-
1
-
-
77951912759
-
Circadian organization of behavior and physiology
-
Allada R, Chung BY. 2010. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72:605-24
-
(2010)
Drosophila. Annu. Rev. Physiol
, vol.72
, pp. 605-624
-
-
Allada, R.1
Chung, B.Y.2
-
2
-
-
84865571932
-
Speed control: Cogs and gears that drive the circadian clock
-
Zheng X, Sehgal A. 2012. Speed control: cogs and gears that drive the circadian clock. Trends Neurosci. 35:574-85
-
(2012)
Trends Neurosci
, vol.35
, pp. 574-585
-
-
Zheng, X.1
Sehgal, A.2
-
3
-
-
0032503969
-
Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation
-
Price JL, Blau J, Rothenfluh A, AbodeelyM, Kloss B, YoungMW. 1998. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83-95
-
(1998)
Cell
, vol.94
, pp. 83-95
-
-
Price, J.L.1
Blau, J.2
Rothenfluh, A.3
Abodeely, M.4
Kloss, B.5
Young, M.W.6
-
4
-
-
0032504041
-
The Drosophila clock gene Double-time encodes a protein closely related to human casein kinase I?
-
Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, et al. 1998. The Drosophila clock gene Double-time encodes a protein closely related to human casein kinase I?. Cell 94:97-107
-
(1998)
Cell
, vol.94
, pp. 97-107
-
-
Kloss, B.1
Price, J.L.2
Saez, L.3
Blau, J.4
Rothenfluh, A.5
-
5
-
-
20044390202
-
The Double-time protein kinase regulates the subcellular localization of the Drosophila clock proteinPeriod
-
Cyran SA, Yiannoulos G, Buchsbaum AM, Saez L, YoungMW, Blau J. 2005. The Double-time protein kinase regulates the subcellular localization of the Drosophila clock proteinPeriod. J. Neurosci. 25:5430-37
-
(2005)
J. Neurosci
, vol.25
, pp. 5430-5437
-
-
Cyran, S.A.1
Yiannoulos, G.2
Buchsbaum, A.M.3
Saez, L.4
Young, M.W.5
Blau, J.6
-
6
-
-
0037069671
-
Role for slimb in the degradation of drosophila period protein phosphorylated by Doubletime
-
Ko HW, Jiang J, Edery I. 2002. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420:673-78
-
(2002)
Nature
, vol.420
, pp. 673-678
-
-
Ko, H.W.1
Jiang, J.2
Edery, I.3
-
7
-
-
46249098507
-
The phospho-occupancy of an atypical SLIMB binding site on period that is phosphorylated by doubletime controls the pace of the clock
-
Chiu JC, Vanselow JT, Kramer A, Edery I. 2008. The phospho-occupancy of an atypical SLIMB binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 22:1758-72
-
(2008)
Genes Dev
, vol.22
, pp. 1758-1772
-
-
Chiu, J.C.1
Vanselow, J.T.2
Kramer, A.3
Edery, I.4
-
8
-
-
79955540602
-
NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed
-
Chiu JC, Ko HW, Edery I. 2011. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 145:357-70
-
(2011)
Cell
, vol.145
, pp. 357-370
-
-
Chiu, J.C.1
Ko, H.W.2
Edery, I.3
-
9
-
-
0034964474
-
Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the drosophila clock
-
Kloss B, Rothenfluh A, Young MW, Saez L. 2001. Phosphorylation of period is influenced by cycling physical associations of Double-time, Period, and Timeless in the Drosophila clock. Neuron 30:699-706
-
(2001)
Neuron
, vol.30
, pp. 699-706
-
-
Kloss, B.1
Rothenfluh, A.2
Young, M.W.3
Saez, L.4
-
10
-
-
48349122032
-
Activating per repressor through a DBT-directed phosphorylation switch
-
Kivimäe S, Saez L, Young MW. 2008. Activating PER repressor through a DBT-directed phosphorylation switch. PLoS Biol. 6:e183
-
(2008)
PLoS Biol
, vol.6
-
-
Kivimäe, S.1
Saez, L.2
Young, M.W.3
-
11
-
-
36849020944
-
Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms
-
Muskus MJ, Preuss F, Fan JY, Bjes ES, Price JL. 2007. Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms. Mol. Cell Biol. 27:8049-64
-
(2007)
Mol. Cell Biol
, vol.27
, pp. 8049-8064
-
-
Muskus, M.J.1
Preuss, F.2
Fan, J.Y.3
Bjes, E.S.4
Price, J.L.5
-
12
-
-
79961004102
-
Kinetics of Doubletime kinase-dependent degradation of the Drosophila Period protein
-
Syed S, Saez L, Young MW. 2011. Kinetics of Doubletime kinase-dependent degradation of the Drosophila Period protein. J. Biol. Chem. 286:27654-62
-
(2011)
J. Biol. Chem
, vol.286
, pp. 27654-27662
-
-
Syed, S.1
Saez, L.2
Young, M.W.3
-
13
-
-
0034697099
-
Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
-
Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, et al. 2000. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483-92
-
(2000)
Science
, vol.288
, pp. 483-492
-
-
Lowrey, P.L.1
Shimomura, K.2
Antoch, M.P.3
Yamazaki, S.4
Zemenides, P.D.5
-
14
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855-67
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
15
-
-
3543005291
-
Identification of mPer1 phosphorylation sites responsible for the nuclear entry
-
Takano A, Isojima Y, Nagai K. 2004. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 279:32578-85
-
(2004)
J. Biol. Chem
, vol.279
, pp. 32578-32585
-
-
Takano, A.1
Isojima, Y.2
Nagai, K.3
-
16
-
-
15044343742
-
Control of mammalian circadian rhythm by CKI?-regulated proteasome-mediated PER2 degradation
-
Eide EJ,Woolf MF, Kang H, Woolf P, Hurst W, et al. 2005. Control of mammalian circadian rhythm by CKI?-regulated proteasome-mediated PER2 degradation. Mol. Cell Biol. 25:2795-807
-
(2005)
Mol. Cell Biol
, vol.25
, pp. 2795-2807
-
-
Eide Ejwoolf, M.F.1
Kang, H.2
Woolf, P.3
Hurst, W.4
-
17
-
-
33846005528
-
Modeling of a human circadian mutation yields insights into clock regulation by PER2
-
Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Pt?aček LJ. 2007. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59-70
-
(2007)
Cell
, vol.128
, pp. 59-70
-
-
Xu, Y.1
Toh, K.L.2
Jones, C.R.3
Shin, J.Y.4
Fu, Y.H.5
Ptaček, L.J.6
-
18
-
-
77957000375
-
Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes
-
Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, et al. 2010. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. USA 107:15240-45
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 15240-15245
-
-
Meng, Q.J.1
Maywood, E.S.2
Bechtold, D.A.3
Lu, W.Q.4
Li, J.5
-
19
-
-
80053639356
-
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1
-
Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR, Lee C. 2011. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. USA 108:16451-56
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 16451-16456
-
-
Lee, H.M.1
Chen, R.2
Kim, H.3
Etchegaray, J.P.4
Weaver, D.R.5
Lee, C.6
-
20
-
-
79953328303
-
Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-Associated residues controls PERIOD 2 stability
-
Shanware NP, Hutchinson JA, Kim SH, Zhan L, Bowler MJ, Tibbetts RS. 2011. Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-Associated residues controls PERIOD 2 stability. J. Biol. Chem. 286:12766-74
-
(2011)
J. Biol. Chem
, vol.286
, pp. 12766-12774
-
-
Shanware, N.P.1
Hutchinson, J.A.2
Kim, S.H.3
Zhan, L.4
Bowler, M.J.5
Tibbetts, R.S.6
-
21
-
-
84862909015
-
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening
-
Chen Z, Yoo SH, Park YS,Kim KH,Wei S, et al. 2012. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc. Natl. Acad. Sci. USA 109:101-6
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 101-106
-
-
Chen, Z.1
Yoo, S.H.2
Park Yskim Khwei, S.3
-
22
-
-
84869080927
-
Genetic insights on sleep schedules: This time, its PERsonal
-
Chong SY, Ptáček LJ, Fu YH. 2012. Genetic insights on sleep schedules: this time, its PERsonal. Trends Genet. 28:598-605
-
(2012)
Trends Genet
, vol.28
, pp. 598-605
-
-
Chong, S.Y.1
Ptáček, L.J.2
Fu, Y.H.3
-
23
-
-
0028286849
-
Block in nuclear localization of Period protein by a second clock mutation, timeless
-
Vosshall LB, Price JL, Sehgal A, Saez L, Young MW. 1994. Block in nuclear localization of Period protein by a second clock mutation, timeless. Science 263:1606-9
-
(1994)
Science
, vol.263
, pp. 1606-1609
-
-
Vosshall, L.B.1
Price, J.L.2
Sehgal, A.3
Saez, L.4
Young, M.W.5
-
24
-
-
0030293638
-
Regulation of nuclear entry of the Drosophila clock proteins Period and Timeless
-
Saez L, Young MW. 1996. Regulation of nuclear entry of the Drosophila clock proteins Period and Timeless. Neuron 17:911-20
-
(1996)
Neuron
, vol.17
, pp. 911-920
-
-
Saez, L.1
Young, M.W.2
-
25
-
-
79960057540
-
Post-translational regulation and nuclear entry of TIMELESS and PERIOD are affected in new timeless mutant
-
Hara T, Koh K, Combs DJ, Sehgal A. 2011. Post-translational regulation and nuclear entry of TIMELESS and PERIOD are affected in new timeless mutant. J. Neurosci. 31:9982-90
-
(2011)
J. Neurosci
, vol.31
, pp. 9982-9990
-
-
Hara, T.1
Koh, K.2
Combs, D.J.3
Sehgal, A.4
-
26
-
-
79960126550
-
A key temporal delay in the circadian cycle of Drosophila is mediated by a nuclear localization signal in the Timeless protein
-
Saez L, Derasmo M, Meyer P, Stieglitz J, YoungMW. 2011. A key temporal delay in the circadian cycle of Drosophila is mediated by a nuclear localization signal in the Timeless protein. Genetics 188:591-600
-
(2011)
Genetics
, vol.188
, pp. 591-600
-
-
Saez, L.1
Derasmo, M.2
Meyer, P.3
Stieglitz, J.4
Young, M.W.5
-
27
-
-
0029965130
-
Regulation of the Drosophila protein Timeless suggests a mechanism for resetting the circadian clock by light
-
Hunter-Ensor M, Ousley A, Sehgal A. 1996. Regulation of the Drosophila protein Timeless suggests a mechanism for resetting the circadian clock by light. Cell 84:677-85
-
(1996)
Cell
, vol.84
, pp. 677-685
-
-
Hunter-Ensor, M.1
Ousley, A.2
Sehgal, A.3
-
28
-
-
0029989521
-
Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock
-
Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW. 1996. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271:1736-40
-
(1996)
Science
, vol.271
, pp. 1736-1740
-
-
Myers, M.P.1
Wager-Smith, K.2
Rothenfluh-Hilfiker, A.3
Young, M.W.4
-
29
-
-
84877741071
-
ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila
-
Lim C, Allada R. 2013. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science 340:875-79
-
(2013)
Science
, vol.340
, pp. 875-879
-
-
Lim, C.1
Allada, R.2
-
30
-
-
84877733547
-
A role for Drosophila ATAXIN-2 in the activation of PERIOD translation and circadian behavior
-
Zhang Y, Ling J, Yuan C,Dubruille R, Emery P. 2013. A role for Drosophila ATAXIN-2 in the activation of PERIOD translation and circadian behavior. Science 340:879-82
-
(2013)
Science
, vol.340
, pp. 879-882
-
-
Zhang, Y.1
Ling, J.2
Yuan Cdubruille, R.3
Emery, P.4
-
31
-
-
30844466208
-
PER-TIM interactions in living Drosophila cells: An interval timer for the circadian clock
-
Meyer P, Saez L, Young MW. 2006. PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311:226-29
-
(2006)
Science
, vol.311
, pp. 226-229
-
-
Meyer, P.1
Saez, L.2
Young, M.W.3
-
33
-
-
0035875069
-
A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock
-
Martinek S, Inonog S, Manoukian AS, Young MW. 2001. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105:769-79
-
(2001)
Cell
, vol.105
, pp. 769-779
-
-
Martinek, S.1
Inonog, S.2
Manoukian, A.S.3
Young, M.W.4
-
34
-
-
34250790719
-
Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1
-
Fang Y, Sathyanarayanan S, Sehgal A. 2007. Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev. 21:1506-18
-
(2007)
Genes Dev
, vol.21
, pp. 1506-1518
-
-
Fang, Y.1
Sathyanarayanan, S.2
Sehgal, A.3
-
35
-
-
77957195902
-
A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3?/SGG in circadian clocks
-
KoHW,Kim EY,Chiu J, Vanselow JT, Kramer A, Edery I. 2010. A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3?/SGG in circadian clocks. J. Neurosci. 30:12664-75
-
(2010)
J. Neurosci
, vol.30
, pp. 12664-12675
-
-
Kohwkim Eychiu, J.1
Vanselow, J.T.2
Kramer, A.3
Edery, I.4
-
36
-
-
0037180767
-
A role for casein kinase 2?in the Drosophila circadian clock
-
Lin JM, Kilman VL, Keegan K, Paddock B, Emery-Le M, et al. 2002. A role for casein kinase 2?in the Drosophila circadian clock. Nature 420:816-20
-
(2002)
Nature
, vol.420
, pp. 816-820
-
-
Lin, J.M.1
Kilman, V.L.2
Keegan, K.3
Paddock, B.4
Emery-Le, M.5
-
37
-
-
0344091557
-
A role for CK2 in the Drosophila circadian oscillator
-
Akten B, Jauch E, Genova GK, Kim EY, Edery I, et al. 2003. A role for CK2 in the Drosophila circadian oscillator. Nat. Neurosci. 6:251-57
-
(2003)
Nat. Neurosci
, vol.6
, pp. 251-257
-
-
Akten, B.1
Jauch, E.2
Genova, G.K.3
Kim, E.Y.4
Edery, I.5
-
38
-
-
0442319504
-
The Doubletime and CKII kinases collaborate to potentiate Drosophila per transcriptional repressor activity
-
Nawathean P, Rosbash M. 2004. The Doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell 13:213-23
-
(2004)
Mol. Cell
, vol.13
, pp. 213-223
-
-
Nawathean, P.1
Rosbash, M.2
-
39
-
-
63049126277
-
A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock
-
Maier B,Wendt S, Vanselow JT, Wallach T, Reischl S, et al. 2009. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23:708-18
-
(2009)
Genes Dev
, vol.23
, pp. 708-718
-
-
Maier Bwendt, S.1
Vanselow, J.T.2
Wallach, T.3
Reischl, S.4
-
40
-
-
68049143071
-
Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms
-
Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, et al. 2009. Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci. Signal. 2:ra26
-
(2009)
Sci. Signal
, vol.2
-
-
Tsuchiya, Y.1
Akashi, M.2
Matsuda, M.3
Goto, K.4
Miyata, Y.5
-
41
-
-
84863230299
-
A role for O-GlcNAcylation in setting circadian clock speed
-
Kim EY, Jeong EH, Park S, Jeong HJ, Edery I, Cho JW. 2012. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26:490-502
-
(2012)
Genes Dev
, vol.26
, pp. 490-502
-
-
Kim, E.Y.1
Jeong, E.H.2
Park, S.3
Jeong, H.J.4
Edery, I.5
Cho, J.W.6
-
42
-
-
84873351364
-
Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
-
Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y, et al. 2013. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17:291-302
-
(2013)
Cell Metab
, vol.17
, pp. 291-302
-
-
Kaasik, K.1
Kivimäe, S.2
Allen, J.J.3
Chalkley, R.J.4
Huang, Y.5
-
43
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M, Hirayama J, Sassone-Corsi P. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497-508
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
44
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, et al. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086-90
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
Sahar, S.2
Grimaldi, B.3
Tamaru, T.4
Takamatsu, K.5
-
45
-
-
0035458732
-
Time zones: A comparative genetics of circadian clocks
-
Young MW, Kay SA. 2001. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2:702-15
-
(2001)
Nat. Rev. Genet
, vol.2
, pp. 702-715
-
-
Young, M.W.1
Kay, S.A.2
-
46
-
-
44849083749
-
-
Sathyanarayanan S, Zheng X, Kumar S, Chen CH, Chen D, et al. 2008. Genes Dev. 22:1522-33
-
(2008)
Genes Dev
, vol.22
, pp. 1522-1533
-
-
Sathyanarayanan, S.1
Zheng, X.2
Kumar, S.3
Chen, C.H.4
Chen, D.5
-
47
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437-40
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
Sachdeva, U.M.2
Ditacchio, L.3
Williams, E.C.4
Alvarez, J.G.5
-
48
-
-
34547127625
-
Activation of 5-AMP-Activated kinase with diabetes drug metformin induces casein kinase I? (CKI?)-dependent degradation of clock protein mPer2
-
Um JH, Yang S, Yamazaki S, Kang H, Viollet B, et al. 2007. Activation of 5-AMP-Activated kinase with diabetes drug metformin induces casein kinase I? (CKI?)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282:20794-98
-
(2007)
J. Biol. Chem
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
Yang, S.2
Yamazaki, S.3
Kang, H.4
Viollet, B.5
-
50
-
-
84867414913
-
+, SIRT1, and the circadian clock
-
+, SIRT1, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 76:31-38
-
(2011)
Cold Spring Harb. Symp. Quant. Biol
, vol.76
, pp. 31-38
-
-
Bellet, M.M.1
Orozco-Solis, R.2
Sahar, S.3
Eckel-Mahan, K.4
Sassone-Corsi, P.5
-
51
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317-28
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
-
53
-
-
77956627087
-
Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 2010. Poly(ADPribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943-53
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
Reinke, H.2
Altmeyer, M.3
Gutierrez-Arcelus, M.4
Hottiger, M.O.5
Schibler, U.6
-
55
-
-
33747157406
-
Nuclear receptor expression links the circadian clock to metabolism
-
Yang X, Downes M, Yu RT, Bookout AL, He W, et al. 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801-10
-
(2006)
Cell
, vol.126
, pp. 801-810
-
-
Yang, X.1
Downes, M.2
Yu, R.T.3
Bookout, A.L.4
He, W.5
-
56
-
-
84867427592
-
Nuclear receptors and AMPK: Resetting metabolism
-
Fan W, Downes M, Atkins A, Yu R, Evans RM. 2011. Nuclear receptors and AMPK: resetting metabolism. Cold Spring Harb. Symp. Quant. Biol. 76:17-22
-
(2011)
Cold Spring Harb. Symp. Quant. Biol
, vol.76
, pp. 17-22
-
-
Fan, W.1
Downes, M.2
Atkins, A.3
Yu, R.4
Evans, R.M.5
-
57
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, et al. 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552-56
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
Papp, S.J.2
Yu, R.T.3
Barish, G.D.4
Uhlenhaut, N.H.5
-
58
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. 2010. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24:345-57
-
(2010)
Genes Dev
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
Ripperger, J.A.2
Baeriswyl-Aebischer, S.3
Albrecht, U.4
-
59
-
-
78049437320
-
PER2 controls lipid metabolism by direct regulation of PPARγ
-
Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, et al. 2010. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab. 12:509-20
-
(2010)
Cell Metab
, vol.12
, pp. 509-520
-
-
Grimaldi, B.1
Bellet, M.M.2
Katada, S.3
Astarita, G.4
Hirayama, J.5
-
60
-
-
79953179668
-
Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate
-
Costa MJ, So AY, Kaasik K, Krueger KC, Pillsbury ML, et al. 2011. Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J. Biol. Chem. 286:9063-70
-
(2011)
J. Biol. Chem
, vol.286
, pp. 9063-9070
-
-
Costa, M.J.1
So, A.Y.2
Kaasik, K.3
Krueger, K.C.4
Pillsbury, M.L.5
-
61
-
-
59449096756
-
Synchronization of the fungal and the plant circadian clock by light
-
Kozma-Bognar L, Kaldi K. 2008. Synchronization of the fungal and the plant circadian clock by light. ChemBioChem 9:2565-73
-
(2008)
ChemBioChem
, vol.9
, pp. 2565-2573
-
-
Kozma-Bognar, L.1
Kaldi, K.2
-
62
-
-
84859508042
-
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
-
HuangW, P?erez-Garca P, Pokhilko A, Millar AJ, Antoshechkin I, et al. 2012. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75-79
-
(2012)
Science
, vol.336
, pp. 75-79
-
-
Huang, W.1
Perez-Garca, P.2
Pokhilko, A.3
Millar, A.J.4
Antoshechkin, I.5
-
63
-
-
0027184569
-
PAS is a dimerization domain common to Drosophila period and several transcription factors
-
Huang ZJ, Edery I, Rosbash M. 1993. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259-62
-
(1993)
Nature
, vol.364
, pp. 259-262
-
-
Huang, Z.J.1
Edery, I.2
Rosbash, M.3
-
64
-
-
0032568630
-
Photoactive yellow protein: A structural prototype for the three-dimensional fold of the PAS domain superfamily
-
Pellequer JL, Wager-Smith KA, Kay SA, Getzoff ED. 1998. Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc. Natl. Acad. Sci. USA 95:5884-90
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 5884-5890
-
-
Pellequer, J.L.1
Wager-Smith, K.A.2
Kay, S.A.3
Getzoff, E.D.4
-
65
-
-
0032990441
-
PAS domains: Internal sensors of oxygen, redox potential, and light
-
Taylor BL, Zhulin IB. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479-506
-
(1999)
Microbiol. Mol. Biol. Rev
, vol.63
, pp. 479-506
-
-
Taylor, B.L.1
Zhulin, I.B.2
-
66
-
-
0035923746
-
Circadian regulation of gene expression systems in the Drosophila head
-
Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. 2001. Circadian regulation of gene expression systems in the Drosophila head. Neuron 32:657-71
-
(2001)
Neuron
, vol.32
, pp. 657-671
-
-
Claridge-Chang, A.1
Wijnen, H.2
Naef, F.3
Boothroyd, C.4
Rajewsky, N.5
Young, M.W.6
-
68
-
-
0022653364
-
Product of per locus of Drosophila shares homology with proteoglycans
-
Jackson FR, Bargiello TA,Yun SH,YoungMW.1986. Product of per locus of Drosophila shares homology with proteoglycans. Nature 320:185-88
-
(1986)
Nature
, vol.320
, pp. 185-188
-
-
Jackson, F.R.1
Bargiello, T.A.2
Yun, S.H.3
Young, M.W.4
-
69
-
-
0023041395
-
The period clock locus of D melanogaster codes for a proteoglycan
-
Reddy P, Jacquier AC,Abovich N, Petersen G, RosbashM. 1986.The period clock locus of D. melanogaster codes for a proteoglycan. Cell 46:53-61
-
(1986)
Cell
, vol.46
, pp. 53-61
-
-
Reddy, P.1
Jacquier, A.C.2
Abovich, N.3
Petersen, G.4
Rosbash, M.5
-
70
-
-
19944426818
-
Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD
-
Yildiz O, Doi M, Yujnovsky I, Cardone L, Berndt A, et al. 2005. Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol. Cell 17:69-82
-
(2005)
Mol. Cell
, vol.17
, pp. 69-82
-
-
Yildiz, O.1
Doi, M.2
Yujnovsky, I.3
Cardone, L.4
Berndt, A.5
-
71
-
-
80054705389
-
Structure of an enclosed dimer formed by the Drosophila period protein
-
King HA,Hoelz A, CraneBR, YoungMW.2011. Structure of an enclosed dimer formed by the Drosophila period protein. J. Mol. Biol. 413:561-72
-
(2011)
J. Mol. Biol
, vol.413
, pp. 561-572
-
-
King, H.A.1
Hoelz, A.2
Crane, B.R.3
Young, M.W.4
-
72
-
-
84857704420
-
Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function
-
Kucera N, Schmalen I, Hennig S, Öllinger R, Strauss HM, et al. 2012. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl. Acad. Sci. USA 109:3311-16
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 3311-3316
-
-
Kucera, N.1
Schmalen, I.2
Hennig, S.3
Öllinger, R.4
Strauss, H.M.5
-
73
-
-
65949083763
-
Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2
-
Hennig S, Strauss HM, Vanselow K, Yildiz O, Schulze S, et al. 2009. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 7:e94
-
(2009)
PLoS Biol
, vol.7
-
-
Hennig, S.1
Strauss, H.M.2
Vanselow, K.3
Yildiz, O.4
Schulze, S.5
-
74
-
-
84863751285
-
Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
-
Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo S-H, et al. 2012. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337:189-94
-
(2012)
Science
, vol.337
, pp. 189-194
-
-
Huang, N.1
Chelliah, Y.2
Shan, Y.3
Taylor, C.A.4
Yoo, S.-H.5
-
75
-
-
0028882226
-
Isolation of timeless by per protein interaction: Defective interaction between timeless protein and long-period mutant PERL
-
Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, et al. 1995. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270:811-15
-
(1995)
Science
, vol.270
, pp. 811-815
-
-
Gekakis, N.1
Saez, L.2
Delahaye-Brown, A.M.3
Myers, M.P.4
Sehgal, A.5
-
76
-
-
65949100602
-
A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock
-
Landskron J, Chen KF, Wolf E, Stanewsky R. 2009. A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol. 7:e3
-
(2009)
PLoS Biol
, vol.7
-
-
Landskron, J.1
Chen, K.F.2
Wolf, E.3
Stanewsky, R.4
-
77
-
-
20044396172
-
A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo
-
Yoo S-H, Ko CH, Lowrey PL, Buhr ED, Song E-J, et al. 2005. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl. Acad. Sci. USA 102:2608-13
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 2608-2613
-
-
Yoo, S.-H.1
Ko, C.H.2
Lowrey, P.L.3
Buhr, E.D.4
Song, E.-J.5
-
78
-
-
39849084068
-
A direct repeat of E-box-like elements is required for cell-Autonomous circadian rhythm of clock genes
-
Nakahata Y, Yoshida M, Takano A, Soma H, Yamamoto T, et al. 2008. A direct repeat of E-box-like elements is required for cell-Autonomous circadian rhythm of clock genes. BMC Mol. Biol. 9:1
-
(2008)
BMC Mol. Biol
, vol.9
, pp. 1
-
-
Nakahata, Y.1
Yoshida, M.2
Takano, A.3
Soma, H.4
Yamamoto, T.5
-
79
-
-
56249132984
-
Changes in quaternary structure in the signalingmechanisms of PAS domains
-
Ayers RA, Moffat K. 2008. Changes in quaternary structure in the signalingmechanisms of PAS domains. Biochemistry 47:12078-86
-
(2008)
Biochemistry
, vol.47
, pp. 12078-12086
-
-
Ayers, R.A.1
Moffat, K.2
-
80
-
-
84873738229
-
Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA
-
Wang Z, Wu Y, Li L, Su X-D. 2013. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res. 23:213-24
-
(2013)
Cell Res
, vol.23
, pp. 213-224
-
-
Wang, Z.1
Wu, Y.2
Li, L.3
Su, X.-D.4
-
81
-
-
0030733568
-
White collar proteins: PASsing the light signal in Neurospora crassa
-
Ballario P, Macino G. 1997. White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol. 5:458-62
-
(1997)
Trends Microbiol
, vol.5
, pp. 458-462
-
-
Ballario, P.1
Macino, G.2
-
82
-
-
0033568490
-
Role of a white collar-1-white collar-2 complex in blue-light signal transduction
-
Talora C, Franchi L, Linden H, Ballario P, Macino G. 1999. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 18:4961-68
-
(1999)
EMBO J
, vol.18
, pp. 4961-4968
-
-
Talora, C.1
Franchi, L.2
Linden, H.3
Ballario, P.4
Macino, G.5
-
83
-
-
0036135673
-
PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora
-
Cheng P,YangY,Gardner KH,Liu Y. 2002. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol. Cell. Biol. 22:517-24
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 517-524
-
-
Cheng, P.1
Yang, Y.2
Gardner, K.H.3
Liu, Y.4
-
84
-
-
0031880316
-
Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins
-
Ballario P, Talora C, Galli D, Linden H, Macino G. 1998. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol. Microbiol. 29:719-29
-
(1998)
Mol. Microbiol
, vol.29
, pp. 719-729
-
-
Ballario, P.1
Talora, C.2
Galli, D.3
Linden, H.4
Macino, G.5
-
85
-
-
0029879678
-
White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein
-
Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G. 1996. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15:1650-57
-
(1996)
EMBO J
, vol.15
, pp. 1650-1657
-
-
Ballario, P.1
Vittorioso, P.2
Magrelli, A.3
Talora, C.4
Cabibbo, A.5
Macino, G.6
-
86
-
-
48749107415
-
Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-Association by GATA
-
Bates DL, Chen Y, Kim G, Guo L, Chen L. 2008. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-Association by GATA. J. Mol. Biol. 381:1292-306
-
(2008)
J. Mol. Biol
, vol.381
, pp. 1292-1306
-
-
Bates, D.L.1
Chen, Y.2
Kim, G.3
Guo, L.4
Chen, L.5
-
87
-
-
41749120577
-
Role of the GATA family of transcription factors in endocrine development, function, and disease
-
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. 2008. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22:781-98
-
(2008)
Mol. Endocrinol
, vol.22
, pp. 781-798
-
-
Viger, R.S.1
Guittot, S.M.2
Anttonen, M.3
Wilson, D.B.4
Heikinheimo, M.5
-
88
-
-
0030982250
-
Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity
-
Crosthwaite SK, Dunlap JC, Loros JJ. 1997. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763-69
-
(1997)
Science
, vol.276
, pp. 763-769
-
-
Crosthwaite, S.K.1
Dunlap, J.C.2
Loros, J.J.3
-
89
-
-
0037008528
-
White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter
-
Froehlich AC, Liu Y, Loros JJ, Dunlap JC. 2002. White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815-19
-
(2002)
Science
, vol.297
, pp. 815-819
-
-
Froehlich, A.C.1
Liu, Y.2
Loros, J.J.3
Dunlap, J.C.4
-
90
-
-
0037008508
-
White collar-1, a DNA binding transcription factor and a light sensor
-
He Q, Cheng P, Yang Y,Wang L, Gardner KH, Liu Y. 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840-43
-
(2002)
Science
, vol.297
, pp. 840-843
-
-
He, Q.1
Cheng, P.2
Yang Ywang, L.3
Gardner, K.H.4
Liu, Y.5
-
91
-
-
84867149514
-
Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction
-
Brenna A, Grimaldi B, Filetici P, Ballario P. 2012. Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol. Biol. Cell 23:3863-72
-
(2012)
Neurospora Crassa Mol. Biol. Cell
, vol.23
, pp. 3863-3872
-
-
Brenna, A.1
Grimaldi, B.2
Filetici, P.3
Ballario, P.4
-
92
-
-
0346668332
-
NPAS2: A gas-responsive transcription factor
-
Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A,McKnight SL. 2002. NPAS2: a gas-responsive transcription factor. Science 298:2385-87
-
(2002)
Science
, vol.298
, pp. 2385-2387
-
-
Dioum, E.M.1
Rutter, J.2
Tuckerman, J.R.3
Gonzalez, G.4
Gilles-Gonzalez, M.-A.5
McKnight, S.L.6
-
93
-
-
23844468462
-
Spectroscopic characterization of the isolated heme-bound PAS-B domain of neuronal PAS domain protein 2 associated with circadian rhythms
-
Koudo R, Kurokawa H, Sato E, Igarashi J, Uchida T, et al. 2005. Spectroscopic characterization of the isolated heme-bound PAS-B domain of neuronal PAS domain protein 2 associated with circadian rhythms. FEBS J. 272:4153-62
-
(2005)
FEBS J
, vol.272
, pp. 4153-4162
-
-
Koudo, R.1
Kurokawa, H.2
Sato, E.3
Igarashi, J.4
Uchida, T.5
-
94
-
-
33646682128
-
Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix-loop-helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms
-
Mukaiyama Y, Uchida T, Sato E, Sasaki A, Sato Y, et al. 2006. Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix-loop-helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms. FEBS J. 273:2528-39
-
(2006)
FEBS J
, vol.273
, pp. 2528-2539
-
-
Mukaiyama, Y.1
Uchida, T.2
Sato, E.3
Sasaki, A.4
Sato, Y.5
-
95
-
-
39549117367
-
Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2
-
Ishida M, Ueha T, Sagami I. 2008. Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2. Biochem. Biophys. Res. Commun. 368:292-97
-
(2008)
Biochem. Biophys. Res. Commun
, vol.368
, pp. 292-297
-
-
Ishida, M.1
Ueha, T.2
Sagami, I.3
-
96
-
-
44949200347
-
Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
-
Kitanishi K, Igarashi J, Hayasaka K, Hikage N, Saiful I, et al. 2008. Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 47:6157-68
-
(2008)
Biochemistry
, vol.47
, pp. 6157-6168
-
-
Kitanishi, K.1
Igarashi, J.2
Hayasaka, K.3
Hikage, N.4
Saiful, I.5
-
97
-
-
77952593382
-
Heme binding to the mammalian circadian clock protein period 2 is nonspecific
-
Airola MV,Du J,Dawson JH, Crane BR. 2010. Heme binding to the mammalian circadian clock protein period 2 is nonspecific. Biochemistry 49:4327-38
-
(2010)
Biochemistry
, vol.49
, pp. 4327-4338
-
-
Airola, M.V.1
Du, J.2
Dawson, J.H.3
Crane, B.R.4
-
98
-
-
78149245166
-
Characterization of the core mammalian clock component, NPAS2, as a REV-ERB?/ROR?target gene
-
Crumbley C, Wang Y, Kojetin DJ, Burris TP. 2010. Characterization of the core mammalian clock component, NPAS2, as a REV-ERB?/ROR?target gene. J. Biol. Chem. 285:35386-92
-
(2010)
J. Biol. Chem
, vol.285
, pp. 35386-35392
-
-
Crumbley, C.1
Wang, Y.2
Kojetin, D.J.3
Burris, T.P.4
-
99
-
-
77955448715
-
Heme-based sensing by the mammalian circadian protein CLOCK
-
Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR. 2010. Heme-based sensing by the mammalian circadian protein CLOCK. Inorg. Chem. 49:6349-65
-
(2010)
Inorg. Chem
, vol.49
, pp. 6349-6365
-
-
Lukat-Rodgers, G.S.1
Correia, C.2
Botuyan, M.V.3
Mer, G.4
Rodgers, K.R.5
-
100
-
-
79251600033
-
Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms
-
Hayasaka K, Kitanishi K, Igarashi J, Shimizu T. 2011. Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochim. Biophys. Acta 1814:326-33
-
(2011)
Biochim. Biophys. Acta
, vol.1814
, pp. 326-333
-
-
Hayasaka, K.1
Kitanishi, K.2
Igarashi, J.3
Shimizu, T.4
-
101
-
-
36849084107
-
Identification of heme as the ligand for the orphan nuclear receptors REV-ERB?and REV-ERB?
-
Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, et al. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERB?and REV-ERB?. Nat. Struct. Mol. Biol. 14:1207-13
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 1207-1213
-
-
Raghuram, S.1
Stayrook, K.R.2
Huang, P.3
Rogers, P.M.4
Nosie, A.K.5
-
102
-
-
37249086610
-
Rev-erb?, a heme sensor that coordinates metabolic and circadian pathways
-
Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, et al. 2007. Rev-erb?, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786-89
-
(2007)
Science
, vol.318
, pp. 1786-1789
-
-
Yin, L.1
Wu, N.2
Curtin, J.C.3
Qatanani, M.4
Szwergold, N.R.5
-
103
-
-
70349142240
-
Negative feedback maintenance of heme homeostasis by its receptor, Rev-erb?
-
Wu N, Yin L, Hanniman EA, Joshi S, Lazar MA. 2009. Negative feedback maintenance of heme homeostasis by its receptor, Rev-erb?. Genes Dev. 23:2201-9
-
(2009)
Genes Dev
, vol.23
, pp. 2201-2209
-
-
Wu, N.1
Yin, L.2
Hanniman, E.A.3
Joshi, S.4
Lazar, M.A.5
-
104
-
-
77954385668
-
Structure of Rev-erb?bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction
-
Phelan CA, Gampe RT, Lambert MH, Parks DJ, Montana V, et al. 2010. Structure of Rev-erb?bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat. Struct. Mol. Biol. 17:808-14
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, pp. 808-814
-
-
Phelan, C.A.1
Gampe, R.T.2
Lambert, M.H.3
Parks, D.J.4
Montana, V.5
-
105
-
-
79955632973
-
The REV-ERBs and RORs: Molecular links between circadian rhythms and lipid homeostasis
-
Solt LA, Kojetin DJ, Burris TP. 2011. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3:623-38
-
(2011)
Future Med. Chem
, vol.3
, pp. 623-638
-
-
Solt, L.A.1
Kojetin, D.J.2
Burris, T.P.3
-
106
-
-
47949112304
-
A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
-
Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, et al. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 28:4697-711
-
(2008)
Mol. Cell. Biol
, vol.28
, pp. 4697-4711
-
-
Yang, J.1
Kim, K.D.2
Lucas, A.3
Drahos, K.E.4
Santos, C.S.5
-
107
-
-
84879689629
-
Imaging of heme/hemeproteins in nucleus of the living cells expressing heme-binding nuclear receptors
-
Itoh R, Fujita K-I, Mu A, Kim DHT, Tai TT, et al. 2013. Imaging of heme/hemeproteins in nucleus of the living cells expressing heme-binding nuclear receptors. FEBS Lett. 587:2131-36
-
(2013)
FEBS Lett
, vol.587
, pp. 2131-2136
-
-
Itoh, R.1
Fujita, K.-I.2
Mu, A.3
Dht, K.4
Tai, T.T.5
-
108
-
-
34347363069
-
A Doubletime kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function
-
Kim EY, Ko HW, Yu W, Hardin PE, Edery I. 2007. A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function. Mol. Cell. Biol. 27:5014-28
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 5014-5028
-
-
Kim, E.Y.1
Ko, H.W.2
Yu, W.3
Hardin, P.E.4
Edery, I.5
-
109
-
-
34347356507
-
A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional repressor activity
-
Nawathean P, Stoleru D, RosbashM. 2007. A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional repressor activity. Mol. Cell. Biol. 27:5002-13
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 5002-5013
-
-
Nawathean, P.1
Stoleru, D.2
Rosbash, M.3
-
110
-
-
0026804699
-
New short period mutations of the Drosophila clock gene per
-
Baylies MK, Vosshall LB, Sehgal A, Young MW. 1992. New short period mutations of the Drosophila clock gene per. Neuron 9:575-81
-
(1992)
Neuron
, vol.9
, pp. 575-581
-
-
Baylies, M.K.1
Vosshall, L.B.2
Sehgal, A.3
Young, M.W.4
-
111
-
-
0026856721
-
The analysis of new short-period circadian rhythmmutants suggests features of D melanogaster period gene function
-
Rutila JE, Edery I, Hall JC,Rosbash M. 1992. The analysis of new short-period circadian rhythmmutants suggests features of D. melanogaster period gene function. J. Neurogenet. 8:101-13
-
(1992)
J. Neurogenet
, vol.8
, pp. 101-113
-
-
Rutila, J.E.1
Edery, I.2
Hall Jcrosbash, M.3
-
112
-
-
77950370962
-
Conserved amino acid residues in C-terminus of PERIOD 2 are involved in interaction with CRYPTOCHROME 1
-
Tomita T, Miyazaki K, Onishi Y, Honda S, Ishida N, Oishi K. 2010. Conserved amino acid residues in C-terminus of PERIOD 2 are involved in interaction with CRYPTOCHROME 1. Biochim. Biophys. Acta 1803:492-98
-
(2010)
Biochim. Biophys. Acta
, vol.1803
, pp. 492-498
-
-
Tomita, T.1
Miyazaki, K.2
Onishi, Y.3
Honda, S.4
Ishida, N.5
Oishi, K.6
-
113
-
-
0033635283
-
Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases
-
Yan Y, Barlev NA, Haley RH, Berger SL,Marmorstein R. 2000. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6:1195-205
-
(2000)
Mol. Cell
, vol.6
, pp. 1195-1205
-
-
Yan, Y.1
Barlev, N.A.2
Haley, R.H.3
Berger, S.L.4
Marmorstein, R.5
-
114
-
-
0035946941
-
Comparison of ARM and HEAT protein repeats
-
Andrade MA, Petosa C, ODonoghue SI, Müller CW, Bork P. 2001. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309:1-18
-
(2001)
J. Mol. Biol
, vol.309
, pp. 1-18
-
-
Andrade, M.A.1
Petosa, C.2
Odonoghue, S.I.3
Müller, C.W.4
Bork, P.5
-
115
-
-
0037125953
-
The Drosophila clock protein Timeless is a member of the Arm/HEAT family
-
Vodovar N, Clayton JD, Costa R, Odell M, Kyriacou CP. 2002. The Drosophila clock protein Timeless is a member of the Arm/HEAT family. Curr. Biol. 12:R610-11
-
(2002)
Curr. Biol
, vol.12
-
-
Vodovar, N.1
Clayton, J.D.2
Costa, R.3
Odell, M.4
Kyriacou, C.P.5
-
116
-
-
4344569201
-
Timeless and Armadillo: A link too far (comment on Vodovar et al. Curr. Biol. 2002. 12:R610-11
-
Kippert F, Gerloff DL. 2004. Timeless and Armadillo: a link too far (comment on Vodovar et al. Curr. Biol. 2002. 12:R610-11). Curr. Biol. 14:R650-51
-
(2004)
Curr. Biol
, vol.14
-
-
Kippert, F.1
Gerloff, D.L.2
-
117
-
-
28644432627
-
No ARM in it?
-
(Reply to Kippert and Gerloff.
-
Kyriacou CP, Odell M. 2004. No ARM in it? (Reply to Kippert and Gerloff.) Curr. Biol. 14:R652-53
-
(2004)
Curr. Biol
, vol.14
-
-
Kyriacou, C.P.1
Odell, M.2
-
118
-
-
28644447914
-
Weighing in on a Timeless controversy
-
Perry J. 2005. Weighing in on a Timeless controversy. Proteins 61:699-703
-
(2005)
Proteins
, vol.61
, pp. 699-703
-
-
Perry, J.1
-
119
-
-
33751251331
-
How fungi keep time: Circadian system in Neurospora and other fungi
-
Dunlap JC, Loros JJ. 2006. How fungi keep time: circadian system in Neurospora and other fungi. Curr. Opin. Microbiol. 9:579-87
-
(2006)
Curr. Opin. Microbiol
, vol.9
, pp. 579-587
-
-
Dunlap, J.C.1
Loros, J.J.2
-
122
-
-
0035863123
-
Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora
-
Cheng P, Yang Y, Heintzen C, Liu Y. 2001. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20:101-8
-
(2001)
EMBO J
, vol.20
, pp. 101-108
-
-
Cheng, P.1
Yang, Y.2
Heintzen, C.3
Liu, Y.4
-
123
-
-
0037126627
-
A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa
-
Gorl M, Merrow M, Huttner B, Johnson J, Roenneberg T, Brunner M. 2001. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J. 20:7074-84
-
(2001)
EMBO J
, vol.20
, pp. 7074-7084
-
-
Gorl, M.1
Merrow, M.2
Huttner, B.3
Johnson, J.4
Roenneberg, T.5
Brunner, M.6
-
124
-
-
32044466225
-
Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator
-
Schafmeier T, K?aldi K, Diernfellner A, Mohr C, Brunner M. 2006. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 20:297-306
-
(2006)
Genes Dev
, vol.20
, pp. 297-306
-
-
Schafmeier, T.1
Kaldi, K.2
Diernfellner, A.3
Mohr, C.4
Brunner, M.5
-
125
-
-
0031006674
-
Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein frequency
-
Garceau NY, Liu Y, Loros JJ, Dunlap JC. 1997. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89:469-76
-
(1997)
Cell
, vol.89
, pp. 469-476
-
-
Garceau, N.Y.1
Liu, Y.2
Loros, J.J.3
Dunlap, J.C.4
-
126
-
-
28644441707
-
Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency
-
Colot HV, Loros JJ, Dunlap JC. 2005. Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency. Mol. Biol. Cell 16:5563-71
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5563-5571
-
-
Colot, H.V.1
Loros, J.J.2
Dunlap, J.C.3
-
127
-
-
29144492754
-
The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock
-
Ruoff P, Loros JJ, Dunlap JC. 2005. The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc. Natl. Acad. Sci. USA 102:17681-86
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 17681-17686
-
-
Ruoff, P.1
Loros, J.J.2
Dunlap, J.C.3
-
128
-
-
36849002853
-
Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms
-
Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M. 2007. Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett. 581:5759-64
-
(2007)
FEBS Lett
, vol.581
, pp. 5759-5764
-
-
Diernfellner, A.1
Colot, H.V.2
Dintsis, O.3
Loros, J.J.4
Dunlap, J.C.5
Brunner, M.6
-
129
-
-
65549169528
-
Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock
-
Baker CL, Kettenbach AN, Loros JJ, Gerber SA, Dunlap JC. 2009. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 34:354-63
-
(2009)
Mol. Cell
, vol.34
, pp. 354-363
-
-
Baker, C.L.1
Kettenbach, A.N.2
Loros, J.J.3
Gerber, S.A.4
Dunlap, J.C.5
-
130
-
-
80052238651
-
Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain
-
Querfurth C, Diernfellner ACR, Gin E, Malzahn E, Höfer T, Brunner M. 2011. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol. Cell 43:713-22
-
(2011)
Mol. Cell
, vol.43
, pp. 713-722
-
-
Querfurth, C.1
Acr, D.2
Gin, E.3
Malzahn, E.4
Höfer, T.5
Brunner, M.6
-
131
-
-
84874683740
-
Non-optimal codon usage affects expression, structure and function of clock protein FRQ
-
Zhou M, Guo J, Cha J, Chae M, Chen S, et al. 2013. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111-15
-
(2013)
Nature
, vol.495
, pp. 111-115
-
-
Zhou, M.1
Guo, J.2
Cha, J.3
Chae, M.4
Chen, S.5
-
132
-
-
12144266896
-
Regulation of the Neurospora circadian clock by an RNA helicase
-
Cheng P, He Q, He Q,Wang L, Liu Y. 2005. Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev. 19:234-41
-
(2005)
Genes Dev
, vol.19
, pp. 234-241
-
-
Cheng, P.1
He, Q.2
He Qwang, L.3
Liu, Y.4
-
133
-
-
77951228944
-
Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ
-
Guo J, Cheng P, Liu Y. 2010. Functional significance of FRH in regulating the phosphorylation and stability of Neurospora circadian clock protein FRQ. J. Biol. Chem. 285:11508-15
-
(2010)
J. Biol. Chem
, vol.285
, pp. 11508-11515
-
-
Guo, J.1
Cheng, P.2
Liu, Y.3
-
134
-
-
77749274413
-
FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock
-
Shi M, Collett M, Loros JJ, Dunlap JC. 2010. FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genetics 184:351-61
-
(2010)
Genetics
, vol.184
, pp. 351-361
-
-
Shi, M.1
Collett, M.2
Loros, J.J.3
Dunlap, J.C.4
-
135
-
-
77954952539
-
The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing
-
Jackson RN, Klauer AA, Hintze BJ, Robinson H, van Hoof A, Johnson SJ. 2010. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J. 29:2205-16
-
(2010)
EMBO J
, vol.29
, pp. 2205-2216
-
-
Jackson, R.N.1
Klauer, A.A.2
Hintze, B.J.3
Robinson, H.4
Van Hoof, A.5
Johnson, S.J.6
-
136
-
-
77955453339
-
Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance
-
Weir JR, Bonneau F, Hentschel J, Conti E. 2010. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc. Natl. Acad. Sci. USA 107:12139-44
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 12139-12144
-
-
Weir, J.R.1
Bonneau, F.2
Hentschel, J.3
Conti, E.4
-
137
-
-
70149093861
-
The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop
-
Guo J, Cheng P, Yuan H, Liu Y. 2009. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 138:1236-46
-
(2009)
Cell
, vol.138
, pp. 1236-1246
-
-
Guo, J.1
Cheng, P.2
Yuan, H.3
Liu, Y.4
-
138
-
-
33847021355
-
Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH
-
Belden WJ, Loros JJ, Dunlap JC. 2007. Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol. Cell 25:587-600
-
(2007)
Mol. Cell
, vol.25
, pp. 587-600
-
-
Belden, W.J.1
Loros, J.J.2
Dunlap, J.C.3
-
140
-
-
0038623933
-
Functional conservation of light, oxygen, or voltage domains in light sensing
-
Cheng P, He Q, Yang Y, Wang L, Liu Y. 2003. Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA 100:5938-43
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 5938-5943
-
-
Cheng, P.1
He, Q.2
Yang, Y.3
Wang, L.4
Liu, Y.5
-
141
-
-
67349203997
-
Genome-wide analysis of lightinducible responses reveals hierarchical light signalling in Neurospora
-
Chen C-H, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ. 2009. Genome-wide analysis of lightinducible responses reveals hierarchical light signalling in Neurospora. EMBO J. 28:1029-42
-
(2009)
EMBO J
, vol.28
, pp. 1029-1042
-
-
Chen, C.-H.1
Ringelberg, C.S.2
Gross, R.H.3
Dunlap, J.C.4
Loros, J.J.5
-
142
-
-
77956168212
-
Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains
-
Malzahn E, Ciprianidis S, K?aldi K, Schafmeier T, Brunner M. 2010. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762-72
-
(2010)
Cell
, vol.142
, pp. 762-772
-
-
Malzahn, E.1
Ciprianidis, S.2
Kaldi, K.3
Schafmeier, T.4
Brunner, M.5
-
143
-
-
0035830504
-
The PAS protein VIVID defines a clock-Associated feedback loop that represses light input, modulates gating, and regulates clock resetting
-
Heintzen C, Loros JJ, Dunlap JC. 2001. The PAS protein VIVID defines a clock-Associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453-64
-
(2001)
Cell
, vol.104
, pp. 453-464
-
-
Heintzen, C.1
Loros, J.J.2
Dunlap, J.C.3
-
144
-
-
0141848660
-
VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation
-
SchwerdtfegerC,LindenH. 2003. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22:4846-55
-
(2003)
EMBO J
, vol.22
, pp. 4846-4855
-
-
Schwerdtfeger, C.1
Linden, H.2
-
145
-
-
0035569803
-
Vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation
-
Shrode LB, Lewis ZA,White LD, Bell-Pedersen D, Ebbole DJ. 2001. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol. 32:169-81
-
(2001)
Fungal Genet. Biol
, vol.32
, pp. 169-181
-
-
Shrode, L.B.1
Lewis Zawhite, L.D.2
Bell-Pedersen, D.3
Ebbole, D.J.4
-
146
-
-
0037435618
-
The LOV domain family: Photoresponsive signaling modules coupled to diverse output domains
-
Crosson S, Rajagopal S, Moffat K. 2003. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2-10
-
(2003)
Biochemistry
, vol.42
, pp. 2-10
-
-
Crosson, S.1
Rajagopal, S.2
Moffat, K.3
-
147
-
-
33846120456
-
Phototropins and their LOV domains: Versatile plant blue-light receptors
-
Briggs WR. 2007. Phototropins and their LOV domains: versatile plant blue-light receptors. J. Integr. Plant Biol. 49:4-10
-
(2007)
J. Integr. Plant Biol
, vol.49
, pp. 4-10
-
-
Briggs, W.R.1
-
148
-
-
80052968825
-
Function, structure andmechanism of bacterial photosensory LOV proteins
-
Herrou J, Crosson S. 2011. Function, structure andmechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9:713-23
-
(2011)
Nat. Rev. Microbiol
, vol.9
, pp. 713-723
-
-
Herrou, J.1
Crosson, S.2
-
149
-
-
78650901467
-
Tripping the light fantastic: Blue-light photoreceptors as examples of environmentally modulated protein-protein interactions
-
Zoltowski BD, Gardner KH. 2011. Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Biochemistry 50:4-16
-
(2011)
Biochemistry
, vol.50
, pp. 4-16
-
-
Zoltowski, B.D.1
Gardner, K.H.2
-
150
-
-
34249080375
-
Conformational switching in the fungal light sensor Vivid
-
Zoltowski BD, Schwerdtfeger C,Widom J, Loros JJ, Bilwes AM, et al. 2007. Conformational switching in the fungal light sensor Vivid. Science 316:1054-57
-
(2007)
Science
, vol.316
, pp. 1054-1057
-
-
Zoltowski, B.D.1
Schwerdtfeger, C.2
Widom, J.3
Loros, J.J.4
Bilwes, A.M.5
-
151
-
-
46849107098
-
Light activation of theLOVprotein vivid generates a rapidly exchanging dimer
-
Zoltowski BD,Crane BR. 2008. Light activation of theLOVprotein vivid generates a rapidly exchanging dimer. Biochemistry 47:7012-19
-
(2008)
Biochemistry
, vol.47
, pp. 7012-7019
-
-
Zoltowski, B.D.1
Crane, B.R.2
-
153
-
-
79961215646
-
Structure of a light-ActivatedLOVprotein dimer that regulates transcription
-
Vaidya AT,ChenC-H, Dunlap JC, Loros JJ, Crane BR. 2011. Structure of a light-ActivatedLOVprotein dimer that regulates transcription. Sci. Signal. 4:ra50
-
(2011)
Sci. Signal
, vol.4
-
-
Vaidya, A.1
Tchen, C.-H.2
Dunlap, J.C.3
Loros, J.J.4
Crane, B.R.5
-
154
-
-
51949090782
-
Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering
-
Lamb JS, Zoltowski BD, Pabit SA, Crane BR, Pollack L. 2008. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering. J. Am. Chem. Soc. 130:12226-27
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 12226-12227
-
-
Lamb, J.S.1
Zoltowski, B.D.2
Pabit, S.A.3
Crane, B.R.4
Pollack, L.5
-
155
-
-
70349829008
-
Illuminating solution responses of a LOV domain protein with photocoupled small-Angle X-ray scattering
-
Lamb JS, Zoltowski BD, Pabit SA, Li L, Crane BR, Pollack L. 2009. Illuminating solution responses of a LOV domain protein with photocoupled small-Angle X-ray scattering. J. Mol. Biol. 393:909-19
-
(2009)
J. Mol. Biol
, vol.393
, pp. 909-919
-
-
Lamb, J.S.1
Zoltowski, B.D.2
Pabit, S.A.3
Li, L.4
Crane, B.R.5
Pollack, L.6
-
156
-
-
84855680726
-
Illuminating the early signaling pathway of a fungal light-oxygenvoltage photoreceptor
-
Peter E, Dick B, Baeurle SA. 2012. Illuminating the early signaling pathway of a fungal light-oxygenvoltage photoreceptor. Proteins 80:471-81
-
(2012)
Proteins
, vol.80
, pp. 471-481
-
-
Peter, E.1
Dick, B.2
Baeurle, S.A.3
-
157
-
-
78049265818
-
VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora
-
Hunt SM, Thompson S, Elvin M, Heintzen C. 2010. VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc. Natl. Acad. Sci. USA 107:16709-14
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 16709-16714
-
-
Hunt, S.M.1
Thompson, S.2
Elvin, M.3
Heintzen, C.4
-
158
-
-
0038305458
-
Structure and function ofDNAphotolyase and cryptochrome blue-light photoreceptors
-
Sancar A. 2003. Structure and function ofDNAphotolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203-37
-
(2003)
Chem. Rev
, vol.103
, pp. 2203-2237
-
-
Sancar, A.1
-
159
-
-
29844441123
-
Photochemistry and photobiology of cryptochrome blue-light photopigments: The search for a photocycle
-
Partch CL, Sancar A. 2005. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem. Photobiol. 81:1291-304
-
(2005)
Photochem. Photobiol
, vol.81
, pp. 1291-1304
-
-
Partch, C.L.1
Sancar, A.2
-
160
-
-
79955584998
-
The cryptochromes: Blue light photoreceptors in plants and animals
-
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335-64
-
(2011)
Annu. Rev. Plant Biol
, vol.62
, pp. 335-364
-
-
Chaves, I.1
Pokorny, R.2
Byrdin, M.3
Hoang, N.4
Ritz, T.5
-
161
-
-
50049118298
-
Cryptochrome mediates light-dependent magnetosensitivity in Drosophila
-
Gegear RJ, Casselman A, Waddell S, Reppert SM. 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454:1014-18
-
(2008)
Nature
, vol.454
, pp. 1014-1018
-
-
Gegear, R.J.1
Casselman, A.2
Waddell, S.3
Reppert, S.M.4
-
162
-
-
77952731343
-
Light-mediated TIM degradation within Drosophila pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts
-
Tang C-HA, Hinteregger E, Shang Y, Rosbash M. 2010. Light-mediated TIM degradation within Drosophila pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts. Neuron 66:378-85
-
(2010)
Neuron
, vol.66
, pp. 378-385
-
-
C-Ha, T.1
Hinteregger, E.2
Shang, Y.3
Rosbash, M.4
-
163
-
-
79952798593
-
CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate
-
Fogle KJ, Parson KG, Dahm NA, Holmes TC. 2011. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331:1409-13
-
(2011)
Science
, vol.331
, pp. 1409-1413
-
-
Fogle, K.J.1
Parson, K.G.2
Dahm, N.A.3
Holmes, T.C.4
-
164
-
-
0033597904
-
MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
-
Kume K, ZylkaMJ, Sriram S, Shearman LP, Weaver DR, et al. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193-205
-
(1999)
Cell
, vol.98
, pp. 193-205
-
-
Kume, K.1
Zylka, M.J.2
Sriram, S.3
Shearman, L.P.4
Weaver, D.R.5
-
165
-
-
0347926182
-
Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice
-
Lucas RJ,Hattar S, Takao M, Berson DM, Foster RG, Yau KW. 2003. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245-47
-
(2003)
Science
, vol.299
, pp. 245-247
-
-
Lucas Rjhattar, S.1
Takao, M.2
Berson, D.M.3
Foster, R.G.4
Yau, K.W.5
-
166
-
-
0041843770
-
Melanopsin is required for non-imageforming photic responses in blind mice
-
Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, et al. 2003. Melanopsin is required for non-imageforming photic responses in blind mice. Science 301:525-27
-
(2003)
Science
, vol.301
, pp. 525-527
-
-
Panda, S.1
Provencio, I.2
Tu, D.C.3
Pires, S.S.4
Rollag, M.D.5
-
167
-
-
4544221643
-
Regulation of the mammalian circadian clock by cryptochrome
-
Sancar A. 2004. Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 279:34079-82
-
(2004)
J. Biol. Chem
, vol.279
, pp. 34079-34082
-
-
Sancar, A.1
-
169
-
-
0030831112
-
Molecular evolution of the photolyase-blue-light photoreceptor family
-
Kanai S, Kikuno R, Toh H, Ryo H, Todo T. 1997. Molecular evolution of the photolyase-blue-light photoreceptor family. J. Mol. Evol. 45:535-48
-
(1997)
J. Mol. Evol
, vol.45
, pp. 535-548
-
-
Kanai, S.1
Kikuno, R.2
Toh, H.3
Ryo, H.4
Todo, T.5
-
170
-
-
0037249267
-
Identification of a new cryptochrome class. Structure, function, and evolution
-
Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K-I, et al. 2003. Identification of a new cryptochrome class. Structure, function, and evolution. Mol. Cell 11:59-67
-
(2003)
Mol. Cell
, vol.11
, pp. 59-67
-
-
Brudler, R.1
Hitomi, K.2
Daiyasu, H.3
Toh, H.4
Kucho, K.-I.5
-
171
-
-
33744587947
-
The cryptochromes
-
Lin C, Todo T. 2005. The cryptochromes. Genome Biol. 6:220
-
(2005)
Genome Biol
, vol.6
, pp. 220
-
-
Lin, C.1
Todo, T.2
-
172
-
-
0037154012
-
Redox potential: Differential roles in dCRY and mCRY1 functions
-
Froy O, Chang DC, Reppert SM. 2002. Redox potential: differential roles in dCRY and mCRY1 functions. Curr. Biol. 12:147-52
-
(2002)
Curr. Biol
, vol.12
, pp. 147-152
-
-
Froy, O.1
Chang, D.C.2
Reppert, S.M.3
-
173
-
-
48249119105
-
Structure and function of animal cryptochromes
-
Oztürk N, Song SH, Ozgür S, Selby CP, Morrison L, et al. 2007. Structure and function of animal cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 72:119-31
-
(2007)
Cold Spring Harb. Symp. Quant. Biol
, vol.72
, pp. 119-131
-
-
Oztürk, N.1
Song, S.H.2
Ozgür, S.3
Selby, C.P.4
Morrison, L.5
-
174
-
-
34047220139
-
Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks
-
Yuan Q, Metterville D, Briscoe AD, Reppert SM. 2007. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24:948-55
-
(2007)
Mol. Biol. Evol
, vol.24
, pp. 948-955
-
-
Yuan, Q.1
Metterville, D.2
Briscoe, A.D.3
Reppert, S.M.4
-
175
-
-
41249100106
-
Animal type 1 cryptochromes Analysis of the redox state of the flavin cofactor by site-directed mutagenesis
-
Oztürk N, Song SH, Selby CP, Sancar A. 2008. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283:3256-63
-
(2008)
J. Biol. Chem
, vol.283
, pp. 3256-3263
-
-
Oztürk, N.1
Song, S.H.2
Selby, C.P.3
Sancar, A.4
-
176
-
-
70149120740
-
Comparative photochemistry of animal type 1 and type 4 cryptochromes
-
Oztürk N, Selby CP, Song SH, Ye R, Tan C, et al. 2009. Comparative photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry 48:8585-93
-
(2009)
Biochemistry
, vol.48
, pp. 8585-8593
-
-
Oztürk, N.1
Selby, C.P.2
Song, S.H.3
Ye, R.4
Tan, C.5
-
177
-
-
0033543596
-
A role for the proteasome in the light response of the timeless clock protein
-
Naidoo N, Song W, Hunter-Ensor M, Sehgal A. 1999. A role for the proteasome in the light response of the timeless clock protein. Science 285:1737-41
-
(1999)
Science
, vol.285
, pp. 1737-1741
-
-
Naidoo, N.1
Song, W.2
Hunter-Ensor, M.3
Sehgal, A.4
-
178
-
-
33745503975
-
JETLAG resets the Drosophila circadian clock by promoting lightinduced degradation of TIMELESS
-
Koh K, Zheng X, Sehgal A. 2006. JETLAG resets the Drosophila circadian clock by promoting lightinduced degradation of TIMELESS. Science 312:1809-12
-
(2006)
Science
, vol.312
, pp. 1809-1812
-
-
Koh, K.1
Zheng, X.2
Sehgal, A.3
-
179
-
-
59349113774
-
Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless
-
PeschelN, Chen KF, SzaboG, Stanewsky R. 2009. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 19:241-47
-
(2009)
Curr. Biol
, vol.19
, pp. 241-247
-
-
Peschel, N.1
Chen, K.F.2
Szabo, G.3
Stanewsky, R.4
-
180
-
-
2642584009
-
Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception
-
Busza A, Emery-Le M, Rosbash M, Emery P. 2004. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304:1503-6
-
(2004)
Science
, vol.304
, pp. 1503-1506
-
-
Busza, A.1
Emery-Le, M.2
Rosbash, M.3
Emery, P.4
-
181
-
-
84875536458
-
Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex
-
Oztürk N, VanVickle-Chavez SJ, Akileswaran L, Van Gelder RN, Sancar A. 2013. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc. Natl. Acad. Sci. USA 110:4980-85
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 4980-4985
-
-
Oztürk, N.1
Vanvickle-Chavez, S.J.2
Akileswaran, L.3
Van Gelder, R.N.4
Sancar, A.5
-
182
-
-
0033597921
-
Light-dependent sequestration of TIMELESS by CRYPTOCHROME
-
Ceriani MF, Darlington TK, Staknis D, M?as P, Petti AA, et al. 1999. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553-56
-
(1999)
Science
, vol.285
, pp. 553-556
-
-
Ceriani, M.F.1
Darlington, T.K.2
Staknis, D.3
Mas, P.4
Petti, A.A.5
-
183
-
-
0036786776
-
Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA
-
Ishikawa T, Hirayama J, Kobayashi Y, Todo T. 2002. Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA. Genes Cells 7:1073-86
-
(2002)
Genes Cells
, vol.7
, pp. 1073-1086
-
-
Ishikawa, T.1
Hirayama, J.2
Kobayashi, Y.3
Todo, T.4
-
184
-
-
0042817947
-
Functional and structural analyses of cryptochrome Vertebrate CRY regions responsible for interaction with the CLOCK:BMAL1 heterodimer and its nuclear localization
-
Hirayama J, Nakamura H, Ishikawa T, Kobayashi Y, Todo T. 2003. Functional and structural analyses of cryptochrome. Vertebrate CRY regions responsible for interaction with the CLOCK:BMAL1 heterodimer and its nuclear localization. J. Biol. Chem. 278:35620-28
-
(2003)
J. Biol. Chem
, vol.278
, pp. 35620-35628
-
-
Hirayama, J.1
Nakamura, H.2
Ishikawa, T.3
Kobayashi, Y.4
Todo, T.5
-
185
-
-
79959337934
-
Quantitative analyses of cryptochrome-mBMAL1 interactions: Mechanistic insights into the transcriptional regulation of the mammalian circadian clock
-
Czarna A, Breitkreuz H, Mahrenholz CC, Arens J, Strauss HM, Wolf E. 2011. Quantitative analyses of cryptochrome-mBMAL1 interactions: mechanistic insights into the transcriptional regulation of the mammalian circadian clock. J. Biol. Chem. 286:22414-25
-
(2011)
J. Biol. Chem
, vol.286
, pp. 22414-22425
-
-
Czarna, A.1
Breitkreuz, H.2
Mahrenholz, C.C.3
Arens, J.4
Strauss, H.M.5
Wolf, E.6
-
186
-
-
34248566788
-
SCFFBXL3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al. 2007. SCFFBXL3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900-4
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
Bassermann, F.2
Maiolica, A.3
Lee, C.4
Nolan, P.M.5
-
187
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, Yoo S-H, Park J, Song W, Kumar V, et al. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011-23
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
Yoo, S.-H.2
Park, J.3
Song, W.4
Kumar, V.5
-
188
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo S-H, Mohawk JA, Siepka SM, Shan Y, Huh SK, et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091-105
-
(2013)
Cell
, vol.152
, pp. 1091-1105
-
-
Yoo, S.-H.1
Mohawk, J.A.2
Siepka, S.M.3
Shan, Y.4
Huh, S.K.5
-
189
-
-
83555164721
-
Structure of full-length Drosophila cryptochrome
-
Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR. 2011. Structure of full-length Drosophila cryptochrome. Nature 480:396-99
-
(2011)
Nature
, vol.480
, pp. 396-399
-
-
Zoltowski, B.D.1
Vaidya, A.T.2
Top, D.3
Widom, J.4
Young, M.W.5
Crane, B.R.6
-
190
-
-
84878889999
-
Structures of Drosophila cryptochrome and mouse cryptochrome 1 provide insight into circadian function
-
Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG, et al. 2013. Structures of Drosophila cryptochrome and mouse cryptochrome 1 provide insight into circadian function. Cell 153:1394-405
-
(2013)
Cell
, vol.153
, pp. 1394-1405
-
-
Czarna, A.1
Berndt, A.2
Singh, H.R.3
Grudziecki, A.4
Ladurner, A.G.5
-
191
-
-
84875361453
-
Updated structure of Drosophila cryptochrome
-
Levy C, Zoltowski BD, Jones AR, Vaidya AT, Top D, et al. 2013. Updated structure of Drosophila cryptochrome. Nature 495:E3-4
-
(2013)
Nature
, vol.495
-
-
Levy, C.1
Zoltowski, B.D.2
Jones, A.R.3
Vaidya, A.T.4
Top, D.5
-
192
-
-
34250346126
-
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome
-
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, et al. 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282:13011-21
-
(2007)
J. Biol. Chem
, vol.282
, pp. 13011-13021
-
-
Berndt, A.1
Kottke, T.2
Breitkreuz, H.3
Dvorsky, R.4
Hennig, S.5
-
193
-
-
84856910310
-
The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors
-
Selby CP, Sancar A. 2012. The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 51:167-71
-
(2012)
Biochemistry
, vol.51
, pp. 167-171
-
-
Selby, C.P.1
Sancar, A.2
-
194
-
-
79952301226
-
Reaction mechanism of Drosophila cryptochrome
-
Oztürk N, Selby CP, Annayev Y, Zhong D, Sancar A. 2011. Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. USA 108:516-21
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 516-521
-
-
Oztürk, N.1
Selby, C.P.2
Annayev, Y.3
Zhong, D.4
Sancar, A.5
-
195
-
-
84875899177
-
SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket
-
Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, et al. 2013. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496:64-68
-
(2013)
Nature
, vol.496
, pp. 64-68
-
-
Xing, W.1
Busino, L.2
Hinds, T.R.3
Marionni, S.T.4
Saifee, N.H.5
-
196
-
-
84858020231
-
Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability
-
Vieira J, Jones AR, Danon A, Sakuma M, Hoang N, et al. 2012. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability. PLoS ONE 7:e31867
-
(2012)
PLoS ONE
, vol.7
-
-
Vieira, J.1
Jones, A.R.2
Danon, A.3
Sakuma, M.4
Hoang, N.5
-
197
-
-
84865558040
-
Identification of small molecule activators of cryptochrome
-
Hirota T, Lee JW,St John PC, SawaM, IwaisakoK, et al. 2012. Identification of small molecule activators of cryptochrome. Science 337:1094-97
-
(2012)
Science
, vol.337
, pp. 1094-1097
-
-
Hirota, T.1
Lee Jwst John, P.C.2
Sawa, M.3
Iwaisako, K.4
-
198
-
-
84889093349
-
Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
-
Nangle S, Zing W, Zheng N. 2013. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23:1417-19
-
(2013)
Cell Res
, vol.23
, pp. 1417-1419
-
-
Nangle, S.1
Zing, W.2
Zheng, N.3
-
199
-
-
35548942704
-
Light signaling to the zebrafish circadian clock by cryptochrome 1a
-
Tamai TK, Young LC, Whitmore D. 2007. Light signaling to the zebrafish circadian clock by cryptochrome 1a. Proc. Natl. Acad. Sci. USA 104:14712-17
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 14712-14717
-
-
Tamai, T.K.1
Young, L.C.2
Whitmore, D.3
-
200
-
-
0035954257
-
Light-dependent interaction between Drosophila CRY and the clock protein per mediated by the carboxy terminus ofCRY
-
Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, et al. 2001. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus ofCRY. Curr. Biol. 11:909-17
-
(2001)
Curr. Biol
, vol.11
, pp. 909-917
-
-
Rosato, E.1
Codd, V.2
Mazzotta, G.3
Piccin, A.4
Zordan, M.5
-
201
-
-
49549084821
-
Synthesis and in vitro evaluation of imidazole-based wakayin analogues
-
Hoang H, Huang X, Skibo EB. 2008. Synthesis and in vitro evaluation of imidazole-based wakayin analogues. Org. Biomol. Chem. 6:3059-64
-
(2008)
Org. Biomol. Chem
, vol.6
, pp. 3059-3064
-
-
Hoang, H.1
Huang, X.2
Skibo, E.B.3
-
202
-
-
84862970479
-
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction
-
Li X, Wang Q, Yu X, Liu H, Yang H, et al. 2011. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc. Natl. Acad. Sci. USA 108:20844-49
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 20844-20849
-
-
Li, X.1
Wang, Q.2
Yu, X.3
Liu, H.4
Yang, H.5
-
203
-
-
84890847307
-
Flavin reduction acivates Drosophila cryptochrome
-
Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S, et al. 2013. Flavin reduction acivates Drosophila cryptochrome. Proc. Natl. Acad. Sci. USA 110:20455-60
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 20455-20460
-
-
Vaidya, A.T.1
Top, D.2
Manahan, C.C.3
Tokuda, J.M.4
Zhang, S.5
-
204
-
-
84896707197
-
Mechanism of photosignaling by Drosophila cryptochrome: Role of the redox status of the flavin cofactor
-
Ozturk N, Selby CP, Zhong D, Sancar A. 2013. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin cofactor. J. Biol. Chem. 289:4634-42
-
(2013)
J. Biol. Chem
, vol.289
, pp. 4634-4642
-
-
Ozturk, N.1
Selby, C.P.2
Zhong, D.3
Sancar, A.4
-
205
-
-
80051702730
-
The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock
-
Chaves I, Nijman RM, Biernat MA, Bajek MI, Brand K, et al. 2011. The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock. PLoS ONE 6:e23447
-
(2011)
PLoS ONE
, vol.6
-
-
Chaves, I.1
Nijman, R.M.2
Biernat, M.A.3
Bajek, M.I.4
Brand, K.5
-
206
-
-
0038798013
-
Strange vision: Ganglion cells as circadian photoreceptors
-
Berson DM. 2003. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26:314-20
-
(2003)
Trends Neurosci
, vol.26
, pp. 314-320
-
-
Berson, D.M.1
-
208
-
-
82455164299
-
Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions
-
Schmidt TM, Chen S-K, Hattar S. 2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 34:572-80
-
(2011)
Trends Neurosci
, vol.34
, pp. 572-580
-
-
Schmidt, T.M.1
Chen, S.-K.2
Hattar, S.3
-
209
-
-
84855833496
-
Melanopsin and mechanisms of non-visual ocular photoreception
-
Sexton T, Buhr E, Van Gelder RN. 2012. Melanopsin and mechanisms of non-visual ocular photoreception. J. Biol. Chem. 287:1649-56
-
(2012)
J. Biol. Chem
, vol.287
, pp. 1649-1656
-
-
Sexton, T.1
Buhr, E.2
Van Gelder, R.N.3
-
210
-
-
84873375293
-
Mammalian inner retinal photoreception
-
Lucas RJ. 2013. Mammalian inner retinal photoreception. Curr. Biol. 23:R125-33
-
(2013)
Curr. Biol
, vol.23
-
-
Lucas, R.J.1
-
211
-
-
0035196373
-
Melanopsin in cells of origin of the retinohypothalamic tract
-
Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. 2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4:1165
-
(2001)
Nat. Neurosci
, vol.4
, pp. 1165
-
-
Gooley, J.J.1
Lu, J.2
Chou, T.C.3
Scammell, T.E.4
Saper, C.B.5
-
212
-
-
0037039865
-
Phototransduction by retinal ganglion cells that set the circadian clock
-
Berson DM,Dunn FA, TakaoM. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070-73
-
(2002)
Science
, vol.295
, pp. 1070-1073
-
-
Berson, D.1
Mdunn, F.A.2
Takao, M.3
-
213
-
-
0037039784
-
Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity
-
Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin- containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065-70
-
(2002)
Science
, vol.295
, pp. 1065-1070
-
-
Hattar, S.1
Liao, H.W.2
Takao, M.3
Berson, D.M.4
Yau, K.W.5
-
214
-
-
0031940392
-
Melanopsin: An opsin in melanophores, brain, and eye
-
Provencio I, JiangG,DeGripWJ, HayesWP, Rollag MD. 1998. Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA 95:340-45
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 340-345
-
-
Provencio, I.1
Jiang, G.2
De Gripwj3
Hayes, W.P.4
Rollag, M.D.5
-
215
-
-
0034651110
-
A novel human opsin in the inner retina
-
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. 2000. A novel human opsin in the inner retina. J. Neurosci. 20:600-5
-
(2000)
J. Neurosci
, vol.20
, pp. 600-605
-
-
Provencio, I.1
Rodriguez, I.R.2
Jiang, G.3
Hayes, W.P.4
Moreira, E.F.5
Rollag, M.D.6
-
216
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307-20
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
Su, A.I.4
Schook, A.B.5
-
217
-
-
2242439918
-
Role of melanopsin in circadian responses to light
-
Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, et al. 2002. Role of melanopsin in circadian responses to light. Science 298:2211-13
-
(2002)
Science
, vol.298
, pp. 2211-2213
-
-
Ruby, N.F.1
Brennan, T.J.2
Xie, X.3
Cao, V.4
Franken, P.5
-
218
-
-
33747354311
-
Evolution of melanopsin photoreceptors: Discovery and characterization of a newmelanopsin in nonmammalian vertebrates
-
Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, et al. 2006. Evolution of melanopsin photoreceptors: discovery and characterization of a newmelanopsin in nonmammalian vertebrates. PLoS Biol. 4:e254
-
(2006)
PLoS Biol
, vol.4
-
-
Bellingham, J.1
Chaurasia, S.S.2
Melyan, Z.3
Liu, C.4
Cameron, M.A.5
-
219
-
-
78049431960
-
Structural divergence and functional versatility of the rhodopsin superfamily
-
Kouyama T, Murakami M. 2010. Structural divergence and functional versatility of the rhodopsin superfamily. Photochem. Photobiol. Sci. 9:1458-65
-
(2010)
Photochem. Photobiol. Sci
, vol.9
, pp. 1458-1465
-
-
Kouyama, T.1
Murakami, M.2
-
220
-
-
84870658625
-
The active site ofmelanopsin: The biological clock photoreceptor
-
Sekharan S, Wei JN, Batista VS. 2012. The active site ofmelanopsin: the biological clock photoreceptor. J. Am. Chem. Soc. 134:19536-39
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 19536-19539
-
-
Sekharan, S.1
Wei, J.N.2
Batista, V.S.3
-
221
-
-
13444311965
-
Predicted 3D structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus
-
Hermann R, Poppe L, Pilb?ak S, Boden C, Maurer J, et al. 2005. Predicted 3D structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus). Neurosci. Lett. 376:76-80
-
(2005)
Neurosci. Lett
, vol.376
, pp. 76-80
-
-
Hermann, R.1
Poppe, L.2
Pilbak, S.3
Boden, C.4
Maurer, J.5
-
222
-
-
79960566597
-
G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: A survey
-
Kratochwil NA, Gatti-McArthur S, Hoener MC, Lindemann L, Christ AD, et al. 2011. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey. Curr. Topics Med. Chem. 11:1902-24
-
(2011)
Curr. Topics Med. Chem
, vol.11
, pp. 1902-1924
-
-
Kratochwil, N.A.1
Gatti-Mcarthur, S.2
Hoener, M.C.3
Lindemann, L.4
Christ, A.D.5
-
223
-
-
43749109187
-
Crystal structure of squid rhodopsin
-
Murakami M, Kouyama T. 2008. Crystal structure of squid rhodopsin. Nature 453:363-67
-
(2008)
Nature
, vol.453
, pp. 363-367
-
-
Murakami, M.1
Kouyama, T.2
-
225
-
-
52949102889
-
Crystal structure of opsin in its G-protein-interacting conformation
-
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, et al. 2008. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497-502
-
(2008)
Nature
, vol.455
, pp. 497-502
-
-
Scheerer, P.1
Park, J.H.2
Hildebrand, P.W.3
Kim, Y.J.4
Krauss, N.5
-
226
-
-
79953234218
-
Crystal structure of metarhodopsin II
-
Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF, et al. 2011. Crystal structure of metarhodopsin II. Nature 471:651-55
-
(2011)
Nature
, vol.471
, pp. 651-655
-
-
Choe, H.-W.1
Kim, Y.J.2
Park, J.H.3
Morizumi, T.4
Pai, E.F.5
-
227
-
-
79953242234
-
The structural basis of agonistinduced activation in constitutively active rhodopsin
-
Standfuss J, Edwards PC, DAntona A, Fransen M, Xie G, et al. 2011. The structural basis of agonistinduced activation in constitutively active rhodopsin. Nature 471:656-60
-
(2011)
Nature
, vol.471
, pp. 656-660
-
-
Standfuss, J.1
Edwards, P.C.2
Dantona, A.3
Fransen, M.4
Xie, G.5
-
228
-
-
80051658642
-
Crystal structure of the ?2 adrenergic receptor-Gs protein complex
-
Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, et al. 2011. Crystal structure of the ?2 adrenergic receptor-Gs protein complex. Nature 477:549-55
-
(2011)
Nature
, vol.477
, pp. 549-555
-
-
Sgf, R.1
Devree, B.T.2
Zou, Y.3
Kruse, A.C.4
Chung, K.Y.5
-
229
-
-
80053357815
-
Conformational changes in the G proteinGs induced by the ?2 adrenergic receptor
-
Chung KY, Rasmussen SGF, Liu T, Li S, DeVree BT, et al. 2011. Conformational changes in the G proteinGs induced by the ?2 adrenergic receptor. Nature 477:611-15
-
(2011)
Nature
, vol.477
, pp. 611-615
-
-
Chung, K.Y.1
Sgf, R.2
Liu, T.3
Li, S.4
Devree, B.T.5
-
230
-
-
80054689165
-
Crystallographic analysis of the primary photochemical reaction of squid rhodopsin
-
Murakami M, Kouyama T. 2011. Crystallographic analysis of the primary photochemical reaction of squid rhodopsin. J. Mol. Biol. 413:615-27
-
(2011)
J. Mol. Biol
, vol.413
, pp. 615-627
-
-
Murakami, M.1
Kouyama, T.2
-
231
-
-
0035977158
-
Microarray analysis and organization of circadian gene expression
-
McDonald MJ, Rosbash M. 2001. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107:567-78
-
(2001)
Drosophila Cell
, vol.107
, pp. 567-578
-
-
McDonald, M.J.1
Rosbash, M.2
-
232
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
KoikeN, Yoo SH,Huang HC, Kumar V, Lee C, et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349-54
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.H.2
Huang, H.C.3
Kumar, V.4
Lee, C.5
-
233
-
-
84872840475
-
Nascent-Seq analysis of Drosophila cycling gene expression
-
Rodriguez J, Tang CH, Khodor YL, Vodala S, Menet JS, Rosbash M. 2013. Nascent-Seq analysis of Drosophila cycling gene expression. Proc. Natl. Acad. Sci. USA 110:E275-284
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
-
-
Rodriguez, J.1
Tang, C.H.2
Khodor, Y.L.3
Vodala, S.4
Menet, J.S.5
Rosbash, M.6
|