-
1
-
-
0027349267
-
Temporal organization: Reflections of a Darwinian clock-watcher
-
Pittendrigh, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16-54 (1993).
-
(1993)
Annu. Rev. Physiol.
, vol.55
, pp. 16-54
-
-
Pittendrigh, C.S.1
-
2
-
-
0033593306
-
Molecular bases for circadian clocks
-
Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271-290 (1999).
-
(1999)
Cell
, vol.96
, pp. 271-290
-
-
Dunlap, J.C.1
-
3
-
-
34249079154
-
Network motifs: Theory and experimental approaches
-
Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450-461 (2007).
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 450-461
-
-
Alon, U.1
-
4
-
-
0035458732
-
Time zones: A comparative genetics of circadian clocks
-
Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702-715 (2001).
-
(2001)
Nat. Rev. Genet.
, vol.2
, pp. 702-715
-
-
Young, M.W.1
Kay, S.A.2
-
5
-
-
21344470923
-
Circadian rhythms from multiple oscillators: Lessons from diverse organisms
-
Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6, 544-556 (2005).
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 544-556
-
-
Bell-Pedersen, D.1
-
6
-
-
65949094583
-
The implications of multiple circadian clock origins
-
Rosbash, M. The implications of multiple circadian clock origins. PLoS Biol. 7, e62 (2009).
-
(2009)
PLoS Biol.
, vol.7
, pp. e62
-
-
Rosbash, M.1
-
7
-
-
77955983063
-
Circadian control of global gene expression patterns
-
Doherty, C. J. & Kay, S. A. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44, 419-444 (2010).
-
(2010)
Annu. Rev. Genet.
, vol.44
, pp. 419-444
-
-
Doherty, C.J.1
Kay, S.A.2
-
8
-
-
84941941328
-
Integrating circadian dynamics with physiological processes in plants
-
Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 16, 598-610 (2015).
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 598-610
-
-
Greenham, K.1
McClung, C.R.2
-
9
-
-
0035997367
-
Metabolism and the control of circadian rhythms
-
Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307-331 (2002).
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 307-331
-
-
Rutter, J.1
Reick, M.2
McKnight, S.L.3
-
10
-
-
33747591416
-
Metabolic cycles as an underlying basis of biological oscillations
-
Tu, B. P. & McKnight, S. L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7, 696-701 (2006).
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 696-701
-
-
Tu, B.P.1
McKnight, S.L.2
-
11
-
-
84869036539
-
Circadian topology of metabolism
-
Bass, J. Circadian topology of metabolism. Nature 491, 348-356 (2012).
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
12
-
-
4544219781
-
Finding new clock components: Past and future
-
Takahashi, J. S. Finding new clock components: past and future. J. Biol. Rhythms 19, 339-347 (2004).
-
(2004)
J. Biol. Rhythms
, vol.19
, pp. 339-347
-
-
Takahashi, J.S.1
-
13
-
-
4544362674
-
Mammalian circadian biology: Elucidating genome-wide levels of temporal organization
-
Lowrey, P. & Takahashi, J. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441 (2004).
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.1
Takahashi, J.2
-
14
-
-
52149109334
-
The genetics of mammalian circadian order and disorder: Implications for physiology and disease
-
Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775 (2008).
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 764-775
-
-
Takahashi, J.S.1
Hong, H.K.2
Ko, C.H.3
McDearmon, E.L.4
-
15
-
-
0042490526
-
A clockwork web: Circadian timing in brain and periphery, in health and disease
-
Hastings, M. H., Reddy, A. B. & Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649-661 (2003).
-
(2003)
Nat. Rev. Neurosci.
, vol.4
, pp. 649-661
-
-
Hastings, M.H.1
Reddy, A.B.2
Maywood, E.S.3
-
16
-
-
77951927020
-
Suprachiasmatic nucleus: Cell autonomy and network properties
-
Welsh, D. K., Takahashi, J. S. & Kay, S. A. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551-577 (2010).
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
Takahashi, J.S.2
Kay, S.A.3
-
17
-
-
77951889295
-
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
-
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549 (2010).
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
18
-
-
84862675384
-
Central and peripheral circadian clocks in mammals
-
Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462 (2012).
-
(2012)
Annu. Rev. Neurosci.
, vol.35
, pp. 445-462
-
-
Mohawk, J.A.1
Green, C.B.2
Takahashi, J.S.3
-
19
-
-
84860299312
-
Timing to perfection: The biology of central and peripheral circadian clocks
-
Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246-260 (2012).
-
(2012)
Neuron
, vol.74
, pp. 246-260
-
-
Albrecht, U.1
-
20
-
-
84873287518
-
Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity
-
Gerber, A. et al. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152, 492-503 (2013).
-
(2013)
Cell
, vol.152
, pp. 492-503
-
-
Gerber, A.1
-
21
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann, B., Schaad, O., Bujard, H., Takahashi, J. S. & Schibler, U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5, e34 (2007).
-
(2007)
PLoS Biol.
, vol.5
, pp. e34
-
-
Kornmann, B.1
Schaad, O.2
Bujard, H.3
Takahashi, J.S.4
Schibler, U.5
-
22
-
-
84909592563
-
A circadian gene expression atlas in mammals: Implications for biology and medicine
-
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 45, 16219-16224 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.45
, pp. 16219-16224
-
-
Zhang, R.1
Lahens, N.F.2
Ballance, H.I.3
Hughes, M.E.4
Hogenesch, J.B.5
-
23
-
-
84886813829
-
Emerging roles for post- transcriptional regulation in circadian clocks
-
Lim, C. & Allada, R. Emerging roles for post- transcriptional regulation in circadian clocks. Nat. Neurosci. 16, 1544-1550 (2013).
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 1544-1550
-
-
Lim, C.1
Allada, R.2
-
24
-
-
84922468628
-
Circadian genomics reveal a role for post-transcriptional regulation in mammals
-
Kojima, S. & Green, C. B. Circadian genomics reveal a role for post-transcriptional regulation in mammals. Biochemistry 54, 124-133 (2015).
-
(2015)
Biochemistry
, vol.54
, pp. 124-133
-
-
Kojima, S.1
Green, C.B.2
-
25
-
-
77951912759
-
Circadian organization of behavior and physiology in Drosophila
-
Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605-624 (2010).
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 605-624
-
-
Allada, R.1
Chung, B.Y.2
-
26
-
-
80052900616
-
Molecular genetic analysis of circadian timekeeping in Drosophila
-
Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 141-173 (2011).
-
(2011)
Adv. Genet.
, vol.74
, pp. 141-173
-
-
Hardin, P.E.1
-
28
-
-
84872334045
-
Metabolism and the circadian clock converge
-
Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 93, 107-135 (2013).
-
(2013)
Physiol. Rev.
, vol.93
, pp. 107-135
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
29
-
-
84875443859
-
Circadian control of the immune system
-
Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190-198 (2013).
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 190-198
-
-
Scheiermann, C.1
Kunisaki, Y.2
Frenette, P.S.3
-
30
-
-
84894042926
-
Circadian clock proteins and immunity
-
Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. & O'Neill, L. A. J. Circadian clock proteins and immunity. Immunity 40, 178-186 (2014).
-
(2014)
Immunity
, vol.40
, pp. 178-186
-
-
Curtis, A.M.1
Bellet, M.M.2
Sassone-Corsi, P.3
O'Neill, L.A.J.4
-
31
-
-
84902168097
-
Metabolic compensation and circadian resilience in prokaryotic cyanobacteria
-
Johnson, C. H. & Egli, M. Metabolic compensation and circadian resilience in prokaryotic cyanobacteria. Annu. Rev. Biochem. 83, 221-247 (2014).
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 221-247
-
-
Johnson, C.H.1
Egli, M.2
-
32
-
-
84903312178
-
Light as a central modulator of circadian rhythms, sleep and affect
-
LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443-454 (2014).
-
(2014)
Nat. Rev. Neurosci.
, vol.15
, pp. 443-454
-
-
LeGates, T.A.1
Fernandez, D.C.2
Hattar, S.3
-
33
-
-
84902161090
-
Metabolic and nontranscriptional circadian clocks: Eukaryotes
-
Reddy, A. B. & Rey, G. Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu. Rev. Biochem. 83, 165-189 (2014).
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 165-189
-
-
Reddy, A.B.1
Rey, G.2
-
34
-
-
84925844053
-
Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock
-
Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84-92 (2015).
-
(2015)
Cell
, vol.161
, pp. 84-92
-
-
Asher, G.1
Sassone-Corsi, P.2
-
35
-
-
84922476122
-
Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view
-
Cha, J., Zhou, M. & Liu, Y. Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view. Biochemistry 54, 150-156 (2015).
-
(2015)
Biochemistry
, vol.54
, pp. 150-156
-
-
Cha, J.1
Zhou, M.2
Liu, Y.3
-
36
-
-
84922335319
-
Dissecting the mechanisms of the clock in Neurospora
-
Hurley, J., Loros, J. J. & Dunlap, J. C. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. 551, 29-52 (2015).
-
(2015)
Methods Enzymol.
, vol.551
, pp. 29-52
-
-
Hurley, J.1
Loros, J.J.2
Dunlap, J.C.3
-
37
-
-
84948773277
-
Giving time purpose: The Synechococcus elongatus clock in a broader network context
-
Shultzaberger, R. K., Boyd, J. S., Diamond, S., Greenspan, R. J. & Golden, S. S. Giving time purpose: the Synechococcus elongatus clock in a broader network context. Annu. Rev. Genet. 49, 485-505 (2015).
-
(2015)
Annu. Rev. Genet.
, vol.49
, pp. 485-505
-
-
Shultzaberger, R.K.1
Boyd, J.S.2
Diamond, S.3
Greenspan, R.J.4
Golden, S.S.5
-
38
-
-
20244377493
-
Positional cloning of the mouse circadian Clock gene
-
King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641-653 (1997).
-
(1997)
Cell
, vol.89
, pp. 641-653
-
-
King, D.P.1
-
39
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569 (1998).
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
-
40
-
-
0033597904
-
MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
-
Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205 (1999).
-
(1999)
Cell
, vol.98
, pp. 193-205
-
-
Kume, K.1
-
41
-
-
0034640253
-
Interacting molecular loops in the mammalian circadian clock
-
Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019 (2000).
-
(2000)
Science
, vol.288
, pp. 1013-1019
-
-
Shearman, L.P.1
-
42
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
43
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139-148 (2007).
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.M.2
-
44
-
-
80052899933
-
Genetics of circadian rhythms in mammalian model organisms
-
Lowrey, P. L. & Takahashi, J. S. Genetics of circadian rhythms in mammalian model organisms. Adv. Genet. 74, 175-230 (2011).
-
(2011)
Adv. Genet.
, vol.74
, pp. 175-230
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
45
-
-
84964207128
-
Post-transcriptional control of the mammalian circadian clock: Implications for health and disease
-
Preussner, M. & Heyd, F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch. 468, 983-991 (2016).
-
(2016)
Pflugers Arch.
, vol.468
, pp. 983-991
-
-
Preussner, M.1
Heyd, F.2
-
46
-
-
0035136677
-
An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome
-
Toh, K. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040-1043 (2001).
-
(2001)
Science
, vol.291
, pp. 1040-1043
-
-
Toh, K.1
-
47
-
-
15844420887
-
Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome
-
Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640-644 (2005).
-
(2005)
Nature
, vol.434
, pp. 640-644
-
-
Xu, Y.1
-
48
-
-
0037178787
-
The orphan nuclear receptor REV- ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner, N. et al. The orphan nuclear receptor REV- ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260 (2002).
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
-
49
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato, T. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527-537 (2004).
-
(2004)
Neuron
, vol.43
, pp. 527-537
-
-
Sato, T.1
-
50
-
-
84933557747
-
Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock
-
Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488-1492 (2015).
-
(2015)
Science
, vol.348
, pp. 1488-1492
-
-
Zhang, Y.1
-
51
-
-
56749160113
-
Design principles of biochemical oscillators
-
Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981-991 (2008).
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 981-991
-
-
Novak, B.1
Tyson, J.J.2
-
52
-
-
0035871311
-
Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism
-
Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995-1006 (2001).
-
(2001)
Genes Dev.
, vol.15
, pp. 995-1006
-
-
Mitsui, S.1
Yamaguchi, S.2
Matsuo, T.3
Ishida, Y.4
Okamura, H.5
-
53
-
-
2942679506
-
The loss of circadian PAR bZip transcription factors results in epilepsy
-
Gachon, F. et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18, 1397-1412 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 1397-1412
-
-
Gachon, F.1
-
54
-
-
13944254430
-
System-level identification of transcriptional circuits underlying mammalian circadian clocks
-
Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187-192 (2005).
-
(2005)
Nat. Genet.
, vol.37
, pp. 187-192
-
-
Ueda, H.R.1
-
55
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray, J. P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177-182 (2003).
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
56
-
-
1342282943
-
Histone acetyltransferase- dependent chromatin remodeling and the vascular clock
-
Curtis, A. M. et al. Histone acetyltransferase- dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279, 7091-7097 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7091-7097
-
-
Curtis, A.M.1
-
57
-
-
52649158231
-
Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex
-
Lee, J. et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell. Biol. 28, 6056-6065 (2008).
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6056-6065
-
-
Lee, J.1
-
58
-
-
72449210271
-
CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription
-
Hosoda, H. et al. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol. Brain 2, 34 (2009).
-
(2009)
Mol. Brain
, vol.2
, pp. 34
-
-
Hosoda, H.1
-
59
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006).
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
60
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086-1090 (2007).
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
-
61
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329-340 (2008).
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
62
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317-328 (2008).
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
64
-
-
65549103855
-
+ biosynthesis
-
+ biosynthesis. Science 324, 651-654 (2009).
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
65
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414-1421 (2010).
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
67
-
-
84872875650
-
Histone methyltransferase MLL3 contributes to genome-scale circadian transcription
-
Valekunja, U. K. et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc. Natl Acad. Sci. USA 110, 1554-1559 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 1554-1559
-
-
Valekunja, U.K.1
-
68
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
Ditacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333, 1881-1885 (2011).
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
Ditacchio, L.1
-
69
-
-
84896715662
-
Phosphorylation of LSD1 by PKCa is crucial for circadian rhythmicity and phase resetting
-
Nam, H. J. et al. Phosphorylation of LSD1 by PKCa is crucial for circadian rhythmicity and phase resetting. Mol. Cell 53, 791-805 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 791-805
-
-
Nam, H.J.1
-
70
-
-
84885038253
-
A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery
-
Lande-Diner, L, Boyault, C, Kim, J. Y. & Weitz, C. J. A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc. Natl Acad. Sci. USA 110, 16021-16026 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 16021-16026
-
-
Lande-Diner, L.1
Boyault, C.2
Kim, J.Y.3
Weitz, C.J.4
-
71
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354 (2012).
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
72
-
-
84870288931
-
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
-
Le Martelot, G. et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10, e1001442 (2012).
-
(2012)
PLoS Biol.
, vol.10
, pp. e1001442
-
-
Le Martelot, G.1
-
73
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
Brown, S. A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696 (2005).
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.A.1
-
74
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
Padmanabhan, K., Robles, M., Westerling, T. & Weitz, C. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337, 599-602 (2012).
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
Robles, M.2
Westerling, T.3
Weitz, C.4
-
75
-
-
84918841904
-
Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor
-
Kim, J. Y, Kwak, P. B. & Weitz, C. J. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56, 738-748 (2014).
-
(2014)
Mol. Cell
, vol.56
, pp. 738-748
-
-
Kim, J.Y.1
Kwak, P.B.2
Weitz, C.J.3
-
76
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray, J. P. et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209-21215 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.P.1
-
77
-
-
84885573359
-
hi inflammatory monocytes
-
hi inflammatory monocytes. Science 341, 1483-1488 (2013).
-
(2013)
Science
, vol.341
, pp. 1483-1488
-
-
Nguyen, K.D.1
-
78
-
-
84943456330
-
Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback
-
Tamayo, A. G., Duong, H. A., Robles, M. S., Mann, M. & Weitz, C. J. Histone monoubiquitination by Clock-Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat. Struct. Mol. Biol. 22, 759-766 (2015).
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 759-766
-
-
Tamayo, A.G.1
Duong, H.A.2
Robles, M.S.3
Mann, M.4
Weitz, C.J.5
-
79
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong, H., Robles, M., Knutti, D. & Weitz, C. A molecular mechanism for circadian clock negative feedback. Science 332, 1436-1439 (2011).
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.1
Robles, M.2
Knutti, D.3
Weitz, C.4
-
80
-
-
84893787747
-
Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
-
Duong, H. A. & Weitz, C. J. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21, 126-132 (2014).
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 126-132
-
-
Duong, H.A.1
Weitz, C.J.2
-
81
-
-
0034697099
-
Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
-
Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483-492 (2000).
-
(2000)
Science
, vol.288
, pp. 483-492
-
-
Lowrey, P.L.1
-
82
-
-
22844432019
-
pTRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein
-
pTRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863-26872 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26863-26872
-
-
Shirogane, T.1
Jin, J.2
Ang, X.3
Harper, J.4
-
83
-
-
34848913124
-
P-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics
-
Reischl, S. et al. p-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22, 375-386 (2007).
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 375-386
-
-
Reischl, S.1
-
84
-
-
41549142176
-
Setting clock speed in mammals: The CK1e tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
-
Meng, Q. J. et al. Setting clock speed in mammals: the CK1e tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78-88 (2008).
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.J.1
-
85
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900-904 (2007).
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
-
86
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression
-
Siepka, S. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011-1023 (2007).
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.1
-
87
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho, S. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897-900 (2007).
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.1
-
88
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437-440 (2009).
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
89
-
-
67650088244
-
Casein kinase 1 delta regulates the pace of the mammalian circadian clock
-
Etchegaray, J. P. et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell. Biol. 29, 3853-3866 (2009).
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 3853-3866
-
-
Etchegaray, J.P.1
-
90
-
-
80053639356
-
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
-
Lee, H. M. et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl Acad. Sci. USA 108, 16451-16456 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 16451-16456
-
-
Lee, H.M.1
-
91
-
-
79953211112
-
Stoichiometric relationship among clock proteins determines robustness of circadian rhythms
-
Lee, Y, Chen, R., Lee, H. M. & Lee, C. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms. J. Biol. Chem. 286, 7033-7042 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 7033-7042
-
-
Lee Chen, Y.R.1
Lee, H.M.2
Lee, C.3
-
92
-
-
84948677429
-
A tunable artificial circadian clock in clock-defective mice
-
D'Alessandro, M. et al. A tunable artificial circadian clock in clock-defective mice. Nat. Commun. 6, 8587 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 8587
-
-
D'Alessandro, M.1
-
93
-
-
84951953678
-
A Period2 phosphoswitch regulates and temperature compensates circadian period
-
Zhou, M., Kim, J. K., Eng, G. W L, Forger, D. B. & Virshup, D. M. A Period2 phosphoswitch regulates and temperature compensates circadian period. Mol. Cell 60, 1-13 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 1-13
-
-
Zhou, M.1
Kim, J.K.2
Eng, G.W.L.3
Forger, D.B.4
Virshup, D.M.5
-
94
-
-
84874772651
-
FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
-
Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106-1118 (2013).
-
(2013)
Cell
, vol.152
, pp. 1106-1118
-
-
Hirano, A.1
-
95
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo, S.-H. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091-1105 (2013).
-
(2013)
Cell
, vol.152
, pp. 1091-1105
-
-
Yoo, S.-H.1
-
96
-
-
79251571117
-
Afh mutations on mouse circadian behavior and molecular pacemaking
-
Afh mutations on mouse circadian behavior and molecular pacemaking. J. Neurosci. 31, 1539-1544 (2011).
-
(2011)
J. Neurosci.
, vol.31
, pp. 1539-1544
-
-
Maywood, E.S.1
-
97
-
-
79952261359
-
Genome-wide and phase-specific DNA- binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey, G. et al. Genome-wide and phase-specific DNA- binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).
-
(2011)
PLoS Biol.
, vol.9
, pp. e1000595
-
-
Rey, G.1
-
98
-
-
84881506759
-
Nascent-seq reveals novel features of mouse circadian transcriptional regulation
-
Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).
-
(2012)
ELife
, vol.1
, pp. e00011
-
-
Menet, J.S.1
Rodriguez, J.2
Abruzzi, K.C.3
Rosbash, M.4
-
99
-
-
84870553909
-
Circadian oscillations of protein- coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
-
Vollmers, C. et al. Circadian oscillations of protein- coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16, 833-845 (2012).
-
(2012)
Cell Metab.
, vol.16
, pp. 833-845
-
-
Vollmers, C.1
-
100
-
-
84899144072
-
CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes
-
Yoshitane, H. et al. CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol. Cell. Biol. 34, 1776-1787 (2014).
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 1776-1787
-
-
Yoshitane, H.1
-
101
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger, J. A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369-374 (2006).
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
102
-
-
84868097990
-
Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with e boxes and requires the proteasome
-
Stratmann, M., Suter, D. M., Molina, N., Naef, F & Schibler, U. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 48, 277-287 (2012).
-
(2012)
Mol. Cell
, vol.48
, pp. 277-287
-
-
Stratmann, M.1
Suter, D.M.2
Molina, N.3
Naef, F.4
Schibler, U.5
-
103
-
-
0034193442
-
Transcriptional regulation: Kamikaze activators
-
Thomas, D. & Tyers, M. Transcriptional regulation: kamikaze activators. Curr. Biol. 10, R341-R343 (2000).
-
(2000)
Curr. Biol.
, vol.10
, pp. R341-R343
-
-
Thomas, D.1
Tyers, M.2
-
104
-
-
78651491409
-
Delay in feedback repression by Cryptochrome 1 is required for circadian clock function
-
Ukai-Tadenuma, M. et al. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144, 268-281 (2011).
-
(2011)
Cell
, vol.144
, pp. 268-281
-
-
Ukai-Tadenuma, M.1
-
105
-
-
84879068462
-
Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA- binding of the CLOCK:BMAL1 complex in mice
-
Shimomura, K. et al. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA- binding of the CLOCK:BMAL1 complex in mice. eLife 2, e00426 (2013).
-
(2013)
ELife
, vol.2
, pp. e00426
-
-
Shimomura, K.1
-
106
-
-
84896715962
-
SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm
-
Stashi, E. et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 6, 633-645 (2014).
-
(2014)
Cell Rep
, vol.6
, pp. 633-645
-
-
Stashi, E.1
-
107
-
-
84947437372
-
Pancreatic p cell enhancers regulate rhythmic transcription of genes controlling insulin secretion
-
Perelis, M. et al. Pancreatic p cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350, aac4250 (2015).
-
(2015)
Science
, vol.350
, pp. aac4250
-
-
Perelis, M.1
-
108
-
-
84863890567
-
Genomic approaches towards finding cis-regulatory modules in animals
-
Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13, 469-483 (2012).
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 469-483
-
-
Hardison, R.C.1
Taylor, J.2
-
109
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia, K. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552-556 (2011).
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.1
-
110
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-A and REV-ERB-p
-
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-a and REV-ERB-p. Nature 485, 123-127 (2012).
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
111
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315-1319 (2011).
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
112
-
-
84952871218
-
Coactivator-dependent oscillation of chromatin accessibility dictates circadian gene amplitude via REV-ERB loading
-
Zhu, B. et al. Coactivator-dependent oscillation of chromatin accessibility dictates circadian gene amplitude via REV-ERB loading. Mol. Cell 60, 769-783 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 769-783
-
-
Zhu, B.1
-
113
-
-
82955232386
-
Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain
-
Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435-1440 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1435-1440
-
-
Ameur, A.1
-
114
-
-
84946197772
-
Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post- transcriptional regulation
-
Gaidatzis, D., Burger, L., Florescu, M. & Stadler, M. B. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post- transcriptional regulation. Nat. Biotechnol. 33, 722-729 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 722-729
-
-
Gaidatzis, D.1
Burger, L.2
Florescu, M.3
Stadler, M.B.4
-
115
-
-
66349107101
-
Harmonics of circadian gene transcription in mammals
-
Hughes, M. E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (2009).
-
(2009)
PLoS Genet.
, vol.5
, pp. e1000442
-
-
Hughes, M.E.1
-
116
-
-
84902338279
-
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
-
Du, N.-H., Arpat, A. B., De Matos, M. & Gatfield, D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 3, e02510 (2014).
-
(2014)
ELife
, vol.3
, pp. e02510
-
-
Du, N.-H.1
Arpat, A.B.2
De Matos, M.3
Gatfield, D.4
-
117
-
-
57849109058
-
Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
-
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 (2008).
-
(2008)
Science
, vol.322
, pp. 1845-1848
-
-
Core, L.J.1
Waterfall, J.J.2
Lis, J.T.3
-
118
-
-
84940390239
-
Architectural and functional commonalities between enhancers and promoters
-
Kim, T.-K. & Shiekhattar, R. Architectural and functional commonalities between enhancers and promoters. Cell 162, 948-959 (2015).
-
(2015)
Cell
, vol.162
, pp. 948-959
-
-
Kim, T.-K.1
Shiekhattar, R.2
-
119
-
-
84911865436
-
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
-
Fang, B. et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159, 1140-1152 (2014).
-
(2014)
Cell
, vol.159
, pp. 1140-1152
-
-
Fang, B.1
-
120
-
-
84900400446
-
Machine learning helps identify CHRONO as a circadian clock component
-
Anafi, R. C. et al. Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol. 12, e1001840 (2014).
-
(2014)
PLoS Biol.
, vol.12
, pp. e1001840
-
-
Anafi, R.C.1
-
121
-
-
84896736467
-
Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression
-
Annayev, Y. et al. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. J. Biol. Chem. 289, 5013-5024 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 5013-5024
-
-
Annayev, Y.1
-
122
-
-
84900409000
-
A novel protein, CHRONO, functions as a core component of the mammalian circadian clock
-
Goriki, A. et al. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol. 12, e1001839 (2014).
-
(2014)
PLoS Biol.
, vol.12
, pp. e1001839
-
-
Goriki, A.1
-
123
-
-
84901229145
-
Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice
-
Preußner, M. et al. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol. Cell 54, 651-662 (2014).
-
(2014)
Mol. Cell
, vol.54
, pp. 651-662
-
-
Preußner, M.1
-
124
-
-
84871581540
-
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
-
Kojima, S., Sher-Chen, E. L. & Green, C. B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724-2736 (2012).
-
(2012)
Genes Dev.
, vol.26
, pp. 2724-2736
-
-
Kojima, S.1
Sher-Chen, E.L.2
Green, C.B.3
-
125
-
-
84956675608
-
Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames
-
Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 25, 1848-1859 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1848-1859
-
-
Janich, P.1
Arpat, A.B.2
Castelo-Szekely, V.3
Lopes, M.4
Gatfield, D.5
-
126
-
-
84956598215
-
Ribosome profiling reveals an important role for translational control in circadian gene expression
-
Jang, C., Lahens, N. F., Hogenesch, J. B. & Sehgal, A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 25, 1836-1847 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1836-1847
-
-
Jang, C.1
Lahens, N.F.2
Hogenesch, J.B.3
Sehgal, A.4
-
127
-
-
5444225805
-
Elongation by RNA polymerase II: The short and long of it
-
Sims, R. J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437-2468 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 2437-2468
-
-
Sims, R.J.1
Belotserkovskaya, R.2
Reinberg, D.3
-
128
-
-
70249104647
-
Defining mechanisms that regulate RNA polymerase II transcription in vivo
-
Fuda, N., Ardehali, M. & Lis, J. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186-192 (2009).
-
(2009)
Nature
, vol.461
, pp. 186-192
-
-
Fuda, N.1
Ardehali, M.2
Lis, J.3
-
129
-
-
84923780299
-
Getting up to speed with transcription elongation by RNA polymerase II
-
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167-177 (2015).
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 167-177
-
-
Jonkers, I.1
Lis, J.T.2
-
130
-
-
2942528748
-
C-terminal repeat domain kinase i phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats
-
Jones, J. C. et al. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J. Biol. Chem. 279, 24957-24964 (2004).
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 24957-24964
-
-
Jones, J.C.1
-
131
-
-
37249015899
-
Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
-
Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780-1782 (2007).
-
(2007)
Science
, vol.318
, pp. 1780-1782
-
-
Chapman, R.D.1
-
132
-
-
23844519339
-
A high-resolution map of active promoters in the human genome
-
Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876-880 (2005).
-
(2005)
Nature
, vol.436
, pp. 876-880
-
-
Kim, T.H.1
-
133
-
-
34447098370
-
A chromatin landmark and transcription initiation at most promoters in human cells
-
Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77-88 (2007).
-
(2007)
Cell
, vol.130
, pp. 77-88
-
-
Guenther, M.G.1
Levine, S.S.2
Boyer, L.A.3
Jaenisch, R.4
Young, R.A.5
-
134
-
-
34249026300
-
High-resolution profiling of histone methylations in the human genome
-
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007).
-
(2007)
Cell
, vol.129
, pp. 823-837
-
-
Barski, A.1
-
135
-
-
33847070442
-
The role of chromatin during transcription
-
Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707-719 (2007).
-
(2007)
Cell
, vol.128
, pp. 707-719
-
-
Li, B.1
Carey, M.2
Workman, J.L.3
-
136
-
-
78650758676
-
Histone H3K27ac separates active from poised enhancers and predicts developmental state
-
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931-21936 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 21931-21936
-
-
Creyghton, M.P.1
-
137
-
-
79952901680
-
Enhancer function: New insights into the regulation of tissue-specific gene expression
-
Ong, C. T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293 (2011).
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 283-293
-
-
Ong, C.T.1
Corces, V.G.2
-
138
-
-
79951516056
-
A unique chromatin signature uncovers early developmental enhancers in humans
-
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283 (2011).
-
(2011)
Nature
, vol.470
, pp. 279-283
-
-
Rada-Iglesias, A.1
-
139
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 (2006).
-
(2006)
Cell
, vol.125
, pp. 315-326
-
-
Bernstein, B.E.1
-
140
-
-
77951920690
-
C-Myc regulates transcriptional pause release
-
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432-445 (2010).
-
(2010)
Cell
, vol.141
, pp. 432-445
-
-
Rahl, P.B.1
-
141
-
-
84891677378
-
CLOCK:BMAL1 is a pioneer-like transcription factor
-
Menet, J. S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8-13 (2014).
-
(2014)
Genes Dev
, vol.28
, pp. 8-13
-
-
Menet, J.S.1
Pescatore, S.2
Rosbash, M.3
-
142
-
-
84871699564
-
Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans
-
Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720-731 (2012).
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 720-731
-
-
Adelman, K.1
Lis, J.T.2
-
143
-
-
84947557505
-
Cycling transcriptional networks reduce the synthetic cost of genomes
-
Wang, G.-Z. et al. Cycling transcriptional networks reduce the synthetic cost of genomes. Cell Rep. 13, 1868-1880 (2015).
-
(2015)
Cell Rep.
, vol.13
, pp. 1868-1880
-
-
Wang, G.-Z.1
-
144
-
-
84885433507
-
Cycles in spatial and temporal chromosomal organization driven by the circadian clock
-
Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206-1213 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1206-1213
-
-
Aguilar-Arnal, L.1
-
145
-
-
84937822827
-
Functional organization of the human 4D nucleome
-
Chen, H. et al. Functional organization of the human 4D nucleome. Proc. Natl Acad. Sci. USA 112, 8002-8007 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 8002-8007
-
-
Chen, H.1
-
146
-
-
84941804625
-
PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription
-
Zhao, H. et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol. Cell 59, 984-997 (2015).
-
(2015)
Mol. Cell
, vol.59
, pp. 984-997
-
-
Zhao, H.1
-
147
-
-
84930629281
-
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
-
Aguilar-Arnal, L. & Sassone-Corsi, P. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc. Natl Acad. Sci. USA 112, 6863-6870 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 6863-6870
-
-
Aguilar-Arnal, L.1
Sassone-Corsi, P.2
-
148
-
-
84974577165
-
Long-range chromosome interactions mediated by cohesin shape circadian gene expression
-
Xu, Y. et al. Long-range chromosome interactions mediated by cohesin shape circadian gene expression. PLoS Genet. 12, e1005992 (2016).
-
(2016)
PLoS Genet.
, vol.12
, pp. e1005992
-
-
Xu, Y.1
-
149
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng, D. & Lazar, M. A. Clocks, metabolism, and the epigenome. Mol. Cell 47, 158-167 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
150
-
-
84922448694
-
Circadian clock, cancer, and chemotherapy
-
Sancar, A. et al. Circadian clock, cancer, and chemotherapy. Biochemistry 54, 110-123 (2014).
-
(2014)
Biochemistry
, vol.54
, pp. 110-123
-
-
Sancar, A.1
-
151
-
-
84916882416
-
Circadian clocks, epigenetics, and cancer
-
Masri, S., Kinouchi, K. & Sassone-Corsi, P. Circadian clocks, epigenetics, and cancer. Curr. Opin. Oncol. 27, 50-56 (2015).
-
(2015)
Curr. Opin. Oncol.
, vol.27
, pp. 50-56
-
-
Masri, S.1
Kinouchi, K.2
Sassone-Corsi, P.3
-
152
-
-
84979779187
-
Circadian rhythm disruption promotes lung tumorigenesis
-
Papagiannakopoulos, T. et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24, 324-331 (2016).
-
(2016)
Cell Metab.
, vol.24
, pp. 324-331
-
-
Papagiannakopoulos, T.1
-
153
-
-
84978681943
-
Clock-talk: Interactions between central and peripheral circadian oscillators in mammals
-
Schibler, U. et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80, 223-232 (2015).
-
(2015)
Cold Spring Harb. Symp. Quant. Biol.
, vol.80
, pp. 223-232
-
-
Schibler, U.1
-
154
-
-
84902198718
-
Interactive features of proteins composing eukaryotic circadian clocks
-
Crane, B. R. & Young, M. W. Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83, 191-219 (2014).
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 191-219
-
-
Crane, B.R.1
Young, M.W.2
-
155
-
-
84922418603
-
Emerging models for the molecular basis of mammalian circadian timing
-
Gustafson, C. L. & Partch, C. L. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 54, 134-149 (2015).
-
(2015)
Biochemistry
, vol.54
, pp. 134-149
-
-
Gustafson, C.L.1
Partch, C.L.2
-
156
-
-
84863751285
-
Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
-
Huang, N. et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189-194 (2012).
-
(2012)
Science
, vol.337
, pp. 189-194
-
-
Huang, N.1
-
157
-
-
85031658523
-
Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
-
Hennig, S. et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 7, e1000094 (2009).
-
(2009)
PLoS Biol.
, vol.7
, pp. e1000094
-
-
Hennig, S.1
-
158
-
-
84857704420
-
Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
-
Kucera, N. et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl Acad. Sci. USA 109, 3311-3316 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 3311-3316
-
-
Kucera, N.1
-
159
-
-
84878889999
-
Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function
-
Czarna, A. et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 1394-1405 (2013).
-
(2013)
Cell
, vol.153
, pp. 1394-1405
-
-
Czarna, A.1
-
160
-
-
84875899177
-
FBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
-
FBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64-68 (2013).
-
(2013)
Nature
, vol.496
, pp. 64-68
-
-
Xing, W.1
-
161
-
-
84901358563
-
Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
-
Schmalen, I. et al. Interaction of circadian clock proteins CRY1 and PER2 Is modulated by zinc binding and disulfide bond formation. Cell 157, 1203-1215 (2014).
-
(2014)
Cell
, vol.157
, pp. 1203-1215
-
-
Schmalen, I.1
-
162
-
-
84934295856
-
Molecular assembly of the period- cryptochrome circadian transcriptional repressor complex
-
Nangle, S. N. et al. Molecular assembly of the period- cryptochrome circadian transcriptional repressor complex. eLife 3, e03674 (2014).
-
(2014)
ELife
, vol.3
, pp. e03674
-
-
Nangle, S.N.1
-
163
-
-
70449093653
-
Rhythmic per abundance defines a critical nodal point for negative feedback within the circadian clock mechanism
-
Chen, R. et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 36, 417-430 (2009).
-
(2009)
Mol. Cell
, vol.36
, pp. 417-430
-
-
Chen, R.1
-
164
-
-
84939789669
-
Structural integration in hypoxia-inducible factors
-
Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303-308 (2015).
-
(2015)
Nature
, vol.524
, pp. 303-308
-
-
Wu, D.1
Potluri, N.2
Lu, J.3
Kim, Y.4
Rastinejad, F.5
-
165
-
-
84990866319
-
Structural characterization of mammalian bHLH-PAS transcription factors
-
Wu, D. & Rastinejad, F. Structural characterization of mammalian bHLH-PAS transcription factors. Curr. Opin. Struct. Biol. 43, 1-9 (2016).
-
(2016)
Curr. Opin. Struct. Biol.
, vol.43
, pp. 1-9
-
-
Wu, D.1
Rastinejad, F.2
-
166
-
-
84873738229
-
Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
-
Wang, Z., Wu, Y., Li, L. & Su, X.-D. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 23, 213-224 (2012).
-
(2012)
Cell Res.
, vol.23
, pp. 213-224
-
-
Wang, Z.1
Wu, Y.2
Li, L.3
Su, X.-D.4
-
167
-
-
84889093349
-
Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
-
Nangle, S., Xing, W. & Zheng, N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23, 1417-1419 (2013).
-
(2013)
Cell Res.
, vol.23
, pp. 1417-1419
-
-
Nangle, S.1
Xing, W.2
Zheng, N.3
-
168
-
-
84865558040
-
Identification of small molecule activators of cryptochrome
-
Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094-1097 (2012).
-
(2012)
Science
, vol.337
, pp. 1094-1097
-
-
Hirota, T.1
-
169
-
-
79960423858
-
Biochemical analysis of the canonical model for the mammalian circadian clock
-
Ye, R., Selby, C., Ozturk, N., Annayev, Y. & Sancar, A. Biochemical analysis of the canonical model for the mammalian circadian clock. J. Biol. Chem. 286, 25891-25902 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25891-25902
-
-
Ye, R.1
Selby, C.2
Ozturk, N.3
Annayev, Y.4
Sancar, A.5
-
170
-
-
84991501253
-
Mammalian Period represses and de-represses transcription by displacing CLOCK- BMAL1 from promoters in a cryptochrome-dependent manner
-
Chiou, Y. Y. et al. Mammalian Period represses and de-represses transcription by displacing CLOCK- BMAL1 from promoters in a cryptochrome-dependent manner. Proc. Natl Acad. Sci. USA 113, E6072-E6079 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E6072-E6079
-
-
Chiou, Y.Y.1
-
171
-
-
76749085755
-
Dynamic per repression mechanisms in the Drosophila circadian clock: From on-DNA to off-DNA
-
Menet, J. S., Abruzzi, K. C., Desrochers, J., Rodriguez, J. & Rosbash, M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 24, 358-367 (2010).
-
(2010)
Genes Dev.
, vol.24
, pp. 358-367
-
-
Menet, J.S.1
Abruzzi, K.C.2
Desrochers, J.3
Rodriguez, J.4
Rosbash, M.5
-
172
-
-
84907146186
-
Dual modes of CLOCK:BMAL1 inhibition mediated by cryptochrome and Period proteins in the mammalian circadian clock
-
Ye, R. et al. Dual modes of CLOCK:BMAL1 inhibition mediated by cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev. 28, 1989-1998 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 1989-1998
-
-
Ye, R.1
-
173
-
-
84875376141
-
Genetic basis of human circadian rhythm disorders
-
Jones, C. R., Huang, A. L., Ptacek, L. J. & Fu, Y. H. Genetic basis of human circadian rhythm disorders. Exp. Neurol. 243, 28-33 (2013).
-
(2013)
Exp. Neurol.
, vol.243
, pp. 28-33
-
-
Jones, C.R.1
Huang, A.L.2
Ptacek, L.J.3
Fu, Y.H.4
-
174
-
-
58149175143
-
A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk
-
Bouatia-Naji, N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89-94 (2009).
-
(2009)
Nat. Genet.
, vol.41
, pp. 89-94
-
-
Bouatia-Naji, N.1
-
175
-
-
58149175669
-
Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion
-
Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82-88 (2009).
-
(2009)
Nat. Genet.
, vol.41
, pp. 82-88
-
-
Lyssenko, V.1
-
176
-
-
58149156287
-
Variants in MTNR1B influence fasting glucose levels
-
Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77-81 (2009).
-
(2009)
Nat. Genet.
, vol.41
, pp. 77-81
-
-
Prokopenko, I.1
-
177
-
-
75749086085
-
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
-
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105-116 (2010).
-
(2010)
Nat. Genet.
, vol.42
, pp. 105-116
-
-
Dupuis, J.1
-
178
-
-
84858439689
-
Melatonin: Both master clock output and internal time-giver in the circadian clocks network
-
Pevet, P. & Challet, E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 105, 170-182 (2011).
-
(2011)
J. Physiol. Paris
, vol.105
, pp. 170-182
-
-
Pevet, P.1
Challet, E.2
-
179
-
-
84857654651
-
Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes
-
Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297-301 (2012).
-
(2012)
Nat. Genet.
, vol.44
, pp. 297-301
-
-
Bonnefond, A.1
-
180
-
-
84966693052
-
Increased melatonin signaling is a risk factor for type 2 diabetes
-
Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067-1077 (2016).
-
(2016)
Cell Metab.
, vol.23
, pp. 1067-1077
-
-
Tuomi, T.1
-
181
-
-
84990838650
-
The difficult journey from genome-wide association studies to pathophysiology: The melatonin receptor 1B (MT2) paradigm
-
Bonnefond, A., Karamitri, A., Jockers, R. & Froguel, P. The difficult journey from genome-wide association studies to pathophysiology: the melatonin receptor 1B (MT2) paradigm. Cell Metab. 24, 345-347 (2016).
-
(2016)
Cell Metab.
, vol.24
, pp. 345-347
-
-
Bonnefond, A.1
Karamitri, A.2
Jockers, R.3
Froguel, P.4
-
182
-
-
84957582620
-
GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person
-
Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 10448
-
-
Hu, Y.1
-
183
-
-
84984916617
-
Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci
-
Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).
-
(2016)
PLoS Genet.
, vol.12
, pp. e1006125
-
-
Jones, S.E.1
-
184
-
-
84960497042
-
Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank
-
Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 10889
-
-
Lane, J.M.1
-
185
-
-
79957542251
-
Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus
-
Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat. Commun. 2, 327 (2011).
-
(2011)
Nat. Commun.
, vol.2
, pp. 327
-
-
Doi, M.1
-
186
-
-
20044362444
-
Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons
-
Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476-483 (2005).
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 476-483
-
-
Aton, S.J.1
Colwell, C.S.2
Harmar, A.J.3
Waschek, J.4
Herzog, E.D.5
-
187
-
-
0242524415
-
The genetics of narcolepsy
-
Chabas, D., Taheri, S., Renier, C. & Mignot, E. The genetics of narcolepsy. Annu. Rev. Genomics Hum. Genet. 4, 459-483 (2003).
-
(2003)
Annu. Rev. Genomics Hum. Genet.
, vol.4
, pp. 459-483
-
-
Chabas, D.1
Taheri, S.2
Renier, C.3
Mignot, E.4
-
188
-
-
84942551376
-
Novel loci associated with usual sleep duration: The CHARGE Consortium genome-wide association study
-
Gottlieb, D. J. et al. Novel loci associated with usual sleep duration: the CHARGE Consortium genome-wide association study. Mol. Psychiatry 20, 1232-1239 (2015).
-
(2015)
Mol. Psychiatry
, vol.20
, pp. 1232-1239
-
-
Gottlieb, D.J.1
-
189
-
-
84973158810
-
Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study
-
Spada, J. et al. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J. Sleep Res. http://dx.doi.org/10.1111/jsr.12421 (2016).
-
(2016)
J. Sleep Res.
-
-
Spada, J.1
-
190
-
-
84897138228
-
Looping back to leap forward: Transcription enters a new era
-
Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13-25 (2014).
-
(2014)
Cell
, vol.157
, pp. 13-25
-
-
Levine, M.1
Cattoglio, C.2
Tjian, R.3
-
191
-
-
84960334782
-
The 3D genome as moderator of chromosomal communication
-
Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110-1121 (2016).
-
(2016)
Cell
, vol.164
, pp. 1110-1121
-
-
Dekker, J.1
Mirny, L.2
-
192
-
-
84991585399
-
Organization and function of the 3D genome
-
Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661-678 (2016).
-
(2016)
Nat. Rev. Genet.
, vol.17
, pp. 661-678
-
-
Bonev, B.1
Cavalli, G.2
-
193
-
-
84943200502
-
The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments
-
Cremer, T. et al. The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett. 589, 2931-2943 (2015).
-
(2015)
FEBS Lett.
, vol.589
, pp. 2931-2943
-
-
Cremer, T.1
|