-
1
-
-
84872334045
-
Metabolism and the circadian clock converge
-
Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93(1):107-135.
-
(2013)
Physiol Rev
, vol.93
, Issue.1
, pp. 107-135
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
2
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar RS, et al. (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459-464.
-
(2012)
Nature
, vol.485
, Issue.7399
, pp. 459-464
-
-
Edgar, R.S.1
-
3
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349-1354.
-
(2010)
Science
, vol.330
, Issue.6009
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
4
-
-
84904747470
-
Circadian clock control of endocrine factors
-
Gamble KL, Berry R, Frank SJ, Young ME (2014) Circadian clock control of endocrine factors. Nat Rev Endocrinol 10(8):466-475.
-
(2014)
Nat Rev Endocrinol
, vol.10
, Issue.8
, pp. 466-475
-
-
Gamble, K.L.1
Berry, R.2
Frank, S.J.3
Young, M.E.4
-
5
-
-
4544362674
-
Mammalian circadian biology: Elucidating genomewide levels of temporal organization
-
Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: Elucidating genomewide levels of temporal organization. Annu Rev Genomics Hum Genet 5(1):407-441.
-
(2004)
Annu Rev Genomics Hum Genet
, vol.5
, Issue.1
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
6
-
-
0037006807
-
Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
-
Duffield GE, et al. (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12(7):551-557.
-
(2002)
Curr Biol
, vol.12
, Issue.7
, pp. 551-557
-
-
Duffield, G.E.1
-
7
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307-320.
-
(2002)
Cell
, vol.109
, Issue.3
, pp. 307-320
-
-
Panda, S.1
-
8
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch KF, et al. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78-83.
-
(2002)
Nature
, vol.417
, Issue.6884
, pp. 78-83
-
-
Storch, K.F.1
-
9
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda HR, et al. (2002) A transcription factor response element for gene expression during circadian night. Nature 418(6897):534-539.
-
(2002)
Nature
, vol.418
, Issue.6897
, pp. 534-539
-
-
Ueda, H.R.1
-
10
-
-
77951927020
-
Suprachiasmatic nucleus: Cell autonomy and network properties
-
Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: Cell autonomy and network properties. Annu Rev Physiol 72:551-577.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
Takahashi, J.S.2
Kay, S.A.3
-
11
-
-
0021747078
-
Effects of bilateral suprachiasmatic nucleus lesions on the circadian rhythms in a diurnal rodent, the Siberian chipmunk (Eutamias sibiricus)
-
Sato T, Kawamura H (1984) Effects of bilateral suprachiasmatic nucleus lesions on the circadian rhythms in a diurnal rodent, the Siberian chipmunk (Eutamias sibiricus). J Comp Physiol 155(6):745-752.
-
(1984)
J Comp Physiol
, vol.155
, Issue.6
, pp. 745-752
-
-
Sato, T.1
Kawamura, H.2
-
12
-
-
0015353260
-
Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
-
Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69(6):1583-1586.
-
(1972)
Proc Natl Acad Sci USA
, vol.69
, Issue.6
, pp. 1583-1586
-
-
Stephan, F.K.1
Zucker, I.2
-
13
-
-
84895882455
-
Epigenetic control and the circadian clock: Linking metabolism to neuronal responses
-
Orozco-Solis R, Sassone-Corsi P (2014) Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience 264:76-87.
-
(2014)
Neuroscience
, vol.264
, pp. 76-87
-
-
Orozco-Solis, R.1
Sassone-Corsi, P.2
-
14
-
-
77958504804
-
Clocks not winding down: Unravelling circadian networks
-
Zhang EE, Kay SA (2010) Clocks not winding down: Unravelling circadian networks. Nat Rev Mol Cell Biol 11(11):764-776.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, Issue.11
, pp. 764-776
-
-
Zhang, E.E.1
Kay, S.A.2
-
15
-
-
75849128796
-
Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock
-
Lee H, Chen R, Lee Y, Yoo S, Lee C (2009) Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proc Natl Acad Sci USA 106(50):21359-21364.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.50
, pp. 21359-21364
-
-
Lee, H.1
Chen, R.2
Lee, Y.3
Yoo, S.4
Lee, C.5
-
16
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L, et al. (2007) SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316(5826):900-904.
-
(2007)
Science
, vol.316
, Issue.5826
, pp. 900-904
-
-
Busino, L.1
-
17
-
-
84874772651
-
FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
-
Hirano A, et al. (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152(5):1106-1118.
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 1106-1118
-
-
Hirano, A.1
-
18
-
-
34249097203
-
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, et al. (2007) Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129(5):1011-1023.
-
(2007)
Cell
, vol.129
, Issue.5
, pp. 1011-1023
-
-
Siepka, S.M.1
-
19
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo SH, et al. (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152(5):1091-1105.
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 1091-1105
-
-
Yoo, S.H.1
-
20
-
-
84901425084
-
How pervasive are circadian oscillations?
-
Patel VR, Eckel-Mahan K, Sassone-Corsi P, Baldi P (2014) How pervasive are circadian oscillations? Trends Cell Biol 24(6):329-331.
-
(2014)
Trends Cell Biol
, vol.24
, Issue.6
, pp. 329-331
-
-
Patel, V.R.1
Eckel-Mahan, K.2
Sassone-Corsi, P.3
Baldi, P.4
-
21
-
-
84877929035
-
The circadian epigenome: How metabolism talks to chromatin remodeling
-
Aguilar-Arnal L, Sassone-Corsi P (2013) The circadian epigenome: How metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25(2):170-176.
-
(2013)
Curr Opin Cell Biol
, vol.25
, Issue.2
, pp. 170-176
-
-
Aguilar-Arnal, L.1
Sassone-Corsi, P.2
-
22
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497-508.
-
(2006)
Cell
, vol.125
, Issue.3
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
23
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177-182.
-
(2003)
Nature
, vol.421
, Issue.6919
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
24
-
-
77957869145
-
Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock
-
Lee Y, et al. (2010) Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci 123(Pt 20):3547-3557.
-
(2010)
J Cell Sci
, vol.123
, Issue.20
, pp. 3547-3557
-
-
Lee, Y.1
-
25
-
-
1342282943
-
Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
-
Curtis AM, et al. (2004) Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 279(8):7091-7097.
-
(2004)
J Biol Chem
, vol.279
, Issue.8
, pp. 7091-7097
-
-
Curtis, A.M.1
-
26
-
-
0033825665
-
Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3
-
Takahata S, et al. (2000) Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 5(9):739-747.
-
(2000)
Genes Cells
, vol.5
, Issue.9
, pp. 739-747
-
-
Takahata, S.1
-
27
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332(6036):1436-1439.
-
(2011)
Science
, vol.332
, Issue.6036
, pp. 1436-1439
-
-
Duong, H.A.1
Robles, M.S.2
Knutti, D.3
Weitz, C.J.4
-
28
-
-
3042709817
-
Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
-
Naruse Y, et al. (2004) Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol 24(14):6278-6287.
-
(2004)
Mol Cell Biol
, vol.24
, Issue.14
, pp. 6278-6287
-
-
Naruse, Y.1
-
29
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, et al. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315-1319.
-
(2011)
Science
, vol.331
, Issue.6022
, pp. 1315-1319
-
-
Feng, D.1
-
30
-
-
84867412467
-
Circadian epigenomic remodeling and hepatic lipogenesis: Lessons from HDAC3
-
Sun Z, Feng D, Everett LJ, Bugge A, Lazar MA (2011) Circadian epigenomic remodeling and hepatic lipogenesis: Lessons from HDAC3. Cold Spring Harb Symp Quant Biol 76:49-55.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 49-55
-
-
Sun, Z.1
Feng, D.2
Everett, L.J.3
Bugge, A.4
Lazar, M.A.5
-
31
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329-340.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 329-340
-
-
Nakahata, Y.1
-
32
-
-
84905389924
-
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
-
Masri S, et al. (2014) Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158(3):659-672.
-
(2014)
Cell
, vol.158
, Issue.3
, pp. 659-672
-
-
Masri, S.1
-
33
-
-
0033695926
-
Light induces chromatin modification in cells of the mammalian circadian clock
-
Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3(12):1241-1247.
-
(2000)
Nat Neurosci
, vol.3
, Issue.12
, pp. 1241-1247
-
-
Crosio, C.1
Cermakian, N.2
Allis, C.D.3
Sassone-Corsi, P.4
-
34
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38(3):369-374.
-
(2006)
Nat Genet
, vol.38
, Issue.3
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
35
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17(12):1414-1421.
-
(2010)
Nat Struct Mol Biol
, vol.17
, Issue.12
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
36
-
-
84872875650
-
Histone methyltransferase MLL3 contributes to genomescale circadian transcription
-
Valekunja UK, et al. (2013) Histone methyltransferase MLL3 contributes to genomescale circadian transcription. Proc Natl Acad Sci USA 110(4):1554-1559.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.4
, pp. 1554-1559
-
-
Valekunja, U.K.1
-
37
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray JP, et al. (2006) The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 281(30):21209-21215.
-
(2006)
J Biol Chem
, vol.281
, Issue.30
, pp. 21209-21215
-
-
Etchegaray, J.P.1
-
38
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio L, et al. (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333(6051):1881-1885.
-
(2011)
Science
, vol.333
, Issue.6051
, pp. 1881-1885
-
-
DiTacchio, L.1
-
39
-
-
84896715662
-
Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting
-
Nam HJ, et al. (2014) Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol Cell 53(5):791-805.
-
(2014)
Mol Cell
, vol.53
, Issue.5
, pp. 791-805
-
-
Nam, H.J.1
-
40
-
-
84891677378
-
CLOCK:BMAL1 is a pioneer-like transcription factor
-
Menet JS, Pescatore S, Rosbash M (2014) CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev 28(1):8-13.
-
(2014)
Genes Dev
, vol.28
, Issue.1
, pp. 8-13
-
-
Menet, J.S.1
Pescatore, S.2
Rosbash, M.3
-
41
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N, et al. (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349-354.
-
(2012)
Science
, vol.338
, Issue.6105
, pp. 349-354
-
-
Koike, N.1
-
42
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1:e00011.
-
(2012)
eLife
, vol.1
-
-
Menet, J.S.1
Rodriguez, J.2
Abruzzi, K.C.3
Rosbash, M.4
-
43
-
-
84870288931
-
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
-
Le Martelot G, et al.; CycliX Consortium (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442.
-
(2012)
PLoS Biol
, vol.10
, Issue.11
-
-
Le Martelot, G.1
-
44
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
Padmanabhan K, Robles MS, Westerling T, Weitz CJ (2012) Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337(6094):599-602.
-
(2012)
Science
, vol.337
, Issue.6094
, pp. 599-602
-
-
Padmanabhan, K.1
Robles, M.S.2
Westerling, T.3
Weitz, C.J.4
-
45
-
-
84886813829
-
Emerging roles for post-transcriptional regulation in circadian clocks
-
Lim C, Allada R (2013) Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci 16(11):1544-1550.
-
(2013)
Nat Neurosci
, vol.16
, Issue.11
, pp. 1544-1550
-
-
Lim, C.1
Allada, R.2
-
46
-
-
84867670963
-
Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
-
Morf J, et al. (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338(6105):379-383.
-
(2012)
Science
, vol.338
, Issue.6105
, pp. 379-383
-
-
Morf, J.1
-
47
-
-
84862496485
-
Regulation of alternative splicing by the circadian clock and food related cues
-
McGlincy NJ, et al. (2012) Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 13(6):R54.
-
(2012)
Genome Biol
, vol.13
, Issue.6
, pp. R54
-
-
McGlincy, N.J.1
-
48
-
-
84901229145
-
Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice
-
Preußner M, et al. (2014) Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol Cell 54(4):651-662.
-
(2014)
Mol Cell
, vol.54
, Issue.4
, pp. 651-662
-
-
Preußner, M.1
-
49
-
-
84871581540
-
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
-
Kojima S, Sher-Chen EL, Green CB (2012) Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 26(24):2724-2736.
-
(2012)
Genes Dev
, vol.26
, Issue.24
, pp. 2724-2736
-
-
Kojima, S.1
Sher-Chen, E.L.2
Green, C.B.3
-
50
-
-
84887875528
-
RNA-methylation-dependent RNA processing controls the speed of the circadian clock
-
Fustin JM, et al. (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155(4):793-806.
-
(2013)
Cell
, vol.155
, Issue.4
, pp. 793-806
-
-
Fustin, J.M.1
-
51
-
-
84872263009
-
Protein and nucleic acid methylating enzymes: Mechanisms and regulation
-
Le DD, Fujimori DG (2012) Protein and nucleic acid methylating enzymes: mechanisms and regulation. Curr Opin Chem Biol 16(5-6):507-515.
-
(2012)
Curr Opin Chem Biol
, vol.16
, Issue.5
, pp. 507-515
-
-
Le, D.D.1
Fujimori, D.G.2
-
52
-
-
79952255290
-
Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
-
Hatanaka F, et al. (2010) Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol Cell Biol 30(24):5636-5648.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.24
, pp. 5636-5648
-
-
Hatanaka, F.1
-
53
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G, et al. (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9(2):e1000595.
-
(2011)
PLoS Biol
, vol.9
, Issue.2
, pp. e1000595
-
-
Rey, G.1
-
54
-
-
84870553909
-
Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
-
Vollmers C, et al. (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16(6):833-845.
-
(2012)
Cell Metab
, vol.16
, Issue.6
, pp. 833-845
-
-
Vollmers, C.1
-
55
-
-
84886240503
-
miRNAs are required for generating a time delay critical for the circadian oscillator
-
Chen R, D'Alessandro M, Lee C (2013) miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol 23(20):1959-1968.
-
(2013)
Curr Biol
, vol.23
, Issue.20
, pp. 1959-1968
-
-
Chen, R.1
D'Alessandro, M.2
Lee, C.3
-
56
-
-
84902338279
-
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
-
Du NH, Arpat AB, De Matos M, Gatfield D (2014) MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 3:e02510.
-
(2014)
eLife
, vol.3
-
-
Du, N.H.1
Arpat, A.B.2
De Matos, M.3
Gatfield, D.4
-
57
-
-
66149167562
-
Integration of microRNA miR-122 in hepatic circadian gene expression
-
Gatfield D, et al. (2009) Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23(11):1313-1326.
-
(2009)
Genes Dev
, vol.23
, Issue.11
, pp. 1313-1326
-
-
Gatfield, D.1
-
58
-
-
34249713720
-
microRNA modulation of circadian-clock period and entrainment
-
Cheng HY, et al. (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54(5):813-829.
-
(2007)
Neuron
, vol.54
, Issue.5
, pp. 813-829
-
-
Cheng, H.Y.1
-
59
-
-
84857367540
-
Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit
-
Luo W, Sehgal A (2012) Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell 148(4):765-779.
-
(2012)
Cell
, vol.148
, Issue.4
, pp. 765-779
-
-
Luo, W.1
Sehgal, A.2
-
60
-
-
33646729244
-
Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations
-
Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4(5):e138.
-
(2006)
PLoS Biol
, vol.4
, Issue.5
, pp. e138
-
-
Branco, M.R.1
Pombo, A.2
-
61
-
-
84855297335
-
A decade of 3C technologies: Insights into nuclear organization
-
de Wit E, de Laat W (2012) A decade of 3C technologies: Insights into nuclear organization. Genes Dev 26(1):11-24.
-
(2012)
Genes Dev
, vol.26
, Issue.1
, pp. 11-24
-
-
De Wit, E.1
De Laat, W.2
-
62
-
-
84861100147
-
Spatial partitioning of the regulatory landscape of the X-inactivation centre
-
Nora EP, et al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381-385.
-
(2012)
Nature
, vol.485
, Issue.7398
, pp. 381-385
-
-
Nora, E.P.1
-
63
-
-
84861095603
-
Topological domains in mammalian genomes identified by analysis of chromatin interactions
-
Dixon JR, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376-380.
-
(2012)
Nature
, vol.485
, Issue.7398
, pp. 376-380
-
-
Dixon, J.R.1
-
64
-
-
84893928513
-
Transcription in the context of the 3D nucleus
-
Wendt KS, Grosveld FG (2014) Transcription in the context of the 3D nucleus. Curr Opin Genet Dev 25:62-67.
-
(2014)
Curr Opin Genet Dev
, vol.25
, pp. 62-67
-
-
Wendt, K.S.1
Grosveld, F.G.2
-
65
-
-
84856747483
-
Three-dimensional folding and functional organization principles of the Drosophila genome
-
Sexton T, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458-472.
-
(2012)
Cell
, vol.148
, Issue.3
, pp. 458-472
-
-
Sexton, T.1
-
66
-
-
70349873824
-
Comprehensive mapping of long-range interactions reveals folding principles of the human genome
-
Lieberman-Aiden E, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289-293.
-
(2009)
Science
, vol.326
, Issue.5950
, pp. 289-293
-
-
Lieberman-Aiden, E.1
-
67
-
-
45149084413
-
Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
-
Guelen L, et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948-951.
-
(2008)
Nature
, vol.453
, Issue.7197
, pp. 948-951
-
-
Guelen, L.1
-
68
-
-
76049087668
-
Oscillations in supercoiling drive circadian gene expression in cyanobacteria
-
Vijayan V, Zuzow R, O'Shea EK (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 106(52):22564-22568.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.52
, pp. 22564-22568
-
-
Vijayan, V.1
Zuzow, R.2
O'Shea, E.K.3
-
69
-
-
36749033238
-
Circadian rhythms of superhelical status of DNA in cyanobacteria
-
Woelfle MA, Xu Y, Qin X, Johnson CH (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci USA 104(47):18819-18824.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.47
, pp. 18819-18824
-
-
Woelfle, M.A.1
Xu, Y.2
Qin, X.3
Johnson, C.H.4
-
70
-
-
84868097990
-
Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
-
Stratmann M, Suter DM, Molina N, Naef F, Schibler U (2012) Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 48(2):277-287.
-
(2012)
Mol Cell
, vol.48
, Issue.2
, pp. 277-287
-
-
Stratmann, M.1
Suter, D.M.2
Molina, N.3
Naef, F.4
Schibler, U.5
-
71
-
-
84885433507
-
Cycles in spatial and temporal chromosomal organization driven by the circadian clock
-
Aguilar-Arnal L, et al. (2013) Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat Struct Mol Biol 20(10):1206-1213.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.10
, pp. 1206-1213
-
-
Aguilar-Arnal, L.1
-
72
-
-
73349090560
-
Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells
-
Schoenfelder S, et al. (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53-61.
-
(2010)
Nat Genet
, vol.42
, Issue.1
, pp. 53-61
-
-
Schoenfelder, S.1
-
73
-
-
33846283384
-
Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions
-
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104-115.
-
(2007)
Nat Rev Genet
, vol.8
, Issue.2
, pp. 104-115
-
-
Lanctôt, C.1
Cheutin, T.2
Cremer, M.3
Cavalli, G.4
Cremer, T.5
-
74
-
-
5444243359
-
Active genes dynamically colocalize to shared sites of ongoing transcription
-
Osborne CS, et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065-1071.
-
(2004)
Nat Genet
, vol.36
, Issue.10
, pp. 1065-1071
-
-
Osborne, C.S.1
-
75
-
-
84874587482
-
Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation
-
Hakim O, et al. (2013) Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation. Genome Res 23(3):462-472.
-
(2013)
Genome Res
, vol.23
, Issue.3
, pp. 462-472
-
-
Hakim, O.1
-
76
-
-
79955569948
-
Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements
-
Hakim O, et al. (2011) Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res 21(5):697-706.
-
(2011)
Genome Res
, vol.21
, Issue.5
, pp. 697-706
-
-
Hakim, O.1
-
77
-
-
84887620842
-
A high-resolution map of the three-dimensional chromatin interactome in human cells
-
Jin F, et al. (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290-294.
-
(2013)
Nature
, vol.503
, Issue.7475
, pp. 290-294
-
-
Jin, F.1
-
78
-
-
85027929606
-
Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization
-
Denholtz M, et al. (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13(5):602-616.
-
(2013)
Cell Stem Cell
, vol.13
, Issue.5
, pp. 602-616
-
-
Denholtz, M.1
-
79
-
-
84887835943
-
Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency
-
Wei Z, et al. (2013) Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13(1):36-47.
-
(2013)
Cell Stem Cell
, vol.13
, Issue.1
, pp. 36-47
-
-
Wei, Z.1
-
80
-
-
84893155560
-
Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming
-
Zhang H, et al. (2013) Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13(1):30-35.
-
(2013)
Cell Stem Cell
, vol.13
, Issue.1
, pp. 30-35
-
-
Zhang, H.1
-
81
-
-
84870379849
-
Hi-C: A comprehensive technique to capture the conformation of genomes
-
Belton JM, et al. (2012) Hi-C: A comprehensive technique to capture the conformation of genomes. Methods 58(3):268-276.
-
(2012)
Methods
, vol.58
, Issue.3
, pp. 268-276
-
-
Belton, J.M.1
-
82
-
-
84857124907
-
The human circadian metabolome
-
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci USA 109(7):2625-2629.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.7
, pp. 2625-2629
-
-
Dallmann, R.1
Viola, A.U.2
Tarokh, L.3
Cajochen, C.4
Brown, S.A.5
-
83
-
-
84894590704
-
Reprogramming of the circadian clock by nutritional challenge
-
Eckel-Mahan KL, et al. (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155(7):1464-1478.
-
(2013)
Cell
, vol.155
, Issue.7
, pp. 1464-1478
-
-
Eckel-Mahan, K.L.1
-
84
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
Eckel-Mahan KL, et al. (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109(14):5541-5546.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.14
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
-
85
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M, et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848-860.
-
(2012)
Cell Metab
, vol.15
, Issue.6
, pp. 848-860
-
-
Hatori, M.1
-
86
-
-
84871917034
-
Human blood metabolite timetable indicates internal body time
-
Kasukawa T, et al. (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci USA 109(37):15036-15041.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.37
, pp. 15036-15041
-
-
Kasukawa, T.1
-
87
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng D, Lazar MA (2012) Clocks, metabolism, and the epigenome. Mol Cell 47(2):158-167.
-
(2012)
Mol Cell
, vol.47
, Issue.2
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
88
-
-
84856090681
-
Connecting threads: Epigenetics and metabolism
-
Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: Epigenetics and metabolism. Cell 148(1-2):24-28.
-
(2012)
Cell
, vol.148
, Issue.1-2
, pp. 24-28
-
-
Katada, S.1
Imhof, A.2
Sassone-Corsi, P.3
-
89
-
-
84891940889
-
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
-
Mauvoisin D, et al. (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci USA 111(1):167-172.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.1
, pp. 167-172
-
-
Mauvoisin, D.1
-
90
-
-
84896842340
-
Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1
-
Sahar S, et al. (2014) Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 289(9):6091-6097.
-
(2014)
J Biol Chem
, vol.289
, Issue.9
, pp. 6091-6097
-
-
Sahar, S.1
-
91
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen KE, et al. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076-1080.
-
(2009)
Science
, vol.324
, Issue.5930
, pp. 1076-1080
-
-
Wellen, K.E.1
-
92
-
-
84872160110
-
Influence of threonine metabolism on S-adenosylmethionine and histone methylation
-
Shyh-Chang N, et al. (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222-226.
-
(2013)
Science
, vol.339
, Issue.6116
, pp. 222-226
-
-
Shyh-Chang, N.1
-
93
-
-
84874484700
-
Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
-
Bellet MM, et al. (2013) Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 110(9):3333-3338.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.9
, pp. 3333-3338
-
-
Bellet, M.M.1
-
94
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654-657.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
95
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, et al. (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651-654.
-
(2009)
Science
, vol.324
, Issue.5927
, pp. 651-654
-
-
Ramsey, K.M.1
-
96
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293(5529):510-514.
-
(2001)
Science
, vol.293
, Issue.5529
, pp. 510-514
-
-
Rutter, J.1
Reick, M.2
Wu, L.C.3
McKnight, S.L.4
-
97
-
-
84901358563
-
Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
-
Schmalen I, et al. (2014) Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157(5):1203-1215.
-
(2014)
Cell
, vol.157
, Issue.5
, pp. 1203-1215
-
-
Schmalen, I.1
-
98
-
-
84875899177
-
SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket
-
Xing W, et al. (2013) SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496(7443):64-68.
-
(2013)
Nature
, vol.496
, Issue.7443
, pp. 64-68
-
-
Xing, W.1
-
99
-
-
84865558040
-
Identification of small molecule activators of cryptochrome
-
Hirota T, et al. (2012) Identification of small molecule activators of cryptochrome. Science 337(6098):1094-1097.
-
(2012)
Science
, vol.337
, Issue.6098
, pp. 1094-1097
-
-
Hirota, T.1
-
100
-
-
84873351364
-
Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
-
Kaasik K, et al. (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17(2):291-302.
-
(2013)
Cell Metab
, vol.17
, Issue.2
, pp. 291-302
-
-
Kaasik, K.1
-
101
-
-
84873362932
-
O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
-
Li MD, et al. (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17(2):303-310.
-
(2013)
Cell Metab
, vol.17
, Issue.2
, pp. 303-310
-
-
Li, M.D.1
-
102
-
-
84863534997
-
Metabolic regulation of epigenetics
-
Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16(1):9-17.
-
(2012)
Cell Metab
, vol.16
, Issue.1
, pp. 9-17
-
-
Lu, C.1
Thompson, C.B.2
-
103
-
-
84872663835
-
AMPK at the crossroads of circadian clocks and metabolism
-
Jordan SD, Lamia KA (2013) AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 366(2):163-169.
-
(2013)
Mol Cell Endocrinol
, vol.366
, Issue.2
, pp. 163-169
-
-
Jordan, S.D.1
Lamia, K.A.2
-
104
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia KA, et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437-440.
-
(2009)
Science
, vol.326
, Issue.5951
, pp. 437-440
-
-
Lamia, K.A.1
-
105
-
-
84906322941
-
Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
-
Cho CS, Yoon HJ, Kim JY, Woo HA, Rhee SG (2014) Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci USA 111(33):12043-12048.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.33
, pp. 12043-12048
-
-
Cho, C.S.1
Yoon, H.J.2
Kim, J.Y.3
Woo, H.A.4
Rhee, S.G.5
-
106
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469(7331):498-503.
-
(2011)
Nature
, vol.469
, Issue.7331
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
107
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill JS, et al. (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469(7331):554-558.
-
(2011)
Nature
, vol.469
, Issue.7331
, pp. 554-558
-
-
O'Neill, J.S.1
-
108
-
-
84893442805
-
Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
-
Gomes AP, et al. (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624-1638.
-
(2013)
Cell
, vol.155
, Issue.7
, pp. 1624-1638
-
-
Gomes, A.P.1
-
109
-
-
84907441244
-
Sirtuins and the circadian clock: Bridging chromatin and metabolism
-
Masri S, Sassone-Corsi P (2014) Sirtuins and the circadian clock: Bridging chromatin and metabolism. Sci Signal 7(342):re6.
-
(2014)
Sci Signal
, vol.7
, Issue.342
, pp. re6
-
-
Masri, S.1
Sassone-Corsi, P.2
-
110
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert AS, et al. (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49(1):186-199.
-
(2013)
Mol Cell
, vol.49
, Issue.1
, pp. 186-199
-
-
Hebert, A.S.1
-
111
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
ZPeek CB, et al. (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342(6158):1243417.
-
(2013)
Science
, vol.342
, Issue.6158
, pp. 1243417
-
-
Peek, C.B.1
-
112
-
-
84863086273
-
SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism
-
Hirschey MD, Shimazu T, Huang JY, Schwer B, Verdin E (2011) SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol 76:267-277.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 267-277
-
-
Hirschey, M.D.1
Shimazu, T.2
Huang, J.Y.3
Schwer, B.4
Verdin, E.5
-
113
-
-
84874479803
-
Circadian acetylome reveals regulation of mitochondrial metabolic pathways
-
Masri S, et al. (2013) Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci USA 110(9):3339-3344.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.9
, pp. 3339-3344
-
-
Masri, S.1
-
115
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317-328.
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 317-328
-
-
Asher, G.1
-
116
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama J, et al. (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450(7172):1086-1090.
-
(2007)
Nature
, vol.450
, Issue.7172
, pp. 1086-1090
-
-
Hirayama, J.1
-
117
-
-
84875881601
-
SIRT6 regulates TNF-α secretion through hydrolysis of longchain fatty acyl lysine
-
Jiang H, et al. (2013) SIRT6 regulates TNF-α secretion through hydrolysis of longchain fatty acyl lysine. Nature 496(7443):110-113.
-
(2013)
Nature
, vol.496
, Issue.7443
, pp. 110-113
-
-
Jiang, H.1
-
118
-
-
84892851452
-
Chromatin and beyond: The multitasking roles for SIRT6
-
Kugel S, Mostoslavsky R (2014) Chromatin and beyond: The multitasking roles for SIRT6. Trends Biochem Sci 39(2):72-81.
-
(2014)
Trends Biochem Sci
, vol.39
, Issue.2
, pp. 72-81
-
-
Kugel, S.1
Mostoslavsky, R.2
-
119
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288(43):31350-31356.
-
(2013)
J Biol Chem
, vol.288
, Issue.43
, pp. 31350-31356
-
-
Feldman, J.L.1
Baeza, J.2
Denu, J.M.3
-
120
-
-
84859506559
-
Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase
-
Zhang T, et al. (2012) Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J Biol Chem 287(15):12405-12416.
-
(2012)
J Biol Chem
, vol.287
, Issue.15
, pp. 12405-12416
-
-
Zhang, T.1
-
121
-
-
77956627087
-
Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G, et al. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142(6):943-953.
-
(2010)
Cell
, vol.142
, Issue.6
, pp. 943-953
-
-
Asher, G.1
|