메뉴 건너뛰기




Volumn 18, Issue 3, 2017, Pages 164-179

Transcriptional architecture of the mammalian circadian clock

Author keywords

[No Author keywords available]

Indexed keywords

RNA; RNA POLYMERASE II; TRANSCRIPTION FACTOR CLOCK; TRANSCRIPTOME;

EID: 85006325468     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg.2016.150     Document Type: Review
Times cited : (1677)

References (193)
  • 1
    • 0027349267 scopus 로고
    • Temporal organization: Reflections of a Darwinian clock-watcher
    • Pittendrigh, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16-54 (1993).
    • (1993) Annu. Rev. Physiol. , vol.55 , pp. 16-54
    • Pittendrigh, C.S.1
  • 2
    • 0033593306 scopus 로고    scopus 로고
    • Molecular bases for circadian clocks
    • Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271-290 (1999).
    • (1999) Cell , vol.96 , pp. 271-290
    • Dunlap, J.C.1
  • 3
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: Theory and experimental approaches
    • Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450-461 (2007).
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 450-461
    • Alon, U.1
  • 4
    • 0035458732 scopus 로고    scopus 로고
    • Time zones: A comparative genetics of circadian clocks
    • Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702-715 (2001).
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 702-715
    • Young, M.W.1    Kay, S.A.2
  • 5
    • 21344470923 scopus 로고    scopus 로고
    • Circadian rhythms from multiple oscillators: Lessons from diverse organisms
    • Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6, 544-556 (2005).
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 544-556
    • Bell-Pedersen, D.1
  • 6
    • 65949094583 scopus 로고    scopus 로고
    • The implications of multiple circadian clock origins
    • Rosbash, M. The implications of multiple circadian clock origins. PLoS Biol. 7, e62 (2009).
    • (2009) PLoS Biol. , vol.7 , pp. e62
    • Rosbash, M.1
  • 7
    • 77955983063 scopus 로고    scopus 로고
    • Circadian control of global gene expression patterns
    • Doherty, C. J. & Kay, S. A. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44, 419-444 (2010).
    • (2010) Annu. Rev. Genet. , vol.44 , pp. 419-444
    • Doherty, C.J.1    Kay, S.A.2
  • 8
    • 84941941328 scopus 로고    scopus 로고
    • Integrating circadian dynamics with physiological processes in plants
    • Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 16, 598-610 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 598-610
    • Greenham, K.1    McClung, C.R.2
  • 9
    • 0035997367 scopus 로고    scopus 로고
    • Metabolism and the control of circadian rhythms
    • Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307-331 (2002).
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 307-331
    • Rutter, J.1    Reick, M.2    McKnight, S.L.3
  • 10
    • 33747591416 scopus 로고    scopus 로고
    • Metabolic cycles as an underlying basis of biological oscillations
    • Tu, B. P. & McKnight, S. L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7, 696-701 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 696-701
    • Tu, B.P.1    McKnight, S.L.2
  • 11
    • 84869036539 scopus 로고    scopus 로고
    • Circadian topology of metabolism
    • Bass, J. Circadian topology of metabolism. Nature 491, 348-356 (2012).
    • (2012) Nature , vol.491 , pp. 348-356
    • Bass, J.1
  • 12
    • 4544219781 scopus 로고    scopus 로고
    • Finding new clock components: Past and future
    • Takahashi, J. S. Finding new clock components: past and future. J. Biol. Rhythms 19, 339-347 (2004).
    • (2004) J. Biol. Rhythms , vol.19 , pp. 339-347
    • Takahashi, J.S.1
  • 13
    • 4544362674 scopus 로고    scopus 로고
    • Mammalian circadian biology: Elucidating genome-wide levels of temporal organization
    • Lowrey, P. & Takahashi, J. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441 (2004).
    • (2004) Annu. Rev. Genomics Hum. Genet. , vol.5 , pp. 407-441
    • Lowrey, P.1    Takahashi, J.2
  • 14
    • 52149109334 scopus 로고    scopus 로고
    • The genetics of mammalian circadian order and disorder: Implications for physiology and disease
    • Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775 (2008).
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 764-775
    • Takahashi, J.S.1    Hong, H.K.2    Ko, C.H.3    McDearmon, E.L.4
  • 15
    • 0042490526 scopus 로고    scopus 로고
    • A clockwork web: Circadian timing in brain and periphery, in health and disease
    • Hastings, M. H., Reddy, A. B. & Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649-661 (2003).
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 649-661
    • Hastings, M.H.1    Reddy, A.B.2    Maywood, E.S.3
  • 16
    • 77951927020 scopus 로고    scopus 로고
    • Suprachiasmatic nucleus: Cell autonomy and network properties
    • Welsh, D. K., Takahashi, J. S. & Kay, S. A. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551-577 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 551-577
    • Welsh, D.K.1    Takahashi, J.S.2    Kay, S.A.3
  • 17
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
    • Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 517-549
    • Dibner, C.1    Schibler, U.2    Albrecht, U.3
  • 18
    • 84862675384 scopus 로고    scopus 로고
    • Central and peripheral circadian clocks in mammals
    • Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462 (2012).
    • (2012) Annu. Rev. Neurosci. , vol.35 , pp. 445-462
    • Mohawk, J.A.1    Green, C.B.2    Takahashi, J.S.3
  • 19
    • 84860299312 scopus 로고    scopus 로고
    • Timing to perfection: The biology of central and peripheral circadian clocks
    • Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246-260 (2012).
    • (2012) Neuron , vol.74 , pp. 246-260
    • Albrecht, U.1
  • 20
    • 84873287518 scopus 로고    scopus 로고
    • Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity
    • Gerber, A. et al. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152, 492-503 (2013).
    • (2013) Cell , vol.152 , pp. 492-503
    • Gerber, A.1
  • 21
    • 33846944676 scopus 로고    scopus 로고
    • System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
    • Kornmann, B., Schaad, O., Bujard, H., Takahashi, J. S. & Schibler, U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5, e34 (2007).
    • (2007) PLoS Biol. , vol.5 , pp. e34
    • Kornmann, B.1    Schaad, O.2    Bujard, H.3    Takahashi, J.S.4    Schibler, U.5
  • 23
    • 84886813829 scopus 로고    scopus 로고
    • Emerging roles for post- transcriptional regulation in circadian clocks
    • Lim, C. & Allada, R. Emerging roles for post- transcriptional regulation in circadian clocks. Nat. Neurosci. 16, 1544-1550 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 1544-1550
    • Lim, C.1    Allada, R.2
  • 24
    • 84922468628 scopus 로고    scopus 로고
    • Circadian genomics reveal a role for post-transcriptional regulation in mammals
    • Kojima, S. & Green, C. B. Circadian genomics reveal a role for post-transcriptional regulation in mammals. Biochemistry 54, 124-133 (2015).
    • (2015) Biochemistry , vol.54 , pp. 124-133
    • Kojima, S.1    Green, C.B.2
  • 25
    • 77951912759 scopus 로고    scopus 로고
    • Circadian organization of behavior and physiology in Drosophila
    • Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605-624 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 605-624
    • Allada, R.1    Chung, B.Y.2
  • 26
    • 80052900616 scopus 로고    scopus 로고
    • Molecular genetic analysis of circadian timekeeping in Drosophila
    • Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 141-173 (2011).
    • (2011) Adv. Genet. , vol.74 , pp. 141-173
    • Hardin, P.E.1
  • 28
    • 84872334045 scopus 로고    scopus 로고
    • Metabolism and the circadian clock converge
    • Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 93, 107-135 (2013).
    • (2013) Physiol. Rev. , vol.93 , pp. 107-135
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 31
    • 84902168097 scopus 로고    scopus 로고
    • Metabolic compensation and circadian resilience in prokaryotic cyanobacteria
    • Johnson, C. H. & Egli, M. Metabolic compensation and circadian resilience in prokaryotic cyanobacteria. Annu. Rev. Biochem. 83, 221-247 (2014).
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 221-247
    • Johnson, C.H.1    Egli, M.2
  • 32
    • 84903312178 scopus 로고    scopus 로고
    • Light as a central modulator of circadian rhythms, sleep and affect
    • LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443-454 (2014).
    • (2014) Nat. Rev. Neurosci. , vol.15 , pp. 443-454
    • LeGates, T.A.1    Fernandez, D.C.2    Hattar, S.3
  • 33
    • 84902161090 scopus 로고    scopus 로고
    • Metabolic and nontranscriptional circadian clocks: Eukaryotes
    • Reddy, A. B. & Rey, G. Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu. Rev. Biochem. 83, 165-189 (2014).
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 165-189
    • Reddy, A.B.1    Rey, G.2
  • 34
    • 84925844053 scopus 로고    scopus 로고
    • Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock
    • Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84-92 (2015).
    • (2015) Cell , vol.161 , pp. 84-92
    • Asher, G.1    Sassone-Corsi, P.2
  • 35
    • 84922476122 scopus 로고    scopus 로고
    • Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view
    • Cha, J., Zhou, M. & Liu, Y. Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view. Biochemistry 54, 150-156 (2015).
    • (2015) Biochemistry , vol.54 , pp. 150-156
    • Cha, J.1    Zhou, M.2    Liu, Y.3
  • 36
    • 84922335319 scopus 로고    scopus 로고
    • Dissecting the mechanisms of the clock in Neurospora
    • Hurley, J., Loros, J. J. & Dunlap, J. C. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. 551, 29-52 (2015).
    • (2015) Methods Enzymol. , vol.551 , pp. 29-52
    • Hurley, J.1    Loros, J.J.2    Dunlap, J.C.3
  • 37
  • 38
    • 20244377493 scopus 로고    scopus 로고
    • Positional cloning of the mouse circadian Clock gene
    • King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641-653 (1997).
    • (1997) Cell , vol.89 , pp. 641-653
    • King, D.P.1
  • 39
    • 0032486330 scopus 로고    scopus 로고
    • Role of the CLOCK protein in the mammalian circadian mechanism
    • Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569 (1998).
    • (1998) Science , vol.280 , pp. 1564-1569
    • Gekakis, N.1
  • 40
    • 0033597904 scopus 로고    scopus 로고
    • MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
    • Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205 (1999).
    • (1999) Cell , vol.98 , pp. 193-205
    • Kume, K.1
  • 41
    • 0034640253 scopus 로고    scopus 로고
    • Interacting molecular loops in the mammalian circadian clock
    • Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019 (2000).
    • (2000) Science , vol.288 , pp. 1013-1019
    • Shearman, L.P.1
  • 42
    • 0035966317 scopus 로고    scopus 로고
    • Posttranslational mechanisms regulate the mammalian circadian clock
    • Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
    • (2001) Cell , vol.107 , pp. 855-867
    • Lee, C.1    Etchegaray, J.P.2    Cagampang, F.R.3    Loudon, A.S.4    Reppert, S.M.5
  • 43
    • 33847779219 scopus 로고    scopus 로고
    • Post-translational modifications regulate the ticking of the circadian clock
    • Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139-148 (2007).
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 139-148
    • Gallego, M.1    Virshup, D.M.2
  • 44
    • 80052899933 scopus 로고    scopus 로고
    • Genetics of circadian rhythms in mammalian model organisms
    • Lowrey, P. L. & Takahashi, J. S. Genetics of circadian rhythms in mammalian model organisms. Adv. Genet. 74, 175-230 (2011).
    • (2011) Adv. Genet. , vol.74 , pp. 175-230
    • Lowrey, P.L.1    Takahashi, J.S.2
  • 45
    • 84964207128 scopus 로고    scopus 로고
    • Post-transcriptional control of the mammalian circadian clock: Implications for health and disease
    • Preussner, M. & Heyd, F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch. 468, 983-991 (2016).
    • (2016) Pflugers Arch. , vol.468 , pp. 983-991
    • Preussner, M.1    Heyd, F.2
  • 46
    • 0035136677 scopus 로고    scopus 로고
    • An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
    • Toh, K. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040-1043 (2001).
    • (2001) Science , vol.291 , pp. 1040-1043
    • Toh, K.1
  • 47
    • 15844420887 scopus 로고    scopus 로고
    • Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome
    • Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640-644 (2005).
    • (2005) Nature , vol.434 , pp. 640-644
    • Xu, Y.1
  • 48
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV- ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner, N. et al. The orphan nuclear receptor REV- ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260 (2002).
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1
  • 49
    • 4143142003 scopus 로고    scopus 로고
    • A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
    • Sato, T. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527-537 (2004).
    • (2004) Neuron , vol.43 , pp. 527-537
    • Sato, T.1
  • 50
    • 84933557747 scopus 로고    scopus 로고
    • Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock
    • Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488-1492 (2015).
    • (2015) Science , vol.348 , pp. 1488-1492
    • Zhang, Y.1
  • 51
    • 56749160113 scopus 로고    scopus 로고
    • Design principles of biochemical oscillators
    • Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981-991 (2008).
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 981-991
    • Novak, B.1    Tyson, J.J.2
  • 52
    • 0035871311 scopus 로고    scopus 로고
    • Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism
    • Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995-1006 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 995-1006
    • Mitsui, S.1    Yamaguchi, S.2    Matsuo, T.3    Ishida, Y.4    Okamura, H.5
  • 53
    • 2942679506 scopus 로고    scopus 로고
    • The loss of circadian PAR bZip transcription factors results in epilepsy
    • Gachon, F. et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18, 1397-1412 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 1397-1412
    • Gachon, F.1
  • 54
    • 13944254430 scopus 로고    scopus 로고
    • System-level identification of transcriptional circuits underlying mammalian circadian clocks
    • Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187-192 (2005).
    • (2005) Nat. Genet. , vol.37 , pp. 187-192
    • Ueda, H.R.1
  • 55
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray, J. P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177-182 (2003).
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.P.1    Lee, C.2    Wade, P.A.3    Reppert, S.M.4
  • 56
    • 1342282943 scopus 로고    scopus 로고
    • Histone acetyltransferase- dependent chromatin remodeling and the vascular clock
    • Curtis, A. M. et al. Histone acetyltransferase- dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279, 7091-7097 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 7091-7097
    • Curtis, A.M.1
  • 57
    • 52649158231 scopus 로고    scopus 로고
    • Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex
    • Lee, J. et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell. Biol. 28, 6056-6065 (2008).
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 6056-6065
    • Lee, J.1
  • 58
    • 72449210271 scopus 로고    scopus 로고
    • CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription
    • Hosoda, H. et al. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol. Brain 2, 34 (2009).
    • (2009) Mol. Brain , vol.2 , pp. 34
    • Hosoda, H.1
  • 59
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006).
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 60
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007).
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1
  • 61
    • 47549088250 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 62
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008).
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 64
    • 65549103855 scopus 로고    scopus 로고
    • + biosynthesis
    • + biosynthesis. Science 324, 651-654 (2009).
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1
  • 65
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414-1421 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 67
    • 84872875650 scopus 로고    scopus 로고
    • Histone methyltransferase MLL3 contributes to genome-scale circadian transcription
    • Valekunja, U. K. et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc. Natl Acad. Sci. USA 110, 1554-1559 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 1554-1559
    • Valekunja, U.K.1
  • 68
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
    • Ditacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333, 1881-1885 (2011).
    • (2011) Science , vol.333 , pp. 1881-1885
    • Ditacchio, L.1
  • 69
    • 84896715662 scopus 로고    scopus 로고
    • Phosphorylation of LSD1 by PKCa is crucial for circadian rhythmicity and phase resetting
    • Nam, H. J. et al. Phosphorylation of LSD1 by PKCa is crucial for circadian rhythmicity and phase resetting. Mol. Cell 53, 791-805 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 791-805
    • Nam, H.J.1
  • 70
    • 84885038253 scopus 로고    scopus 로고
    • A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery
    • Lande-Diner, L, Boyault, C, Kim, J. Y. & Weitz, C. J. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc. Natl Acad. Sci. USA 110, 16021-16026 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 16021-16026
    • Lande-Diner, L.1    Boyault, C.2    Kim, J.Y.3    Weitz, C.J.4
  • 71
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354 (2012).
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1
  • 72
    • 84870288931 scopus 로고    scopus 로고
    • Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
    • Le Martelot, G. et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10, e1001442 (2012).
    • (2012) PLoS Biol. , vol.10 , pp. e1001442
    • Le Martelot, G.1
  • 73
    • 18244365850 scopus 로고    scopus 로고
    • PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
    • Brown, S. A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696 (2005).
    • (2005) Science , vol.308 , pp. 693-696
    • Brown, S.A.1
  • 74
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • Padmanabhan, K., Robles, M., Westerling, T. & Weitz, C. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337, 599-602 (2012).
    • (2012) Science , vol.337 , pp. 599-602
    • Padmanabhan, K.1    Robles, M.2    Westerling, T.3    Weitz, C.4
  • 75
    • 84918841904 scopus 로고    scopus 로고
    • Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor
    • Kim, J. Y, Kwak, P. B. & Weitz, C. J. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56, 738-748 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 738-748
    • Kim, J.Y.1    Kwak, P.B.2    Weitz, C.J.3
  • 76
    • 33746344698 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is required for mammalian circadian clock function
    • Etchegaray, J. P. et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209-21215 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 21209-21215
    • Etchegaray, J.P.1
  • 77
    • 84885573359 scopus 로고    scopus 로고
    • hi inflammatory monocytes
    • hi inflammatory monocytes. Science 341, 1483-1488 (2013).
    • (2013) Science , vol.341 , pp. 1483-1488
    • Nguyen, K.D.1
  • 78
    • 84943456330 scopus 로고    scopus 로고
    • Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback
    • Tamayo, A. G., Duong, H. A., Robles, M. S., Mann, M. & Weitz, C. J. Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat. Struct. Mol. Biol. 22, 759-766 (2015).
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 759-766
    • Tamayo, A.G.1    Duong, H.A.2    Robles, M.S.3    Mann, M.4    Weitz, C.J.5
  • 79
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong, H., Robles, M., Knutti, D. & Weitz, C. A molecular mechanism for circadian clock negative feedback. Science 332, 1436-1439 (2011).
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.1    Robles, M.2    Knutti, D.3    Weitz, C.4
  • 80
    • 84893787747 scopus 로고    scopus 로고
    • Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
    • Duong, H. A. & Weitz, C. J. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21, 126-132 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 126-132
    • Duong, H.A.1    Weitz, C.J.2
  • 81
    • 0034697099 scopus 로고    scopus 로고
    • Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
    • Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483-492 (2000).
    • (2000) Science , vol.288 , pp. 483-492
    • Lowrey, P.L.1
  • 82
    • 22844432019 scopus 로고    scopus 로고
    • pTRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
    • pTRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863-26872 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 26863-26872
    • Shirogane, T.1    Jin, J.2    Ang, X.3    Harper, J.4
  • 83
    • 34848913124 scopus 로고    scopus 로고
    • P-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
    • Reischl, S. et al. p-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22, 375-386 (2007).
    • (2007) J. Biol. Rhythms , vol.22 , pp. 375-386
    • Reischl, S.1
  • 84
    • 41549142176 scopus 로고    scopus 로고
    • Setting clock speed in mammals: The CK1e tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
    • Meng, Q. J. et al. Setting clock speed in mammals: the CK1e tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78-88 (2008).
    • (2008) Neuron , vol.58 , pp. 78-88
    • Meng, Q.J.1
  • 85
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900-904 (2007).
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1
  • 86
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression
    • Siepka, S. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011-1023 (2007).
    • (2007) Cell , vol.129 , pp. 1011-1023
    • Siepka, S.1
  • 87
    • 34248525919 scopus 로고    scopus 로고
    • The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
    • Godinho, S. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897-900 (2007).
    • (2007) Science , vol.316 , pp. 897-900
    • Godinho, S.1
  • 88
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440 (2009).
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1
  • 89
    • 67650088244 scopus 로고    scopus 로고
    • Casein kinase 1 delta regulates the pace of the mammalian circadian clock
    • Etchegaray, J. P. et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell. Biol. 29, 3853-3866 (2009).
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 3853-3866
    • Etchegaray, J.P.1
  • 90
    • 80053639356 scopus 로고    scopus 로고
    • The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
    • Lee, H. M. et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl Acad. Sci. USA 108, 16451-16456 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 16451-16456
    • Lee, H.M.1
  • 91
    • 79953211112 scopus 로고    scopus 로고
    • Stoichiometric relationship among clock proteins determines robustness of circadian rhythms
    • Lee, Y, Chen, R., Lee, H. M. & Lee, C. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms. J. Biol. Chem. 286, 7033-7042 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 7033-7042
    • Lee Chen, Y.R.1    Lee, H.M.2    Lee, C.3
  • 92
    • 84948677429 scopus 로고    scopus 로고
    • A tunable artificial circadian clock in clock-defective mice
    • D'Alessandro, M. et al. A tunable artificial circadian clock in clock-defective mice. Nat. Commun. 6, 8587 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8587
    • D'Alessandro, M.1
  • 93
    • 84951953678 scopus 로고    scopus 로고
    • A Period2 phosphoswitch regulates and temperature compensates circadian period
    • Zhou, M., Kim, J. K., Eng, G. W L, Forger, D. B. & Virshup, D. M. A Period2 phosphoswitch regulates and temperature compensates circadian period. Mol. Cell 60, 1-13 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 1-13
    • Zhou, M.1    Kim, J.K.2    Eng, G.W.L.3    Forger, D.B.4    Virshup, D.M.5
  • 94
    • 84874772651 scopus 로고    scopus 로고
    • FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
    • Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106-1118 (2013).
    • (2013) Cell , vol.152 , pp. 1106-1118
    • Hirano, A.1
  • 95
    • 84874768419 scopus 로고    scopus 로고
    • Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
    • Yoo, S.-H. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091-1105 (2013).
    • (2013) Cell , vol.152 , pp. 1091-1105
    • Yoo, S.-H.1
  • 96
    • 79251571117 scopus 로고    scopus 로고
    • Afh mutations on mouse circadian behavior and molecular pacemaking
    • Afh mutations on mouse circadian behavior and molecular pacemaking. J. Neurosci. 31, 1539-1544 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 1539-1544
    • Maywood, E.S.1
  • 97
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phase-specific DNA- binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey, G. et al. Genome-wide and phase-specific DNA- binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).
    • (2011) PLoS Biol. , vol.9 , pp. e1000595
    • Rey, G.1
  • 98
    • 84881506759 scopus 로고    scopus 로고
    • Nascent-seq reveals novel features of mouse circadian transcriptional regulation
    • Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).
    • (2012) ELife , vol.1 , pp. e00011
    • Menet, J.S.1    Rodriguez, J.2    Abruzzi, K.C.3    Rosbash, M.4
  • 99
    • 84870553909 scopus 로고    scopus 로고
    • Circadian oscillations of protein- coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
    • Vollmers, C. et al. Circadian oscillations of protein- coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16, 833-845 (2012).
    • (2012) Cell Metab. , vol.16 , pp. 833-845
    • Vollmers, C.1
  • 100
    • 84899144072 scopus 로고    scopus 로고
    • CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes
    • Yoshitane, H. et al. CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol. Cell. Biol. 34, 1776-1787 (2014).
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 1776-1787
    • Yoshitane, H.1
  • 101
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger, J. A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374 (2006).
    • (2006) Nat. Genet. , vol.38 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 102
    • 84868097990 scopus 로고    scopus 로고
    • Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with e boxes and requires the proteasome
    • Stratmann, M., Suter, D. M., Molina, N., Naef, F & Schibler, U. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 48, 277-287 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 277-287
    • Stratmann, M.1    Suter, D.M.2    Molina, N.3    Naef, F.4    Schibler, U.5
  • 103
    • 0034193442 scopus 로고    scopus 로고
    • Transcriptional regulation: Kamikaze activators
    • Thomas, D. & Tyers, M. Transcriptional regulation: kamikaze activators. Curr. Biol. 10, R341-R343 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. R341-R343
    • Thomas, D.1    Tyers, M.2
  • 104
    • 78651491409 scopus 로고    scopus 로고
    • Delay in feedback repression by Cryptochrome 1 is required for circadian clock function
    • Ukai-Tadenuma, M. et al. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144, 268-281 (2011).
    • (2011) Cell , vol.144 , pp. 268-281
    • Ukai-Tadenuma, M.1
  • 105
    • 84879068462 scopus 로고    scopus 로고
    • Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA- binding of the CLOCK:BMAL1 complex in mice
    • Shimomura, K. et al. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA- binding of the CLOCK:BMAL1 complex in mice. eLife 2, e00426 (2013).
    • (2013) ELife , vol.2 , pp. e00426
    • Shimomura, K.1
  • 106
    • 84896715962 scopus 로고    scopus 로고
    • SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm
    • Stashi, E. et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 6, 633-645 (2014).
    • (2014) Cell Rep , vol.6 , pp. 633-645
    • Stashi, E.1
  • 107
    • 84947437372 scopus 로고    scopus 로고
    • Pancreatic p cell enhancers regulate rhythmic transcription of genes controlling insulin secretion
    • Perelis, M. et al. Pancreatic p cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350, aac4250 (2015).
    • (2015) Science , vol.350 , pp. aac4250
    • Perelis, M.1
  • 108
    • 84863890567 scopus 로고    scopus 로고
    • Genomic approaches towards finding cis-regulatory modules in animals
    • Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13, 469-483 (2012).
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 469-483
    • Hardison, R.C.1    Taylor, J.2
  • 109
    • 84255206549 scopus 로고    scopus 로고
    • Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
    • Lamia, K. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552-556 (2011).
    • (2011) Nature , vol.480 , pp. 552-556
    • Lamia, K.1
  • 110
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-A and REV-ERB-p
    • Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-p. Nature 485, 123-127 (2012).
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1
  • 111
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011).
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 112
    • 84952871218 scopus 로고    scopus 로고
    • Coactivator-dependent oscillation of chromatin accessibility dictates circadian gene amplitude via REV-ERB loading
    • Zhu, B. et al. Coactivator-dependent oscillation of chromatin accessibility dictates circadian gene amplitude via REV-ERB loading. Mol. Cell 60, 769-783 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 769-783
    • Zhu, B.1
  • 113
    • 82955232386 scopus 로고    scopus 로고
    • Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain
    • Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435-1440 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1435-1440
    • Ameur, A.1
  • 114
    • 84946197772 scopus 로고    scopus 로고
    • Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post- transcriptional regulation
    • Gaidatzis, D., Burger, L., Florescu, M. & Stadler, M. B. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post- transcriptional regulation. Nat. Biotechnol. 33, 722-729 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 722-729
    • Gaidatzis, D.1    Burger, L.2    Florescu, M.3    Stadler, M.B.4
  • 115
    • 66349107101 scopus 로고    scopus 로고
    • Harmonics of circadian gene transcription in mammals
    • Hughes, M. E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (2009).
    • (2009) PLoS Genet. , vol.5 , pp. e1000442
    • Hughes, M.E.1
  • 116
    • 84902338279 scopus 로고    scopus 로고
    • MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
    • Du, N.-H., Arpat, A. B., De Matos, M. & Gatfield, D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 3, e02510 (2014).
    • (2014) ELife , vol.3 , pp. e02510
    • Du, N.-H.1    Arpat, A.B.2    De Matos, M.3    Gatfield, D.4
  • 117
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 (2008).
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 118
    • 84940390239 scopus 로고    scopus 로고
    • Architectural and functional commonalities between enhancers and promoters
    • Kim, T.-K. & Shiekhattar, R. Architectural and functional commonalities between enhancers and promoters. Cell 162, 948-959 (2015).
    • (2015) Cell , vol.162 , pp. 948-959
    • Kim, T.-K.1    Shiekhattar, R.2
  • 119
    • 84911865436 scopus 로고    scopus 로고
    • Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
    • Fang, B. et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159, 1140-1152 (2014).
    • (2014) Cell , vol.159 , pp. 1140-1152
    • Fang, B.1
  • 120
    • 84900400446 scopus 로고    scopus 로고
    • Machine learning helps identify CHRONO as a circadian clock component
    • Anafi, R. C. et al. Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol. 12, e1001840 (2014).
    • (2014) PLoS Biol. , vol.12 , pp. e1001840
    • Anafi, R.C.1
  • 121
    • 84896736467 scopus 로고    scopus 로고
    • Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression
    • Annayev, Y. et al. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. J. Biol. Chem. 289, 5013-5024 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 5013-5024
    • Annayev, Y.1
  • 122
    • 84900409000 scopus 로고    scopus 로고
    • A novel protein, CHRONO, functions as a core component of the mammalian circadian clock
    • Goriki, A. et al. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol. 12, e1001839 (2014).
    • (2014) PLoS Biol. , vol.12 , pp. e1001839
    • Goriki, A.1
  • 123
    • 84901229145 scopus 로고    scopus 로고
    • Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice
    • Preußner, M. et al. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol. Cell 54, 651-662 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 651-662
    • Preußner, M.1
  • 124
    • 84871581540 scopus 로고    scopus 로고
    • Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
    • Kojima, S., Sher-Chen, E. L. & Green, C. B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724-2736 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 2724-2736
    • Kojima, S.1    Sher-Chen, E.L.2    Green, C.B.3
  • 125
    • 84956675608 scopus 로고    scopus 로고
    • Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames
    • Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 25, 1848-1859 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1848-1859
    • Janich, P.1    Arpat, A.B.2    Castelo-Szekely, V.3    Lopes, M.4    Gatfield, D.5
  • 126
    • 84956598215 scopus 로고    scopus 로고
    • Ribosome profiling reveals an important role for translational control in circadian gene expression
    • Jang, C., Lahens, N. F., Hogenesch, J. B. & Sehgal, A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 25, 1836-1847 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1836-1847
    • Jang, C.1    Lahens, N.F.2    Hogenesch, J.B.3    Sehgal, A.4
  • 127
    • 5444225805 scopus 로고    scopus 로고
    • Elongation by RNA polymerase II: The short and long of it
    • Sims, R. J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437-2468 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 2437-2468
    • Sims, R.J.1    Belotserkovskaya, R.2    Reinberg, D.3
  • 128
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda, N., Ardehali, M. & Lis, J. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186-192 (2009).
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.1    Ardehali, M.2    Lis, J.3
  • 129
    • 84923780299 scopus 로고    scopus 로고
    • Getting up to speed with transcription elongation by RNA polymerase II
    • Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167-177 (2015).
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 167-177
    • Jonkers, I.1    Lis, J.T.2
  • 130
    • 2942528748 scopus 로고    scopus 로고
    • C-terminal repeat domain kinase i phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats
    • Jones, J. C. et al. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J. Biol. Chem. 279, 24957-24964 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 24957-24964
    • Jones, J.C.1
  • 131
    • 37249015899 scopus 로고    scopus 로고
    • Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
    • Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780-1782 (2007).
    • (2007) Science , vol.318 , pp. 1780-1782
    • Chapman, R.D.1
  • 132
    • 23844519339 scopus 로고    scopus 로고
    • A high-resolution map of active promoters in the human genome
    • Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876-880 (2005).
    • (2005) Nature , vol.436 , pp. 876-880
    • Kim, T.H.1
  • 133
    • 34447098370 scopus 로고    scopus 로고
    • A chromatin landmark and transcription initiation at most promoters in human cells
    • Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77-88 (2007).
    • (2007) Cell , vol.130 , pp. 77-88
    • Guenther, M.G.1    Levine, S.S.2    Boyer, L.A.3    Jaenisch, R.4    Young, R.A.5
  • 134
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007).
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 135
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707-719 (2007).
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1    Carey, M.2    Workman, J.L.3
  • 136
    • 78650758676 scopus 로고    scopus 로고
    • Histone H3K27ac separates active from poised enhancers and predicts developmental state
    • Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931-21936 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 21931-21936
    • Creyghton, M.P.1
  • 137
    • 79952901680 scopus 로고    scopus 로고
    • Enhancer function: New insights into the regulation of tissue-specific gene expression
    • Ong, C. T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293 (2011).
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 283-293
    • Ong, C.T.1    Corces, V.G.2
  • 138
    • 79951516056 scopus 로고    scopus 로고
    • A unique chromatin signature uncovers early developmental enhancers in humans
    • Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283 (2011).
    • (2011) Nature , vol.470 , pp. 279-283
    • Rada-Iglesias, A.1
  • 139
    • 33646070846 scopus 로고    scopus 로고
    • A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    • Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 (2006).
    • (2006) Cell , vol.125 , pp. 315-326
    • Bernstein, B.E.1
  • 140
    • 77951920690 scopus 로고    scopus 로고
    • C-Myc regulates transcriptional pause release
    • Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432-445 (2010).
    • (2010) Cell , vol.141 , pp. 432-445
    • Rahl, P.B.1
  • 141
    • 84891677378 scopus 로고    scopus 로고
    • CLOCK:BMAL1 is a pioneer-like transcription factor
    • Menet, J. S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8-13 (2014).
    • (2014) Genes Dev , vol.28 , pp. 8-13
    • Menet, J.S.1    Pescatore, S.2    Rosbash, M.3
  • 142
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans
    • Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720-731 (2012).
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 143
    • 84947557505 scopus 로고    scopus 로고
    • Cycling transcriptional networks reduce the synthetic cost of genomes
    • Wang, G.-Z. et al. Cycling transcriptional networks reduce the synthetic cost of genomes. Cell Rep. 13, 1868-1880 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 1868-1880
    • Wang, G.-Z.1
  • 144
    • 84885433507 scopus 로고    scopus 로고
    • Cycles in spatial and temporal chromosomal organization driven by the circadian clock
    • Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206-1213 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1206-1213
    • Aguilar-Arnal, L.1
  • 145
    • 84937822827 scopus 로고    scopus 로고
    • Functional organization of the human 4D nucleome
    • Chen, H. et al. Functional organization of the human 4D nucleome. Proc. Natl Acad. Sci. USA 112, 8002-8007 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 8002-8007
    • Chen, H.1
  • 146
    • 84941804625 scopus 로고    scopus 로고
    • PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription
    • Zhao, H. et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol. Cell 59, 984-997 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 984-997
    • Zhao, H.1
  • 147
    • 84930629281 scopus 로고    scopus 로고
    • Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
    • Aguilar-Arnal, L. & Sassone-Corsi, P. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc. Natl Acad. Sci. USA 112, 6863-6870 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 6863-6870
    • Aguilar-Arnal, L.1    Sassone-Corsi, P.2
  • 148
    • 84974577165 scopus 로고    scopus 로고
    • Long-range chromosome interactions mediated by cohesin shape circadian gene expression
    • Xu, Y. et al. Long-range chromosome interactions mediated by cohesin shape circadian gene expression. PLoS Genet. 12, e1005992 (2016).
    • (2016) PLoS Genet. , vol.12 , pp. e1005992
    • Xu, Y.1
  • 149
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng, D. & Lazar, M. A. Clocks, metabolism, and the epigenome. Mol. Cell 47, 158-167 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 150
    • 84922448694 scopus 로고    scopus 로고
    • Circadian clock, cancer, and chemotherapy
    • Sancar, A. et al. Circadian clock, cancer, and chemotherapy. Biochemistry 54, 110-123 (2014).
    • (2014) Biochemistry , vol.54 , pp. 110-123
    • Sancar, A.1
  • 152
    • 84979779187 scopus 로고    scopus 로고
    • Circadian rhythm disruption promotes lung tumorigenesis
    • Papagiannakopoulos, T. et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24, 324-331 (2016).
    • (2016) Cell Metab. , vol.24 , pp. 324-331
    • Papagiannakopoulos, T.1
  • 153
    • 84978681943 scopus 로고    scopus 로고
    • Clock-talk: Interactions between central and peripheral circadian oscillators in mammals
    • Schibler, U. et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80, 223-232 (2015).
    • (2015) Cold Spring Harb. Symp. Quant. Biol. , vol.80 , pp. 223-232
    • Schibler, U.1
  • 154
    • 84902198718 scopus 로고    scopus 로고
    • Interactive features of proteins composing eukaryotic circadian clocks
    • Crane, B. R. & Young, M. W. Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83, 191-219 (2014).
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 191-219
    • Crane, B.R.1    Young, M.W.2
  • 155
    • 84922418603 scopus 로고    scopus 로고
    • Emerging models for the molecular basis of mammalian circadian timing
    • Gustafson, C. L. & Partch, C. L. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 54, 134-149 (2015).
    • (2015) Biochemistry , vol.54 , pp. 134-149
    • Gustafson, C.L.1    Partch, C.L.2
  • 156
    • 84863751285 scopus 로고    scopus 로고
    • Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
    • Huang, N. et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189-194 (2012).
    • (2012) Science , vol.337 , pp. 189-194
    • Huang, N.1
  • 157
    • 85031658523 scopus 로고    scopus 로고
    • Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
    • Hennig, S. et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 7, e1000094 (2009).
    • (2009) PLoS Biol. , vol.7 , pp. e1000094
    • Hennig, S.1
  • 158
    • 84857704420 scopus 로고    scopus 로고
    • Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
    • Kucera, N. et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl Acad. Sci. USA 109, 3311-3316 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 3311-3316
    • Kucera, N.1
  • 159
    • 84878889999 scopus 로고    scopus 로고
    • Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
    • Czarna, A. et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 1394-1405 (2013).
    • (2013) Cell , vol.153 , pp. 1394-1405
    • Czarna, A.1
  • 160
    • 84875899177 scopus 로고    scopus 로고
    • FBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
    • FBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64-68 (2013).
    • (2013) Nature , vol.496 , pp. 64-68
    • Xing, W.1
  • 161
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • Schmalen, I. et al. Interaction of circadian clock proteins CRY1 and PER2 Is modulated by zinc binding and disulfide bond formation. Cell 157, 1203-1215 (2014).
    • (2014) Cell , vol.157 , pp. 1203-1215
    • Schmalen, I.1
  • 162
    • 84934295856 scopus 로고    scopus 로고
    • Molecular assembly of the period- cryptochrome circadian transcriptional repressor complex
    • Nangle, S. N. et al. Molecular assembly of the period- cryptochrome circadian transcriptional repressor complex. eLife 3, e03674 (2014).
    • (2014) ELife , vol.3 , pp. e03674
    • Nangle, S.N.1
  • 163
    • 70449093653 scopus 로고    scopus 로고
    • Rhythmic per abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
    • Chen, R. et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 36, 417-430 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 417-430
    • Chen, R.1
  • 164
    • 84939789669 scopus 로고    scopus 로고
    • Structural integration in hypoxia-inducible factors
    • Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303-308 (2015).
    • (2015) Nature , vol.524 , pp. 303-308
    • Wu, D.1    Potluri, N.2    Lu, J.3    Kim, Y.4    Rastinejad, F.5
  • 165
    • 84990866319 scopus 로고    scopus 로고
    • Structural characterization of mammalian bHLH-PAS transcription factors
    • Wu, D. & Rastinejad, F. Structural characterization of mammalian bHLH-PAS transcription factors. Curr. Opin. Struct. Biol. 43, 1-9 (2016).
    • (2016) Curr. Opin. Struct. Biol. , vol.43 , pp. 1-9
    • Wu, D.1    Rastinejad, F.2
  • 166
    • 84873738229 scopus 로고    scopus 로고
    • Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
    • Wang, Z., Wu, Y., Li, L. & Su, X.-D. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 23, 213-224 (2012).
    • (2012) Cell Res. , vol.23 , pp. 213-224
    • Wang, Z.1    Wu, Y.2    Li, L.3    Su, X.-D.4
  • 167
    • 84889093349 scopus 로고    scopus 로고
    • Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
    • Nangle, S., Xing, W. & Zheng, N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23, 1417-1419 (2013).
    • (2013) Cell Res. , vol.23 , pp. 1417-1419
    • Nangle, S.1    Xing, W.2    Zheng, N.3
  • 168
    • 84865558040 scopus 로고    scopus 로고
    • Identification of small molecule activators of cryptochrome
    • Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094-1097 (2012).
    • (2012) Science , vol.337 , pp. 1094-1097
    • Hirota, T.1
  • 169
    • 79960423858 scopus 로고    scopus 로고
    • Biochemical analysis of the canonical model for the mammalian circadian clock
    • Ye, R., Selby, C., Ozturk, N., Annayev, Y. & Sancar, A. Biochemical analysis of the canonical model for the mammalian circadian clock. J. Biol. Chem. 286, 25891-25902 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 25891-25902
    • Ye, R.1    Selby, C.2    Ozturk, N.3    Annayev, Y.4    Sancar, A.5
  • 170
    • 84991501253 scopus 로고    scopus 로고
    • Mammalian Period represses and de-represses transcription by displacing CLOCK- BMAL1 from promoters in a cryptochrome-dependent manner
    • Chiou, Y. Y. et al. Mammalian Period represses and de-represses transcription by displacing CLOCK- BMAL1 from promoters in a cryptochrome-dependent manner. Proc. Natl Acad. Sci. USA 113, E6072-E6079 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E6072-E6079
    • Chiou, Y.Y.1
  • 171
    • 76749085755 scopus 로고    scopus 로고
    • Dynamic per repression mechanisms in the Drosophila circadian clock: From on-DNA to off-DNA
    • Menet, J. S., Abruzzi, K. C., Desrochers, J., Rodriguez, J. & Rosbash, M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 24, 358-367 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 358-367
    • Menet, J.S.1    Abruzzi, K.C.2    Desrochers, J.3    Rodriguez, J.4    Rosbash, M.5
  • 172
    • 84907146186 scopus 로고    scopus 로고
    • Dual modes of CLOCK:BMAL1 inhibition mediated by cryptochrome and Period proteins in the mammalian circadian clock
    • Ye, R. et al. Dual modes of CLOCK:BMAL1 inhibition mediated by cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev. 28, 1989-1998 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1989-1998
    • Ye, R.1
  • 173
    • 84875376141 scopus 로고    scopus 로고
    • Genetic basis of human circadian rhythm disorders
    • Jones, C. R., Huang, A. L., Ptacek, L. J. & Fu, Y. H. Genetic basis of human circadian rhythm disorders. Exp. Neurol. 243, 28-33 (2013).
    • (2013) Exp. Neurol. , vol.243 , pp. 28-33
    • Jones, C.R.1    Huang, A.L.2    Ptacek, L.J.3    Fu, Y.H.4
  • 174
    • 58149175143 scopus 로고    scopus 로고
    • A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk
    • Bouatia-Naji, N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89-94 (2009).
    • (2009) Nat. Genet. , vol.41 , pp. 89-94
    • Bouatia-Naji, N.1
  • 175
    • 58149175669 scopus 로고    scopus 로고
    • Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion
    • Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82-88 (2009).
    • (2009) Nat. Genet. , vol.41 , pp. 82-88
    • Lyssenko, V.1
  • 176
    • 58149156287 scopus 로고    scopus 로고
    • Variants in MTNR1B influence fasting glucose levels
    • Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77-81 (2009).
    • (2009) Nat. Genet. , vol.41 , pp. 77-81
    • Prokopenko, I.1
  • 177
    • 75749086085 scopus 로고    scopus 로고
    • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
    • Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105-116 (2010).
    • (2010) Nat. Genet. , vol.42 , pp. 105-116
    • Dupuis, J.1
  • 178
    • 84858439689 scopus 로고    scopus 로고
    • Melatonin: Both master clock output and internal time-giver in the circadian clocks network
    • Pevet, P. & Challet, E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 105, 170-182 (2011).
    • (2011) J. Physiol. Paris , vol.105 , pp. 170-182
    • Pevet, P.1    Challet, E.2
  • 179
    • 84857654651 scopus 로고    scopus 로고
    • Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes
    • Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297-301 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 297-301
    • Bonnefond, A.1
  • 180
    • 84966693052 scopus 로고    scopus 로고
    • Increased melatonin signaling is a risk factor for type 2 diabetes
    • Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067-1077 (2016).
    • (2016) Cell Metab. , vol.23 , pp. 1067-1077
    • Tuomi, T.1
  • 181
    • 84990838650 scopus 로고    scopus 로고
    • The difficult journey from genome-wide association studies to pathophysiology: The melatonin receptor 1B (MT2) paradigm
    • Bonnefond, A., Karamitri, A., Jockers, R. & Froguel, P. The difficult journey from genome-wide association studies to pathophysiology: the melatonin receptor 1B (MT2) paradigm. Cell Metab. 24, 345-347 (2016).
    • (2016) Cell Metab. , vol.24 , pp. 345-347
    • Bonnefond, A.1    Karamitri, A.2    Jockers, R.3    Froguel, P.4
  • 182
    • 84957582620 scopus 로고    scopus 로고
    • GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person
    • Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10448
    • Hu, Y.1
  • 183
    • 84984916617 scopus 로고    scopus 로고
    • Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci
    • Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).
    • (2016) PLoS Genet. , vol.12 , pp. e1006125
    • Jones, S.E.1
  • 184
    • 84960497042 scopus 로고    scopus 로고
    • Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank
    • Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10889
    • Lane, J.M.1
  • 185
    • 79957542251 scopus 로고    scopus 로고
    • Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus
    • Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat. Commun. 2, 327 (2011).
    • (2011) Nat. Commun. , vol.2 , pp. 327
    • Doi, M.1
  • 186
    • 20044362444 scopus 로고    scopus 로고
    • Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons
    • Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476-483 (2005).
    • (2005) Nat. Neurosci. , vol.8 , pp. 476-483
    • Aton, S.J.1    Colwell, C.S.2    Harmar, A.J.3    Waschek, J.4    Herzog, E.D.5
  • 188
    • 84942551376 scopus 로고    scopus 로고
    • Novel loci associated with usual sleep duration: The CHARGE Consortium genome-wide association study
    • Gottlieb, D. J. et al. Novel loci associated with usual sleep duration: the CHARGE Consortium genome-wide association study. Mol. Psychiatry 20, 1232-1239 (2015).
    • (2015) Mol. Psychiatry , vol.20 , pp. 1232-1239
    • Gottlieb, D.J.1
  • 189
    • 84973158810 scopus 로고    scopus 로고
    • Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study
    • Spada, J. et al. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J. Sleep Res. http://dx.doi.org/10.1111/jsr.12421 (2016).
    • (2016) J. Sleep Res.
    • Spada, J.1
  • 190
    • 84897138228 scopus 로고    scopus 로고
    • Looping back to leap forward: Transcription enters a new era
    • Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13-25 (2014).
    • (2014) Cell , vol.157 , pp. 13-25
    • Levine, M.1    Cattoglio, C.2    Tjian, R.3
  • 191
    • 84960334782 scopus 로고    scopus 로고
    • The 3D genome as moderator of chromosomal communication
    • Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110-1121 (2016).
    • (2016) Cell , vol.164 , pp. 1110-1121
    • Dekker, J.1    Mirny, L.2
  • 192
    • 84991585399 scopus 로고    scopus 로고
    • Organization and function of the 3D genome
    • Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661-678 (2016).
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 661-678
    • Bonev, B.1    Cavalli, G.2
  • 193
    • 84943200502 scopus 로고    scopus 로고
    • The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments
    • Cremer, T. et al. The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett. 589, 2931-2943 (2015).
    • (2015) FEBS Lett. , vol.589 , pp. 2931-2943
    • Cremer, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.