp. 30
    • Wilms, H.1
  • 29
    • 84921685643 scopus 로고    scopus 로고
    • Permanent culture of macrophages at physiological oxygen attenuates the antioxidant and immunomodulatory properties of dimethyl fumarate
    • 29 Haas, B., et al. Permanent culture of macrophages at physiological oxygen attenuates the antioxidant and immunomodulatory properties of dimethyl fumarate. J. Cell. Physiol. 230 (2015), 1128–1138.
    • (2015) J. Cell. Physiol. , vol.230 , pp. 1128-1138
    • Haas, B.1
  • 30
    • 84969540589 scopus 로고    scopus 로고
    • Dimethyl fumarate ameliorates dextran sulfate sodium-induced murine experimental colitis by activating Nrf2 and suppressing NLRP3 inflammasome activation
    • 30 Liu, X., et al. Dimethyl fumarate ameliorates dextran sulfate sodium-induced murine experimental colitis by activating Nrf2 and suppressing NLRP3 inflammasome activation. Biochem. Pharmacol. 112 (2016), 37–49.
    • (2016) Biochem. Pharmacol. , vol.112 , pp. 37-49
    • Liu, X.1
  • 31
    • 77956958947 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes
    • 31 Masters, S.L., et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11 (2010), 897–904.
    • (2010) Nat. Immunol. , vol.11 , pp. 897-904
    • Masters, S.L.1
  • 32
    • 84937513657 scopus 로고    scopus 로고
    • mTORC1-unduced HK1-dependent glycolysis regulates NLRP3 inflammasome activation
    • 32 Moon, J.-S., et al. mTORC1-unduced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12 (2015), 102–115.
    • (2015) Cell Rep. , vol.12 , pp. 102-115
    • Moon, J.-S.1
  • 33
    • 84876285741 scopus 로고    scopus 로고
    • Succinate is an inflammatory signal that induces IL-1β through HIF-1α
    • 33 Tannahill, G.M., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496 (2013), 238–242.
    • (2013) Nature , vol.496 , pp. 238-242
    • Tannahill, G.M.1
  • 34
    • 84865009934 scopus 로고    scopus 로고
    • Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling
    • 34 Peng, H., et al. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J. Biol. Chem. 287 (2012), 28017–28026.
    • (2012) J. Biol. Chem. , vol.287 , pp. 28017-28026
    • Peng, H.1
  • 35
    • 77956958947 scopus 로고    scopus 로고
    • Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes
    • 35 Masters, S.L., et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11 (2010), 897–904.
    • (2010) Nat. Immunol. , vol.11 , pp. 897-904
    • Masters, S.L.1
  • 36
    • 84978468846 scopus 로고    scopus 로고
    • Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
    • 36 Lampropoulou, V., et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24 (2016), 158–166.
    • (2016) Cell Metab. , vol.24 , pp. 158-166
    • Lampropoulou, V.1
  • 37
    • 84878754109 scopus 로고    scopus 로고
    • Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species
    • 37 Li, Y., et al. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J. Biol. Chem. 288 (2013), 16225–16234.
    • (2013) J. Biol. Chem. , vol.288 , pp. 16225-16234
    • Li, Y.1
  • 38
    • 77951800951 scopus 로고    scopus 로고
    • NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
    • 38 Duewell, P., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464 (2010), 1357–1361.
    • (2010) Nature , vol.464 , pp. 1357-1361
    • Duewell, P.1
  • 39
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • 39 Wen, H., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12 (2011), 408–415.
    • (2011) Nat. Immunol. , vol.12 , pp. 408-415
    • Wen, H.1
  • 40
    • 84961290384 scopus 로고    scopus 로고
    • UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis
    • 40 Moon, J.-S., et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Invest. 125 (2015), 665–680.
    • (2015) J. Clin. Invest. , vol.125 , pp. 665-680
    • Moon, J.-S.1
  • 41
    • 0027490174 scopus 로고
    • SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene
    • 41 Yokoyama, C., et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75 (1993), 187–197.
    • (1993) Cell , vol.75 , pp. 187-197
    • Yokoyama, C.1
  • 42
    • 0027139362 scopus 로고
    • SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element
    • 42 Hua, X., et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. U. S. A. 90 (1993), 11603–11607.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 11603-11607
    • Hua, X.1
  • 43
    • 84938335974 scopus 로고    scopus 로고
    • LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling
    • 43 Ito, A., et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife, 4, 2015, e08009.
    • (2015) Elife , vol.4 , pp. e08009
    • Ito, A.1
  • 44
    • 84881131862 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility
    • 44 Xiao, H., et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128 (2013), 632–642.
    • (2013) Circulation , vol.128 , pp. 632-642
    • Xiao, H.1
  • 45
    • 84880651157 scopus 로고    scopus 로고
    • 2+ fluxes leading to NLRP3 inflammasome activation
    • 2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci. 126 (2013), 2903–2913.
    • (2013) J. Cell Sci. , vol.126 , pp. 2903-2913
    • Triantafilou, K.1
  • 46
    • 84880667818 scopus 로고    scopus 로고
    • The NLRP3 inflammasome links complement-mediated inflammation and IL-1 release
    • 46 Laudisi, F., et al. The NLRP3 inflammasome links complement-mediated inflammation and IL-1 release. J. Immunol. 191 (2013), 1006–1010.
    • (2013) J. Immunol. , vol.191 , pp. 1006-1010
    • Laudisi, F.1
  • 47
    • 84979287790 scopus 로고    scopus 로고
    • Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice
    • 47 Fu, X., et al. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice. Sci. Rep., 6, 2016, 30239.
    • (2016) Sci. Rep. , vol.6 , pp. 30239
    • Fu, X.1
  • 48
    • 84968813349 scopus 로고    scopus 로고
    • Complement-mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation
    • 48 Suresh, R., et al. Complement-mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation. J. Cell Sci. 129 (2016), 1928–1939.
    • (2016) J. Cell Sci. , vol.129 , pp. 1928-1939
    • Suresh, R.1
  • 49
    • 0023251590 scopus 로고
    • C3a(C3adesArg) induces production and release of interleukin 1 by cultured human monocytes
    • 49 Haeffner-Cavaillon, N., C3a(C3adesArg) induces production and release of interleukin 1 by cultured human monocytes. J. Immunol. 139 (1987), 794–799.
    • (1987) J. Immunol. , vol.139 , pp. 794-799
    • Haeffner-Cavaillon, N.1
  • 50
    • 84888240043 scopus 로고    scopus 로고
    • C3a modulates IL-1 secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation
    • 50 Asgari, E., et al. C3a modulates IL-1 secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122 (2013), 3473–3481.
    • (2013) Blood , vol.122 , pp. 3473-3481
    • Asgari, E.1
  • 51
    • 77956955243 scopus 로고    scopus 로고
    • Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma
    • 51 Lajoie, S., et al. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 11 (2010), 928–935.
    • (2010) Nat. Immunol. , vol.11 , pp. 928-935
    • Lajoie, S.1
  • 52
    • 77951800951 scopus 로고    scopus 로고
    • NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
    • 52 Duewell, P., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464 (2010), 1357–1361.
    • (2010) Nature , vol.464 , pp. 1357-1361
    • Duewell, P.1
  • 53
    • 79951846190 scopus 로고    scopus 로고
    • Basic calcium phosphate crystals induce monocyte/macrophage IL-1 secretion through the NLRP3 inflammasome in vitro
    • 53 Pazar, B., et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1 secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186 (2011), 2495–2502.
    • (2011) J. Immunol. , vol.186 , pp. 2495-2502
    • Pazar, B.1
  • 54
    • 84969772233 scopus 로고    scopus 로고
    • Crystal formation in inflammation
    • 54 Franklin, B.S., et al. Crystal formation in inflammation. Annu. Rev. Immunol. 34 (2016), 173–202.
    • (2016) Annu. Rev. Immunol. , vol.34 , pp. 173-202
    • Franklin, B.S.1
  • 55
    • 84897491455 scopus 로고    scopus 로고
    • Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release
    • 55 Samstad, E.O., et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192 (2014), 2837–2845.
    • (2014) J. Immunol. , vol.192 , pp. 2837-2845
    • Samstad, E.O.1
  • 56
    • 84923607878 scopus 로고    scopus 로고
    • Complement C5a potentiates uric acid crystal-induced IL-1β production
    • 56 An, L.-L., et al. Complement C5a potentiates uric acid crystal-induced IL-1β production. Eur. J. Immunol. 44 (2014), 3669–3679.
    • (2014) Eur. J. Immunol. , vol.44 , pp. 3669-3679
    • An, L.-L.1
  • 57
    • 0029885318 scopus 로고    scopus 로고
    • Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMet-Leu-Phe receptors
    • 57 Jiang, H., et al. Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMet-Leu-Phe receptors. J. Biol. Chem. 271 (1996), 13430–13434.
    • (1996) J. Biol. Chem. , vol.271 , pp. 13430-13434
    • Jiang, H.1
  • 58
    • 0025348474 scopus 로고
    • Complement C5a activation of phospholipase D in human neutrophils: A major route to the production of phosphatidates and diglycerides
    • 58 Mullmann, T.J., et al. Complement C5a activation of phospholipase D in human neutrophils: A major route to the production of phosphatidates and diglycerides. J. Immunol. 144 (1990), 1901–1908.
    • (1990) J. Immunol. , vol.144 , pp. 1901-1908
    • Mullmann, T.J.1
  • 59
    • 0036151650 scopus 로고    scopus 로고
    • C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway
    • 59 Perianayagam, M.C., C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway. Kidney Int. 61 (2002), 456–463.
    • (2002) Kidney Int. , vol.61 , pp. 456-463
    • Perianayagam, M.C.1
  • 60
    • 23844434887 scopus 로고    scopus 로고
    • G(i)-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase–protein 3 kinase B/Akt pathway and JNK
    • 60 la Sala, A., et al. G(i)-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase–protein 3 kinase B/Akt pathway and JNK. J. Immunol. 175 (2005), 2994–2999.
    • (2005) J. Immunol. , vol.175 , pp. 2994-2999
    • la Sala, A.1
  • 61
    • 0028564917 scopus 로고
    • Mapping of the C5a receptor signal transduction network in human neutrophils
    • 61 Buhl, A.M., et al. Mapping of the C5a receptor signal transduction network in human neutrophils. Proc. Natl. Acad. Sci. U. S. A. 91 (1994), 9190–9194.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 9190-9194
    • Buhl, A.M.1
  • 62
    • 33947424008 scopus 로고    scopus 로고
    • The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling
    • 62 Ribas, C., et al. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim. Biophys. Acta 1768 (2007), 913–922.
    • (2007) Biochim. Biophys. Acta , vol.1768 , pp. 913-922
    • Ribas, C.1
  • 63
    • 84951746392 scopus 로고    scopus 로고
    • Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscin-mediated photooxidative damage
    • 63 Brandstetter, C., et al. Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscin-mediated photooxidative damage. J. Biol. Chem. 290 (2015), 31189–31198.
    • (2015) J. Biol. Chem. , vol.290 , pp. 31189-31198
    • Brandstetter, C.1
  • 64
    • 84978640111 scopus 로고    scopus 로고
    • Bidirectional crosstalk between C5a receptors and the NLRP3 inflammasome in macrophages and monocytes
    • 64 Haggadone, M.D., et al. Bidirectional crosstalk between C5a receptors and the NLRP3 inflammasome in macrophages and monocytes. Mediators Inflamm. 2016 (2016), 1–11.
    • (2016) Mediators Inflamm. , vol.2016 , pp. 1-11
    • Haggadone, M.D.1
  • 65
    • 84867770402 scopus 로고    scopus 로고
    • Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
    • 65 Juliana, C., et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287 (2012), 36617–36622.
    • (2012) J. Biol. Chem. , vol.287 , pp. 36617-36622
    • Juliana, C.1
  • 66
    • 84872782298 scopus 로고    scopus 로고
    • Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity
    • 66 Py, B.F., et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49 (2013), 331–338.
    • (2013) Mol. Cell , vol.49 , pp. 331-338
    • Py, B.F.1
  • 67
    • 84873834109 scopus 로고    scopus 로고
    • Deubiquitinases regulate the activity of caspase-1 and interleukin-1 secretion via assembly of the inflammasome
    • 67 Lopez-Castejon, G., Deubiquitinases regulate the activity of caspase-1 and interleukin-1 secretion via assembly of the inflammasome. J. Biol. Chem. 288 (2013), 2721–2733.
    • (2013) J. Biol. Chem. , vol.288 , pp. 2721-2733
    • Lopez-Castejon, G.1
  • 68
    • 84942804578 scopus 로고    scopus 로고
    • Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation
    • 68 Gurung, P., et al. Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation. Sci. Rep., 5, 2015, 14488.
    • (2015) Sci. Rep. , vol.5 , pp. 14488
    • Gurung, P.1
  • 69
    • 84975810743 scopus 로고    scopus 로고
    • Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages
    • 69 Filardy, A.A., et al. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages. Mucosal Immunol. 9 (2016), 850–858.
    • (2016) Mucosal Immunol. , vol.9 , pp. 850-858
    • Filardy, A.A.1
  • 70
    • 84898635026 scopus 로고    scopus 로고
    • Inflammasome priming by lipopolysaccharide Is dependent upon ERK signaling and proteasome function
    • 70 Ghonime, M.G., et al. Inflammasome priming by lipopolysaccharide Is dependent upon ERK signaling and proteasome function. J. Immunol. 192 (2014), 3881–3888.
    • (2014) J. Immunol. , vol.192 , pp. 3881-3888
    • Ghonime, M.G.1
  • 71
    • 84885459019 scopus 로고    scopus 로고
    • TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome
    • 71 Fernandes-Alnemri, T., TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J. Immunol. 191 (2013), 3995–3999.
    • (2013) J. Immunol. , vol.191 , pp. 3995-3999
    • Fernandes-Alnemri, T.1
  • 72
    • 84960399221 scopus 로고    scopus 로고
    • Immunometabolism governs dendritic cell and macrophage function
    • 72 O'Neill, L.A.J., Pearce, E.J., Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213 (2016), 15–23.
    • (2016) J. Exp. Med. , vol.213 , pp. 15-23
    • O'Neill, L.A.J.1    Pearce, E.J.2
  • 73
    • 74349110413 scopus 로고    scopus 로고
    • Inflammasome activation: how macrophages watch what they eat
    • 73 Vance, R.E., Inflammasome activation: how macrophages watch what they eat. Cell Host Microbe 7 (2010), 3–5.
    • (2010) Cell Host Microbe , vol.7 , pp. 3-5
    • Vance, R.E.1
  • 74
    • 84865132718 scopus 로고    scopus 로고
    • Inflammasomes in liver diseases
    • 74 Szabo, G., Csak, T., Inflammasomes in liver diseases. J. Hepatol. 57 (2012), 642–654.
    • (2012) J. Hepatol. , vol.57 , pp. 642-654
    • Szabo, G.1    Csak, T.2
  • 75
    • 79751512463 scopus 로고    scopus 로고
    • The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance
    • 75 Vandanmagsar, B., et al. The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat. Med. 17 (2011), 179–188.
    • (2011) Nat. Med. , vol.17 , pp. 179-188
    • Vandanmagsar, B.1
  • 76
    • 1842527452 scopus 로고    scopus 로고
    • The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort
    • 76 Holvoet, P., et al. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 53 (2004), 1068–1073.
    • (2004) Diabetes , vol.53 , pp. 1068-1073
    • Holvoet, P.1
  • 77
    • 34648839885 scopus 로고    scopus 로고
    • The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA)
    • 77 Holvoet, P., et al. The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 194 (2007), 245–252.
    • (2007) Atherosclerosis , vol.194 , pp. 245-252
    • Holvoet, P.1
  • 78
    • 0035039618 scopus 로고    scopus 로고
    • Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease
    • 78 Holvoet, P., et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 21 (2001), 844–848.
    • (2001) Arterioscler. Thromb. Vasc. Biol. , vol.21 , pp. 844-848
    • Holvoet, P.1
  • 79
    • 33947111902 scopus 로고    scopus 로고
    • Circulating oxidized LDL is associated with parameters of the metabolic syndrome in postmenopausal women
    • 79 Lapointe, A., et al. Circulating oxidized LDL is associated with parameters of the metabolic syndrome in postmenopausal women. Atherosclerosis 191 (2007), 362–368.
    • (2007) Atherosclerosis , vol.191 , pp. 362-368
    • Lapointe, A.1
  • 80
    • 28744458485 scopus 로고    scopus 로고
    • Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity
    • 80 Couillard, C., et al. Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity. J. Clin. Endocrinol. Metab. 90 (2005), 6454–6459.
    • (2005) J. Clin. Endocrinol. Metab. , vol.90 , pp. 6454-6459
    • Couillard, C.1
  • 81
    • 0036833369 scopus 로고    scopus 로고
    • Whole-body insulin sensitivity, low-density lipoprotein (LDL) particle size, and oxidized LDL in overweight, nondiabetic men
    • 81 Ho, R.C., et al. Whole-body insulin sensitivity, low-density lipoprotein (LDL) particle size, and oxidized LDL in overweight, nondiabetic men. Metabolism 51 (2002), 1478–1483.
    • (2002) Metabolism , vol.51 , pp. 1478-1483
    • Ho, R.C.1
  • 82
    • 84880777411 scopus 로고    scopus 로고
    • CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation
    • 82 Sheedy, F.J., et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14 (2013), 812–820.
    • (2013) Nat. Immunol. , vol.14 , pp. 812-820
    • Sheedy, F.J.1
  • 83
    • 84920997067 scopus 로고    scopus 로고
    • Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation
    • 83 Patel, M.N., et al. Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 506–511.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 506-511
    • Patel, M.N.1
  • 84
    • 0025064143 scopus 로고
    • Detection and localization of tumor necrosis factor in human atheroma
    • 84 Barath, P., et al. Detection and localization of tumor necrosis factor in human atheroma. Am. J. Cardiol. 65 (1990), 297–302.
    • (1990) Am. J. Cardiol. , vol.65 , pp. 297-302
    • Barath, P.1
  • 85
    • 84865167444 scopus 로고    scopus 로고
    • Role of NLRP3 and CARD8 in the regulation of TNF-α induced IL-1β release in vascular smooth muscle cells
    • 85 Nixon Tangi, T., et al. Role of NLRP3 and CARD8 in the regulation of TNF-α induced IL-1β release in vascular smooth muscle cells. Int. J. Mol. Med. 30 (2012), 697–702.
    • (2012) Int. J. Mol. Med. , vol.30 , pp. 697-702
    • Nixon Tangi, T.1
  • 86
    • 70249110860 scopus 로고    scopus 로고
    • TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation
    • 86 Franchi, L., et al. TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183 (2009), 792–796.
    • (2009) J. Immunol. , vol.183 , pp. 792-796
    • Franchi, L.1
  • 87
    • 33846026712 scopus 로고    scopus 로고
    • Obesity induces a phenotypic switch in adipose tissue macrophage polarization
    • 87 Lumeng, C.N., et al. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117 (2007), 175–184.
    • (2007) J. Clin. Invest. , vol.117 , pp. 175-184
    • Lumeng, C.N.1
  • 88
    • 84880974817 scopus 로고    scopus 로고
    • Adipokines mediate inflammation and insulin resistance
    • 88 Kwon, H., Pessin, J.E., Adipokines mediate inflammation and insulin resistance. Front. Endocrinol., 4, 2013, 71.
    • (2013) Front. Endocrinol. , vol.4 , pp. 71
    • Kwon, H.1    Pessin, J.E.2
  • 89
    • 33746736936 scopus 로고    scopus 로고
    • Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes
    • 89 Lagathu, C., et al. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49 (2006), 2162–2173.
    • (2006) Diabetologia , vol.49 , pp. 2162-2173
    • Lagathu, C.1
  • 90
    • 33845873659 scopus 로고    scopus 로고
    • Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression
    • 90 Jager, J., et al. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148 (2007), 241–251.
    • (2007) Endocrinology , vol.148 , pp. 241-251
    • Jager, J.1
  • 91
    • 12044259166 scopus 로고
    • Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop
    • 91 Hiscott, J., et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol. Cell. Biol. 13 (1993), 6231–6240.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 6231-6240
    • Hiscott, J.1
  • 92
    • 84989962589 scopus 로고    scopus 로고
    • Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances
    • 92 Bauernfeind, F., et al. Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J. Immunol. 197 (2016), 2900–2908.
    • (2016) J. Immunol. , vol.197 , pp. 2900-2908
    • Bauernfeind, F.1
  • 93
    • 80053087484 scopus 로고    scopus 로고
    • Inflammasome is a central player in the induction of obesity and insulin resistance
    • 93 Stienstra, R., et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 15324–15329.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 15324-15329
    • Stienstra, R.1
  • 94
    • 84872018875 scopus 로고    scopus 로고
    • Upregulated NLRP3 inflammasome Activation in patients with type 2 diabetes
    • 94 Lee, H.-M., et al. Upregulated NLRP3 inflammasome Activation in patients with type 2 diabetes. Diabetes 62 (2013), 194–204.
    • (2013) Diabetes , vol.62 , pp. 194-204
    • Lee, H.-M.1
  • 95
    • 76049091112 scopus 로고    scopus 로고
    • Lipid homeostasis, lipotoxicity and the metabolic syndrome
    • 95 Unger, R.H., et al. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta 1801 (2010), 209–214.
    • (2010) Biochim. Biophys. Acta , vol.1801 , pp. 209-214
    • Unger, R.H.1
  • 96
    • 18644386792 scopus 로고    scopus 로고
    • Ceramide triggers an NF-κB-dependent survival pathway through calpain
    • 96 Demarchi, F., et al. Ceramide triggers an NF-κB-dependent survival pathway through calpain. Cell Death Differ. 12 (2005), 512–522.
    • (2005) Cell Death Differ. , vol.12 , pp. 512-522
    • Demarchi, F.1
  • 97
    • 84959900578 scopus 로고    scopus 로고
    • Saturated fatty acids engage an IRE1α-dependent pathway to activate the NLRP3 inflammasome in myeloid cells
    • 97 Robblee, M.M., et al. Saturated fatty acids engage an IRE1α-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. Cell Rep. 14 (2016), 2611–2623.
    • (2016) Cell Rep. , vol.14 , pp. 2611-2623
    • Robblee, M.M.1
  • 98
    • 84865108051 scopus 로고    scopus 로고
    • Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance
    • 98 Reynolds, C.M., et al. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol. Nutr. Food Res. 56 (2012), 1212–1222.
    • (2012) Mol. Nutr. Food Res. , vol.56 , pp. 1212-1222
    • Reynolds, C.M.1
  • 99
    • 84856957894 scopus 로고    scopus 로고
    • Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
    • 99 Henao-Mejia, J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482 (2012), 179–185.
    • (2012) Nature , vol.482 , pp. 179-185
    • Henao-Mejia, J.1
  • 100
    • 84925300463 scopus 로고    scopus 로고
    • NLRP3 inflammasome activation is required for fibrosis development in NAFLD
    • 100 Wree, A., et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. 92 (2014), 1069–1082.
    • (2014) J. Mol. Med. , vol.92 , pp. 1069-1082
    • Wree, A.1
  • 101
    • 79955156438 scopus 로고    scopus 로고
    • Disease-associated amyloid and misfolded protein aggregates activate the inflammasome
    • 101 Masters, S.L., O'Neill, L.A.J., Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol. Med. 17 (2011), 276–282.
    • (2011) Trends Mol. Med. , vol.17 , pp. 276-282
    • Masters, S.L.1    O'Neill, L.A.J.2
  • 102
    • 84873087532 scopus 로고    scopus 로고
    • NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice
    • 102 Heneka, M.T., et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493 (2012), 674–678.
    • (2012) Nature , vol.493 , pp. 674-678
    • Heneka, M.T.1
  • 103
    • 79961134149 scopus 로고    scopus 로고
    • TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease
    • 103 Song, M., et al. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease. J. Neuroinflammation, 8, 2011, 92.
    • (2011) J. Neuroinflammation , vol.8 , pp. 92
    • Song, M.1
  • 104
    • 84894518230 scopus 로고    scopus 로고
    • Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction
    • 104 Westwell-Roper, C.Y., Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction. Diabetes 63 (2014), 1698–1711.
    • (2014) Diabetes , vol.63 , pp. 1698-1711
    • Westwell-Roper, C.Y.1
  • 105
    • 84965081830 scopus 로고    scopus 로고
    • Differential activation of innate immune pathways by distinct islet amyloid polypeptide (IAPP) aggregates
    • 105 Westwell-Roper, C., Differential activation of innate immune pathways by distinct islet amyloid polypeptide (IAPP) aggregates. J. Biol. Chem. 291 (2016), 8908–8917.
    • (2016) J. Biol. Chem. , vol.291 , pp. 8908-8917
    • Westwell-Roper, C.1
  • 106
    • 77955703092 scopus 로고    scopus 로고
    • RAGE: a multi-ligand receptor unveiling novel insights in health and disease
    • 106 Alexiou, P., et al. RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr. Med. Chem. 17 (2010), 2232–2252.
    • (2010) Curr. Med. Chem. , vol.17 , pp. 2232-2252
    • Alexiou, P.1
  • 107
    • 77955649302 scopus 로고    scopus 로고
    • Mutant superoxide dismutase 1-induced IL-1 accelerates ALS pathogenesis
    • 107 Meissner, F., et al. Mutant superoxide dismutase 1-induced IL-1 accelerates ALS pathogenesis. Proc. Natl. Acad. Sci. 107 (2010), 13046–13050.
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , pp. 13046-13050
    • Meissner, F.1
  • 108
    • 0346034856 scopus 로고    scopus 로고
    • Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice
    • 108 Tobisawa, S., et al. Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem. Biophys. Res. Commun. 303 (2003), 496–503.
    • (2003) Biochem. Biophys. Res. Commun. , vol.303 , pp. 496-503
    • Tobisawa, S.1
  • 109
    • 84989336849 scopus 로고    scopus 로고
    • ER stress induces NLRP3 inflammasome activation and hepatocyte death
    • 109 Lebeaupin, C., et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis., 6, 2015, e1879.
    • (2015) Cell Death Dis. , vol.6 , pp. e1879
    • Lebeaupin, C.1
  • 110
    • 84941652089 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage
    • 110 Bronner, D.N., et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity 43 (2015), 451–462.
    • (2015) Immunity , vol.43 , pp. 451-462
    • Bronner, D.N.1
  • 111
    • 84893822649 scopus 로고    scopus 로고
    • S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB1
    • 111 Simard, J.-C., et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB1. PLoS One, 8, 2013, e72138.
    • (2013) PLoS One , vol.8 , pp. e72138
    • Simard, J.-C.1
  • 112
    • 84948695894 scopus 로고    scopus 로고
    • The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: a role for the NLRP3 inflammasome
    • 112 Frank, M.G., et al. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: a role for the NLRP3 inflammasome. Brain. Behav. Immun. 55 (2016), 215–224.
    • (2016) Brain. Behav. Immun. , vol.55 , pp. 215-224
    • Frank, M.G.1
  • 113
    • 84873123076 scopus 로고    scopus 로고
    • Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies
    • 113 Codolo, G., et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One, 8, 2013, e55375.
    • (2013) PLoS One , vol.8 , pp. e55375
    • Codolo, G.1
  • 114
    • 1642285783 scopus 로고    scopus 로고
    • NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder
    • 114 Agostini, L., et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20 (2004), 319–325.
    • (2004) Immunity , vol.20 , pp. 319-325
    • Agostini, L.1
  • 115
    • 84864313288 scopus 로고    scopus 로고
    • Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the Nlrp3 protein
    • 115 Nakamura, Y., et al. Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the Nlrp3 protein. Immunity 37 (2012), 85–95.
    • (2012) Immunity , vol.37 , pp. 85-95
    • Nakamura, Y.1
  • 116
    • 84949599562 scopus 로고    scopus 로고
    • Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease
    • 116 Zhou, Q., et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48 (2015), 67–73.
    • (2015) Nat. Genet. , vol.48 , pp. 67-73
    • Zhou, Q.1
  • 117
    • 84905562455 scopus 로고    scopus 로고
    • Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis
    • 117 Vande Walle, L., et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512 (2014), 69–73.
    • (2014) Nature , vol.512 , pp. 69-73
    • Vande Walle, L.1
  • 118
    • 84883775365 scopus 로고    scopus 로고
    • Noncanonical inflammasome activation by intracellular LPS independent of TLR4
    • 118 Kayagaki, N., et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (2013), 1246–1249.
    • (2013) Science , vol.341 , pp. 1246-1249
    • Kayagaki, N.1
  • 119
    • 84883790050 scopus 로고    scopus 로고
    • Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock
    • 119 Hagar, J.A., et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (2013), 1250–1253.
    • (2013) Science , vol.341 , pp. 1250-1253
    • Hagar, J.A.1
  • 120
    • 84906571225 scopus 로고    scopus 로고
    • Inflammatory caspases are innate immune receptors for intracellular LPS
    • 120 Shi, J., et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514 (2014), 187–192.
    • (2014) Nature , vol.514 , pp. 187-192
    • Shi, J.1
  • 121
    • 84867333450 scopus 로고    scopus 로고
    • Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1
    • 121 Broz, P., et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490 (2012), 288–2891.
    • (2012) Nature , vol.490 , pp. 288-2891
    • Broz, P.1
  • 122
    • 84864600268 scopus 로고    scopus 로고
    • TRIF kicenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria
    • 122 Rathinam, V.A.K., TRIF kicenses caspase-11-dependent NLRP3 inflammasome activation by Gram-negative bacteria. Cell 150 (2012), 606–619.
    • (2012) Cell , vol.150 , pp. 606-619
    • Rathinam, V.A.K.1
  • 123
    • 84867241369 scopus 로고    scopus 로고
    • Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens
    • 123 Gurung, P., et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J. Biol. Chem. 287 (2012), 34474–34483.
    • (2012) J. Biol. Chem. , vol.287 , pp. 34474-34483
    • Gurung, P.1
  • 124
    • 84874189388 scopus 로고    scopus 로고
    • Caspase-11 protects against bacteria that escape the vacuole
    • 124 Aachoui, Y., et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339 (2013), 975–978.
    • (2013) Science , vol.339 , pp. 975-978
    • Aachoui, Y.1
  • 125
    • 0036829675 scopus 로고    scopus 로고
    • Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 1
    • 125 Schauvliege, R., et al. Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 1. J. Biol. Chem. 277 (2002), 41624–41630.
    • (2002) J. Biol. Chem. , vol.277 , pp. 41624-41630
    • Schauvliege, R.1
  • 126
    • 84990856288 scopus 로고    scopus 로고
    • IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11–NLRP3 inflammasomes
    • 126 Man, S.M., et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11–NLRP3 inflammasomes. Cell 167 (2016), 382–396.
    • (2016) Cell , vol.167 , pp. 382-396
    • Man, S.M.1
  • 127
    • 84907584408 scopus 로고    scopus 로고
    • Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection
    • 127 Lupfer, C.R., et al. Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathog., 10, 2014, e1004410.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004410
    • Lupfer, C.R.1
  • 128
    • 84994490206 scopus 로고    scopus 로고
    • Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity
    • 128 Napier, B.A., et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J. Exp. Med. 213 (2016), 2365–2382.
    • (2016) J. Exp. Med. , vol.213 , pp. 2365-2382
    • Napier, B.A.1
  • 129
    • 84894271641 scopus 로고    scopus 로고
    • FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes
    • 129 Gurung, P., et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192 (2014), 1835–1846.
    • (2014) J. Immunol. , vol.192 , pp. 1835-1846
    • Gurung, P.1
  • 130
    • 80052845560 scopus 로고    scopus 로고
    • Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis
    • 130 Günther, C., et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477 (2011), 335–339.
    • (2011) Nature , vol.477 , pp. 335-339
    • Günther, C.1
  • 131
    • 84943199941 scopus 로고    scopus 로고
    • NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5
    • 131 Baker, P.J., et al. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol. 45 (2015), 2918–2926.
    • (2015) Eur. J. Immunol. , vol.45 , pp. 2918-2926
    • Baker, P.J.1
  • 132
    • 56949099004 scopus 로고    scopus 로고
    • Suppression of caspase-11 expression by histone deacetylase inhibitors
    • 132 Heo, H., et al. Suppression of caspase-11 expression by histone deacetylase inhibitors. Biochem. Biophys. Res. Commun. 378 (2009), 79–83.
    • (2009) Biochem. Biophys. Res. Commun. , vol.378 , pp. 79-83
    • Heo, H.1
  • 133
    • 84889842703 scopus 로고    scopus 로고
    • Butyric acid in functional constipation
    • 133 Pituch, A., et al. Butyric acid in functional constipation. Gastroenterol. Rev. 5 (2013), 295–298.
    • (2013) Gastroenterol. Rev. , vol.5 , pp. 295-298
    • Pituch, A.1
  • 134
    • 84964434465 scopus 로고    scopus 로고
    • An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells
    • 134 Zanoni, I., et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352 (2016), 1232–1236.
    • (2016) Science , vol.352 , pp. 1232-1236
    • Zanoni, I.1
  • 135
    • 0024425302 scopus 로고
    • Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects
    • 135 Morgan, B.P., Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem. J. 264 (1989), 1–14.
    • (1989) Biochem. J. , vol.264 , pp. 1-14
    • Morgan, B.P.1
  • 136
    • 0022567063 scopus 로고
    • The membrane attack complex of complement
    • 136 Muller-Eberhard, H.J., The membrane attack complex of complement. Annu. Rev. Immunol. 4 (1986), 503–528.
    • (1986) Annu. Rev. Immunol. , vol.4 , pp. 503-528
    • Muller-Eberhard, H.J.1
  • 137
    • 84973249542 scopus 로고    scopus 로고
    • The membrane attack complex as an inflammatory trigger
    • 137 Morgan, B.P., The membrane attack complex as an inflammatory trigger. Immunobiology 221 (2016), 747–751.
    • (2016) Immunobiology , vol.221 , pp. 747-751
    • Morgan, B.P.1
  • 138
    • 84971597411 scopus 로고    scopus 로고
    • Autoinflammatory skin disorders: the inflammasome in focus
    • 138 Gurung, P., Kanneganti, T.-D., Autoinflammatory skin disorders: the inflammasome in focus. Trends Mol. Med. 22 (2016), 545–564.
    • (2016) Trends Mol. Med. , vol.22 , pp. 545-564
    • Gurung, P.1    Kanneganti, T.-D.2
  • 139
    • 84936891896 scopus 로고    scopus 로고
    • Inflammasomes: mechanism of action, role in disease, and therapeutics
    • 139 Guo, H., et al. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21 (2015), 677–687.
    • (2015) Nat. Med. , vol.21 , pp. 677-687
    • Guo, H.1
  • 140
    • 84949742300 scopus 로고    scopus 로고
    • NLRP3 inflammasome and its inhibitors: a review
    • 140 Shao, B.-Z., et al. NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol., 6, 2015, 262.
    • (2015) Front. Pharmacol. , vol.6 , pp. 262
    • Shao, B.-Z.1
  • 141
    • 84943363130 scopus 로고    scopus 로고
    • CAPS – pathogenesis, presentation and treatment of an autoinflammatory disease
    • 141 Kuemmerle-Deschner, J.B., CAPS – pathogenesis, presentation and treatment of an autoinflammatory disease. Semin. Immunopathol. 37 (2015), 377–385.
    • (2015) Semin. Immunopathol. , vol.37 , pp. 377-385
    • Kuemmerle-Deschner, J.B.1
  • 142
    • 84923354387 scopus 로고    scopus 로고
    • Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives
    • 142 Doyle, S., et al. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res. 8 (2015), 15–27.
    • (2015) J. Inflamm. Res. , vol.8 , pp. 15-27
    • Doyle, S.1
  • 143
    • 84905503012 scopus 로고    scopus 로고
    • Therapeutic targeting of microRNAs: current status and future challenges
    • 143 Li, Z., Rana, T.M., Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13 (2014), 622–638.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 622-638
    • Li, Z.1    Rana, T.M.2
  • 144
    • 84978723144 scopus 로고    scopus 로고
    • MicroRNA therapeutics: discovering novel targets and developing specific therapy
    • 144 Christopher, A., et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect. Clin. Res., 7, 2016, 68.
    • (2016) Perspect. Clin. Res. , vol.7 , pp. 68
    • Christopher, A.1
  • 145
    • 84867304098 scopus 로고    scopus 로고
    • NLRP3 inflammasome activity is negatively controlled by miR-223
    • 145 Bauernfeind, F., et al. NLRP3 inflammasome activity is negatively controlled by miR-223. J. Immunol. 189 (2012), 4175–4181.
    • (2012) J. Immunol. , vol.189 , pp. 4175-4181
    • Bauernfeind, F.1
  • 146
    • 84875262818 scopus 로고    scopus 로고
    • Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments
    • 146 Haneklaus, M., et al. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr. Opin. Immunol. 25 (2013), 40–45.
    • (2013) Curr. Opin. Immunol. , vol.25 , pp. 40-45
    • Haneklaus, M.1
  • 147
    • 84876439466 scopus 로고    scopus 로고
    • Negative regulation of NLRP3 inflammasome signaling
    • 147 Chen, S., Sun, B., Negative regulation of NLRP3 inflammasome signaling. Protein Cell 4 (2013), 251–258.
    • (2013) Protein Cell , vol.4 , pp. 251-258
    • Chen, S.1    Sun, B.2
  • 148
    • 84884597342 scopus 로고    scopus 로고
    • MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2
    • 148 Bandyopadhyay, S., MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2. Biochem. Biophys. Res. Commun. 439 (2013), 407–412.
    • (2013) Biochem. Biophys. Res. Commun. , vol.439 , pp. 407-412
    • Bandyopadhyay, S.1
  • 149
    • 84937808970 scopus 로고    scopus 로고
    • MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation
    • 149 Chen, S., et al. MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation. Blood 126 (2015), 103–112.
    • (2015) Blood , vol.126 , pp. 103-112
    • Chen, S.1
  • 150
    • 84928035214 scopus 로고    scopus 로고
    • Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377
    • 150 Wang, W., et al. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radic. Biol. Med. 83 (2015), 214–226.
    • (2015) Free Radic. Biol. Med. , vol.83 , pp. 214-226
    • Wang, W.1
  • 151
    • 84867770402 scopus 로고    scopus 로고
    • Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
    • 151 Juliana, C., et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287 (2012), 36617–36622.
    • (2012) J. Biol. Chem. , vol.287 , pp. 36617-36622
    • Juliana, C.1
  • 152
    • 84946564306 scopus 로고    scopus 로고
    • Histone deacetylase 6 negatively regulates NLRP3 inflammasome activation
    • 152 Hwang, I., et al. Histone deacetylase 6 negatively regulates NLRP3 inflammasome activation. Biochem. Biophys. Res. Commun. 467 (2015), 973–978.
    • (2015) Biochem. Biophys. Res. Commun. , vol.467 , pp. 973-978
    • Hwang, I.1
  • 153
    • 84939552495 scopus 로고    scopus 로고
    • Protein degradation: prime time for PROTACs
    • 153 Deshaies, R.J., Protein degradation: prime time for PROTACs. Nat. Chem. Biol. 11 (2015), 634–635.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 634-635
    • Deshaies, R.J.1
  • 154
    • 84927740466 scopus 로고    scopus 로고
    • Bacterial recognition pathways that lead to inflammasome activation
    • 154 Storek, K.M., Monack, D.M., Bacterial recognition pathways that lead to inflammasome activation. Immunol. Rev. 265 (2015), 112–129.
    • (2015) Immunol. Rev. , vol.265 , pp. 112-129
    • Storek, K.M.1    Monack, D.M.2
  • 155
    • 85007591521 scopus 로고    scopus 로고
    • Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals
    • 155 Bezbradica, J.S., et al. Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals. Cell. Mol. Immunol. 14 (2017), 118–126.
    • (2017) Cell. Mol. Immunol. , vol.14 , pp. 118-126
    • Bezbradica, J.S.1
  • 156
    • 84957309462 scopus 로고    scopus 로고
    • Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes
    • 156 Kim, Y., et al. Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes. J. Lipid Res. 57 (2016), 66–76.
    • (2016) J. Lipid Res. , vol.57 , pp. 66-76
    • Kim, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.