-
1
-
-
0033593306
-
Molecular bases for circadian clocks
-
Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271-290 (1999).
-
(1999)
Cell
, vol.96
, pp. 271-290
-
-
Dunlap, J.C.1
-
2
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935-941 (2002).
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
3
-
-
0034042294
-
Molecular genetics of circadian rhythms in mammals
-
King, D. P. & Takahashi, J. S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713-742 (2000).
-
(2000)
Annu. Rev. Neurosci
, vol.23
, pp. 713-742
-
-
King, D.P.1
Takahashi, J.S.2
-
4
-
-
0035458732
-
Time zones: A comparative genetics of circadian clocks
-
Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702-715 (2001).
-
(2001)
Nature Rev. Genet
, vol.2
, pp. 702-715
-
-
Young, M.W.1
Kay, S.A.2
-
5
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497-508 (2006).
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
6
-
-
20244377493
-
Positional cloning of the mouse circadian clock gene
-
King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641-653 (1997).
-
(1997)
Cell
, vol.89
, pp. 641-653
-
-
King, D.P.1
-
7
-
-
0034704203
-
Mop3 is an essential component of the master circadian pacemaker in mammals
-
Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009-1017 (2000).
-
(2000)
Cell
, vol.103
, pp. 1009-1017
-
-
Bunger, M.K.1
-
9
-
-
24344450660
-
Structural and functional features of transcription factors controlling the circadian clock
-
Hirayama, J. & Sassone-Corsi, P. Structural and functional features of transcription factors controlling the circadian clock. Curr. Opin. Genet. Dev. 15, 548-556 (2005).
-
(2005)
Curr. Opin. Genet. Dev
, vol.15
, pp. 548-556
-
-
Hirayama, J.1
Sassone-Corsi, P.2
-
10
-
-
33750311337
-
CLOCK leaves its mark on histones
-
Belden, W. J., Loros, J. J. & Dunlap, J. C. CLOCK leaves its mark on histones. Trends Biochem. Sci. 31, 610- 613 (2006).
-
(2006)
Trends Biochem. Sci
, vol.31
, pp. 610-613
-
-
Belden, W.J.1
Loros, J.J.2
Dunlap, J.C.3
-
11
-
-
28044471827
-
Acetylation and deacetylation of non-histone proteins
-
Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15-23 (2005).
-
(2005)
Gene
, vol.363
, pp. 15-23
-
-
Glozak, M.A.1
Sengupta, N.2
Zhang, X.3
Seto, E.4
-
12
-
-
27944501617
-
Histone modifying enzymes and cancer: Going beyond histones
-
Zhang, K. & Dent, S. Y. Histone modifying enzymes and cancer: going beyond histones. J. Cell. Biochem. 96, 1137-1148 (2005).
-
(2005)
J. Cell. Biochem
, vol.96
, pp. 1137-1148
-
-
Zhang, K.1
Dent, S.Y.2
-
13
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569 (1998).
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
-
14
-
-
0034220768
-
The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors
-
Hogenesch, J. B. et al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J. Neurosci. 20, RC83 (2000).
-
(2000)
J. Neurosci
, vol.20
-
-
Hogenesch, J.B.1
-
15
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855-867 (2001).
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.P.2
Cagampang, F.R.3
Loudon, A.S.4
Reppert, S.M.5
-
16
-
-
0141889955
-
Control mechanism of the circadian clock for timing of cell division in vivo
-
Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255-259 (2003).
-
(2003)
Science
, vol.302
, pp. 255-259
-
-
Matsuo, T.1
-
17
-
-
0033560863
-
Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms
-
van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627-630 (1999).
-
(1999)
Nature
, vol.398
, pp. 627-630
-
-
van der Horst, G.T.1
-
18
-
-
0033597904
-
mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
-
Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205 (1999).
-
(1999)
Cell
, vol.98
, pp. 193-205
-
-
Kume, K.1
-
19
-
-
0033534628
-
A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock
-
Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57-68 (1999).
-
(1999)
Cell
, vol.96
, pp. 57-68
-
-
Jin, X.1
-
20
-
-
23944470712
-
Circadian clock control by SUMOylation of BMAL1
-
Cardone, L. et al. Circadian clock control by SUMOylation of BMAL1. Science 309, 1390-1394 (2005).
-
(2005)
Science
, vol.309
, pp. 1390-1394
-
-
Cardone, L.1
-
21
-
-
33144473786
-
A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation
-
Shalizi, A. et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012-1017 (2006).
-
(2006)
Science
, vol.311
, pp. 1012-1017
-
-
Shalizi, A.1
-
22
-
-
0042626226
-
BMAL1-dependent circadian oscillation of nuclear CLOCK: Posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system
-
Kondratov, R. V. et al. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932 (2003).
-
(2003)
Genes Dev
, vol.17
, pp. 1921-1932
-
-
Kondratov, R.V.1
-
23
-
-
8844256589
-
Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells
-
Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705 (2004).
-
(2004)
Cell
, vol.119
, pp. 693-705
-
-
Nagoshi, E.1
-
24
-
-
33644625748
-
Feedback repression is required for mammalian circadian clock function
-
Sato, T. K. et al. Feedback repression is required for mammalian circadian clock function. Nature Genet. 38, 312-319 (2006).
-
(2006)
Nature Genet
, vol.38
, pp. 312-319
-
-
Sato, T.K.1
-
25
-
-
0041029974
-
Light-independent role of CRY1 and CRY2 in the mammalian circadian clock
-
Griffin, E. A. Jr, Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768-771 (1999).
-
(1999)
Science
, vol.286
, pp. 768-771
-
-
Griffin Jr, E.A.1
Staknis, D.2
Weitz, C.J.3
-
26
-
-
33644559348
-
Functional evolution of the photolyase/ cryptochrome protein family: Importance of the C terminus of mammalian CRY1 for circadian core oscillator performance
-
Chaves, I. et al. Functional evolution of the photolyase/ cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance. Mol. Cell. Biol. 26, 1743-1753 (2006).
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 1743-1753
-
-
Chaves, I.1
-
27
-
-
34447293536
-
Peripheral circadian oscillators require CLOCK
-
DeBruyne, J. P., Weaver, D. R. & Reppert, S. M. Peripheral circadian oscillators require CLOCK. Curr. Biol. 17, R538-R539 (2007).
-
(2007)
Curr. Biol
, vol.17
-
-
DeBruyne, J.P.1
Weaver, D.R.2
Reppert, S.M.3
-
28
-
-
0034051227
-
Acetylation of histones and transcription-related factors
-
Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459 (2000).
-
(2000)
Microbiol. Mol. Biol. Rev
, vol.64
, pp. 435-459
-
-
Sterner, D.E.1
Berger, S.L.2
-
29
-
-
33745590694
-
The BMAL1 C terminus regulates the circadian transcription feedback loop
-
Kiyohara, Y. B. et al. The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc. Natl Acad. Sci. USA 103, 10074-10079 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 10074-10079
-
-
Kiyohara, Y.B.1
-
30
-
-
20044396172
-
A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo
-
Yoo, S. H. et al. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl Acad. Sci. USA 102, 2608-2613 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 2608-2613
-
-
Yoo, S.H.1
|