메뉴 건너뛰기




Volumn 112, Issue 22, 2015, Pages 6863-6870

Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription

Author keywords

Chromatin; Circadian rhythms; Epigenetics; Nuclear organization

Indexed keywords

TRANSCRIPTION FACTOR CLOCK; CHROMATIN; SIRTUIN;

EID: 84930629281     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1411264111     Document Type: Article
Times cited : (55)

References (121)
  • 1
    • 84872334045 scopus 로고    scopus 로고
    • Metabolism and the circadian clock converge
    • Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93(1):107-135.
    • (2013) Physiol Rev , vol.93 , Issue.1 , pp. 107-135
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 2
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar RS, et al. (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459-464.
    • (2012) Nature , vol.485 , Issue.7399 , pp. 459-464
    • Edgar, R.S.1
  • 3
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349-1354.
    • (2010) Science , vol.330 , Issue.6009 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 5
    • 4544362674 scopus 로고    scopus 로고
    • Mammalian circadian biology: Elucidating genomewide levels of temporal organization
    • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: Elucidating genomewide levels of temporal organization. Annu Rev Genomics Hum Genet 5(1):407-441.
    • (2004) Annu Rev Genomics Hum Genet , vol.5 , Issue.1 , pp. 407-441
    • Lowrey, P.L.1    Takahashi, J.S.2
  • 6
    • 0037006807 scopus 로고    scopus 로고
    • Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
    • Duffield GE, et al. (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12(7):551-557.
    • (2002) Curr Biol , vol.12 , Issue.7 , pp. 551-557
    • Duffield, G.E.1
  • 7
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307-320.
    • (2002) Cell , vol.109 , Issue.3 , pp. 307-320
    • Panda, S.1
  • 8
    • 0037007625 scopus 로고    scopus 로고
    • Extensive and divergent circadian gene expression in liver and heart
    • Storch KF, et al. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78-83.
    • (2002) Nature , vol.417 , Issue.6884 , pp. 78-83
    • Storch, K.F.1
  • 9
    • 0036682099 scopus 로고    scopus 로고
    • A transcription factor response element for gene expression during circadian night
    • Ueda HR, et al. (2002) A transcription factor response element for gene expression during circadian night. Nature 418(6897):534-539.
    • (2002) Nature , vol.418 , Issue.6897 , pp. 534-539
    • Ueda, H.R.1
  • 10
    • 77951927020 scopus 로고    scopus 로고
    • Suprachiasmatic nucleus: Cell autonomy and network properties
    • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: Cell autonomy and network properties. Annu Rev Physiol 72:551-577.
    • (2010) Annu Rev Physiol , vol.72 , pp. 551-577
    • Welsh, D.K.1    Takahashi, J.S.2    Kay, S.A.3
  • 11
    • 0021747078 scopus 로고
    • Effects of bilateral suprachiasmatic nucleus lesions on the circadian rhythms in a diurnal rodent, the Siberian chipmunk (Eutamias sibiricus)
    • Sato T, Kawamura H (1984) Effects of bilateral suprachiasmatic nucleus lesions on the circadian rhythms in a diurnal rodent, the Siberian chipmunk (Eutamias sibiricus). J Comp Physiol 155(6):745-752.
    • (1984) J Comp Physiol , vol.155 , Issue.6 , pp. 745-752
    • Sato, T.1    Kawamura, H.2
  • 12
    • 0015353260 scopus 로고
    • Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
    • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69(6):1583-1586.
    • (1972) Proc Natl Acad Sci USA , vol.69 , Issue.6 , pp. 1583-1586
    • Stephan, F.K.1    Zucker, I.2
  • 13
    • 84895882455 scopus 로고    scopus 로고
    • Epigenetic control and the circadian clock: Linking metabolism to neuronal responses
    • Orozco-Solis R, Sassone-Corsi P (2014) Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience 264:76-87.
    • (2014) Neuroscience , vol.264 , pp. 76-87
    • Orozco-Solis, R.1    Sassone-Corsi, P.2
  • 14
    • 77958504804 scopus 로고    scopus 로고
    • Clocks not winding down: Unravelling circadian networks
    • Zhang EE, Kay SA (2010) Clocks not winding down: Unravelling circadian networks. Nat Rev Mol Cell Biol 11(11):764-776.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , Issue.11 , pp. 764-776
    • Zhang, E.E.1    Kay, S.A.2
  • 15
    • 75849128796 scopus 로고    scopus 로고
    • Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock
    • Lee H, Chen R, Lee Y, Yoo S, Lee C (2009) Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proc Natl Acad Sci USA 106(50):21359-21364.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.50 , pp. 21359-21364
    • Lee, H.1    Chen, R.2    Lee, Y.3    Yoo, S.4    Lee, C.5
  • 16
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino L, et al. (2007) SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316(5826):900-904.
    • (2007) Science , vol.316 , Issue.5826 , pp. 900-904
    • Busino, L.1
  • 17
    • 84874772651 scopus 로고    scopus 로고
    • FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
    • Hirano A, et al. (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152(5):1106-1118.
    • (2013) Cell , vol.152 , Issue.5 , pp. 1106-1118
    • Hirano, A.1
  • 18
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
    • Siepka SM, et al. (2007) Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129(5):1011-1023.
    • (2007) Cell , vol.129 , Issue.5 , pp. 1011-1023
    • Siepka, S.M.1
  • 19
    • 84874768419 scopus 로고    scopus 로고
    • Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
    • Yoo SH, et al. (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152(5):1091-1105.
    • (2013) Cell , vol.152 , Issue.5 , pp. 1091-1105
    • Yoo, S.H.1
  • 21
    • 84877929035 scopus 로고    scopus 로고
    • The circadian epigenome: How metabolism talks to chromatin remodeling
    • Aguilar-Arnal L, Sassone-Corsi P (2013) The circadian epigenome: How metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25(2):170-176.
    • (2013) Curr Opin Cell Biol , vol.25 , Issue.2 , pp. 170-176
    • Aguilar-Arnal, L.1    Sassone-Corsi, P.2
  • 22
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497-508.
    • (2006) Cell , vol.125 , Issue.3 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 23
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177-182.
    • (2003) Nature , vol.421 , Issue.6919 , pp. 177-182
    • Etchegaray, J.P.1    Lee, C.2    Wade, P.A.3    Reppert, S.M.4
  • 24
    • 77957869145 scopus 로고    scopus 로고
    • Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock
    • Lee Y, et al. (2010) Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci 123(Pt 20):3547-3557.
    • (2010) J Cell Sci , vol.123 , Issue.20 , pp. 3547-3557
    • Lee, Y.1
  • 25
    • 1342282943 scopus 로고    scopus 로고
    • Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
    • Curtis AM, et al. (2004) Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 279(8):7091-7097.
    • (2004) J Biol Chem , vol.279 , Issue.8 , pp. 7091-7097
    • Curtis, A.M.1
  • 26
    • 0033825665 scopus 로고    scopus 로고
    • Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3
    • Takahata S, et al. (2000) Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 5(9):739-747.
    • (2000) Genes Cells , vol.5 , Issue.9 , pp. 739-747
    • Takahata, S.1
  • 27
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332(6036):1436-1439.
    • (2011) Science , vol.332 , Issue.6036 , pp. 1436-1439
    • Duong, H.A.1    Robles, M.S.2    Knutti, D.3    Weitz, C.J.4
  • 28
    • 3042709817 scopus 로고    scopus 로고
    • Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
    • Naruse Y, et al. (2004) Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol 24(14):6278-6287.
    • (2004) Mol Cell Biol , vol.24 , Issue.14 , pp. 6278-6287
    • Naruse, Y.1
  • 29
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D, et al. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315-1319.
    • (2011) Science , vol.331 , Issue.6022 , pp. 1315-1319
    • Feng, D.1
  • 31
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329-340.
    • (2008) Cell , vol.134 , Issue.2 , pp. 329-340
    • Nakahata, Y.1
  • 32
    • 84905389924 scopus 로고    scopus 로고
    • Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
    • Masri S, et al. (2014) Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158(3):659-672.
    • (2014) Cell , vol.158 , Issue.3 , pp. 659-672
    • Masri, S.1
  • 33
    • 0033695926 scopus 로고    scopus 로고
    • Light induces chromatin modification in cells of the mammalian circadian clock
    • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3(12):1241-1247.
    • (2000) Nat Neurosci , vol.3 , Issue.12 , pp. 1241-1247
    • Crosio, C.1    Cermakian, N.2    Allis, C.D.3    Sassone-Corsi, P.4
  • 34
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38(3):369-374.
    • (2006) Nat Genet , vol.38 , Issue.3 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 35
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17(12):1414-1421.
    • (2010) Nat Struct Mol Biol , vol.17 , Issue.12 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 36
    • 84872875650 scopus 로고    scopus 로고
    • Histone methyltransferase MLL3 contributes to genomescale circadian transcription
    • Valekunja UK, et al. (2013) Histone methyltransferase MLL3 contributes to genomescale circadian transcription. Proc Natl Acad Sci USA 110(4):1554-1559.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.4 , pp. 1554-1559
    • Valekunja, U.K.1
  • 37
    • 33746344698 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is required for mammalian circadian clock function
    • Etchegaray JP, et al. (2006) The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 281(30):21209-21215.
    • (2006) J Biol Chem , vol.281 , Issue.30 , pp. 21209-21215
    • Etchegaray, J.P.1
  • 38
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
    • DiTacchio L, et al. (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333(6051):1881-1885.
    • (2011) Science , vol.333 , Issue.6051 , pp. 1881-1885
    • DiTacchio, L.1
  • 39
    • 84896715662 scopus 로고    scopus 로고
    • Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting
    • Nam HJ, et al. (2014) Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol Cell 53(5):791-805.
    • (2014) Mol Cell , vol.53 , Issue.5 , pp. 791-805
    • Nam, H.J.1
  • 40
    • 84891677378 scopus 로고    scopus 로고
    • CLOCK:BMAL1 is a pioneer-like transcription factor
    • Menet JS, Pescatore S, Rosbash M (2014) CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev 28(1):8-13.
    • (2014) Genes Dev , vol.28 , Issue.1 , pp. 8-13
    • Menet, J.S.1    Pescatore, S.2    Rosbash, M.3
  • 41
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike N, et al. (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349-354.
    • (2012) Science , vol.338 , Issue.6105 , pp. 349-354
    • Koike, N.1
  • 42
    • 84881506759 scopus 로고    scopus 로고
    • Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
    • Menet JS, Rodriguez J, Abruzzi KC, Rosbash M (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1:e00011.
    • (2012) eLife , vol.1
    • Menet, J.S.1    Rodriguez, J.2    Abruzzi, K.C.3    Rosbash, M.4
  • 43
    • 84870288931 scopus 로고    scopus 로고
    • Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
    • Le Martelot G, et al.; CycliX Consortium (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442.
    • (2012) PLoS Biol , vol.10 , Issue.11
    • Le Martelot, G.1
  • 44
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • Padmanabhan K, Robles MS, Westerling T, Weitz CJ (2012) Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337(6094):599-602.
    • (2012) Science , vol.337 , Issue.6094 , pp. 599-602
    • Padmanabhan, K.1    Robles, M.S.2    Westerling, T.3    Weitz, C.J.4
  • 45
    • 84886813829 scopus 로고    scopus 로고
    • Emerging roles for post-transcriptional regulation in circadian clocks
    • Lim C, Allada R (2013) Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci 16(11):1544-1550.
    • (2013) Nat Neurosci , vol.16 , Issue.11 , pp. 1544-1550
    • Lim, C.1    Allada, R.2
  • 46
    • 84867670963 scopus 로고    scopus 로고
    • Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
    • Morf J, et al. (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338(6105):379-383.
    • (2012) Science , vol.338 , Issue.6105 , pp. 379-383
    • Morf, J.1
  • 47
    • 84862496485 scopus 로고    scopus 로고
    • Regulation of alternative splicing by the circadian clock and food related cues
    • McGlincy NJ, et al. (2012) Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 13(6):R54.
    • (2012) Genome Biol , vol.13 , Issue.6 , pp. R54
    • McGlincy, N.J.1
  • 48
    • 84901229145 scopus 로고    scopus 로고
    • Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice
    • Preußner M, et al. (2014) Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol Cell 54(4):651-662.
    • (2014) Mol Cell , vol.54 , Issue.4 , pp. 651-662
    • Preußner, M.1
  • 49
    • 84871581540 scopus 로고    scopus 로고
    • Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
    • Kojima S, Sher-Chen EL, Green CB (2012) Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 26(24):2724-2736.
    • (2012) Genes Dev , vol.26 , Issue.24 , pp. 2724-2736
    • Kojima, S.1    Sher-Chen, E.L.2    Green, C.B.3
  • 50
    • 84887875528 scopus 로고    scopus 로고
    • RNA-methylation-dependent RNA processing controls the speed of the circadian clock
    • Fustin JM, et al. (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155(4):793-806.
    • (2013) Cell , vol.155 , Issue.4 , pp. 793-806
    • Fustin, J.M.1
  • 51
    • 84872263009 scopus 로고    scopus 로고
    • Protein and nucleic acid methylating enzymes: Mechanisms and regulation
    • Le DD, Fujimori DG (2012) Protein and nucleic acid methylating enzymes: mechanisms and regulation. Curr Opin Chem Biol 16(5-6):507-515.
    • (2012) Curr Opin Chem Biol , vol.16 , Issue.5 , pp. 507-515
    • Le, D.D.1    Fujimori, D.G.2
  • 52
    • 79952255290 scopus 로고    scopus 로고
    • Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
    • Hatanaka F, et al. (2010) Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol Cell Biol 30(24):5636-5648.
    • (2010) Mol Cell Biol , vol.30 , Issue.24 , pp. 5636-5648
    • Hatanaka, F.1
  • 53
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey G, et al. (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9(2):e1000595.
    • (2011) PLoS Biol , vol.9 , Issue.2 , pp. e1000595
    • Rey, G.1
  • 54
    • 84870553909 scopus 로고    scopus 로고
    • Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
    • Vollmers C, et al. (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16(6):833-845.
    • (2012) Cell Metab , vol.16 , Issue.6 , pp. 833-845
    • Vollmers, C.1
  • 55
    • 84886240503 scopus 로고    scopus 로고
    • miRNAs are required for generating a time delay critical for the circadian oscillator
    • Chen R, D'Alessandro M, Lee C (2013) miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol 23(20):1959-1968.
    • (2013) Curr Biol , vol.23 , Issue.20 , pp. 1959-1968
    • Chen, R.1    D'Alessandro, M.2    Lee, C.3
  • 56
    • 84902338279 scopus 로고    scopus 로고
    • MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
    • Du NH, Arpat AB, De Matos M, Gatfield D (2014) MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 3:e02510.
    • (2014) eLife , vol.3
    • Du, N.H.1    Arpat, A.B.2    De Matos, M.3    Gatfield, D.4
  • 57
    • 66149167562 scopus 로고    scopus 로고
    • Integration of microRNA miR-122 in hepatic circadian gene expression
    • Gatfield D, et al. (2009) Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23(11):1313-1326.
    • (2009) Genes Dev , vol.23 , Issue.11 , pp. 1313-1326
    • Gatfield, D.1
  • 58
    • 34249713720 scopus 로고    scopus 로고
    • microRNA modulation of circadian-clock period and entrainment
    • Cheng HY, et al. (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54(5):813-829.
    • (2007) Neuron , vol.54 , Issue.5 , pp. 813-829
    • Cheng, H.Y.1
  • 59
    • 84857367540 scopus 로고    scopus 로고
    • Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit
    • Luo W, Sehgal A (2012) Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell 148(4):765-779.
    • (2012) Cell , vol.148 , Issue.4 , pp. 765-779
    • Luo, W.1    Sehgal, A.2
  • 60
    • 33646729244 scopus 로고    scopus 로고
    • Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations
    • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4(5):e138.
    • (2006) PLoS Biol , vol.4 , Issue.5 , pp. e138
    • Branco, M.R.1    Pombo, A.2
  • 61
    • 84855297335 scopus 로고    scopus 로고
    • A decade of 3C technologies: Insights into nuclear organization
    • de Wit E, de Laat W (2012) A decade of 3C technologies: Insights into nuclear organization. Genes Dev 26(1):11-24.
    • (2012) Genes Dev , vol.26 , Issue.1 , pp. 11-24
    • De Wit, E.1    De Laat, W.2
  • 62
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora EP, et al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381-385.
    • (2012) Nature , vol.485 , Issue.7398 , pp. 381-385
    • Nora, E.P.1
  • 63
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376-380.
    • (2012) Nature , vol.485 , Issue.7398 , pp. 376-380
    • Dixon, J.R.1
  • 64
    • 84893928513 scopus 로고    scopus 로고
    • Transcription in the context of the 3D nucleus
    • Wendt KS, Grosveld FG (2014) Transcription in the context of the 3D nucleus. Curr Opin Genet Dev 25:62-67.
    • (2014) Curr Opin Genet Dev , vol.25 , pp. 62-67
    • Wendt, K.S.1    Grosveld, F.G.2
  • 65
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton T, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458-472.
    • (2012) Cell , vol.148 , Issue.3 , pp. 458-472
    • Sexton, T.1
  • 66
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289-293.
    • (2009) Science , vol.326 , Issue.5950 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 67
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen L, et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948-951.
    • (2008) Nature , vol.453 , Issue.7197 , pp. 948-951
    • Guelen, L.1
  • 68
    • 76049087668 scopus 로고    scopus 로고
    • Oscillations in supercoiling drive circadian gene expression in cyanobacteria
    • Vijayan V, Zuzow R, O'Shea EK (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 106(52):22564-22568.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.52 , pp. 22564-22568
    • Vijayan, V.1    Zuzow, R.2    O'Shea, E.K.3
  • 69
    • 36749033238 scopus 로고    scopus 로고
    • Circadian rhythms of superhelical status of DNA in cyanobacteria
    • Woelfle MA, Xu Y, Qin X, Johnson CH (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci USA 104(47):18819-18824.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.47 , pp. 18819-18824
    • Woelfle, M.A.1    Xu, Y.2    Qin, X.3    Johnson, C.H.4
  • 70
    • 84868097990 scopus 로고    scopus 로고
    • Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
    • Stratmann M, Suter DM, Molina N, Naef F, Schibler U (2012) Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell 48(2):277-287.
    • (2012) Mol Cell , vol.48 , Issue.2 , pp. 277-287
    • Stratmann, M.1    Suter, D.M.2    Molina, N.3    Naef, F.4    Schibler, U.5
  • 71
    • 84885433507 scopus 로고    scopus 로고
    • Cycles in spatial and temporal chromosomal organization driven by the circadian clock
    • Aguilar-Arnal L, et al. (2013) Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat Struct Mol Biol 20(10):1206-1213.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.10 , pp. 1206-1213
    • Aguilar-Arnal, L.1
  • 72
    • 73349090560 scopus 로고    scopus 로고
    • Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells
    • Schoenfelder S, et al. (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53-61.
    • (2010) Nat Genet , vol.42 , Issue.1 , pp. 53-61
    • Schoenfelder, S.1
  • 73
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions
    • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104-115.
    • (2007) Nat Rev Genet , vol.8 , Issue.2 , pp. 104-115
    • Lanctôt, C.1    Cheutin, T.2    Cremer, M.3    Cavalli, G.4    Cremer, T.5
  • 74
    • 5444243359 scopus 로고    scopus 로고
    • Active genes dynamically colocalize to shared sites of ongoing transcription
    • Osborne CS, et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065-1071.
    • (2004) Nat Genet , vol.36 , Issue.10 , pp. 1065-1071
    • Osborne, C.S.1
  • 75
    • 84874587482 scopus 로고    scopus 로고
    • Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation
    • Hakim O, et al. (2013) Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation. Genome Res 23(3):462-472.
    • (2013) Genome Res , vol.23 , Issue.3 , pp. 462-472
    • Hakim, O.1
  • 76
    • 79955569948 scopus 로고    scopus 로고
    • Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements
    • Hakim O, et al. (2011) Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res 21(5):697-706.
    • (2011) Genome Res , vol.21 , Issue.5 , pp. 697-706
    • Hakim, O.1
  • 77
    • 84887620842 scopus 로고    scopus 로고
    • A high-resolution map of the three-dimensional chromatin interactome in human cells
    • Jin F, et al. (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290-294.
    • (2013) Nature , vol.503 , Issue.7475 , pp. 290-294
    • Jin, F.1
  • 78
    • 85027929606 scopus 로고    scopus 로고
    • Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization
    • Denholtz M, et al. (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13(5):602-616.
    • (2013) Cell Stem Cell , vol.13 , Issue.5 , pp. 602-616
    • Denholtz, M.1
  • 79
    • 84887835943 scopus 로고    scopus 로고
    • Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency
    • Wei Z, et al. (2013) Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13(1):36-47.
    • (2013) Cell Stem Cell , vol.13 , Issue.1 , pp. 36-47
    • Wei, Z.1
  • 80
    • 84893155560 scopus 로고    scopus 로고
    • Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming
    • Zhang H, et al. (2013) Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13(1):30-35.
    • (2013) Cell Stem Cell , vol.13 , Issue.1 , pp. 30-35
    • Zhang, H.1
  • 81
    • 84870379849 scopus 로고    scopus 로고
    • Hi-C: A comprehensive technique to capture the conformation of genomes
    • Belton JM, et al. (2012) Hi-C: A comprehensive technique to capture the conformation of genomes. Methods 58(3):268-276.
    • (2012) Methods , vol.58 , Issue.3 , pp. 268-276
    • Belton, J.M.1
  • 83
    • 84894590704 scopus 로고    scopus 로고
    • Reprogramming of the circadian clock by nutritional challenge
    • Eckel-Mahan KL, et al. (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155(7):1464-1478.
    • (2013) Cell , vol.155 , Issue.7 , pp. 1464-1478
    • Eckel-Mahan, K.L.1
  • 84
    • 84859459231 scopus 로고    scopus 로고
    • Coordination of the transcriptome and metabolome by the circadian clock
    • Eckel-Mahan KL, et al. (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109(14):5541-5546.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.14 , pp. 5541-5546
    • Eckel-Mahan, K.L.1
  • 85
    • 84862008430 scopus 로고    scopus 로고
    • Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
    • Hatori M, et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848-860.
    • (2012) Cell Metab , vol.15 , Issue.6 , pp. 848-860
    • Hatori, M.1
  • 86
    • 84871917034 scopus 로고    scopus 로고
    • Human blood metabolite timetable indicates internal body time
    • Kasukawa T, et al. (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci USA 109(37):15036-15041.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.37 , pp. 15036-15041
    • Kasukawa, T.1
  • 87
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng D, Lazar MA (2012) Clocks, metabolism, and the epigenome. Mol Cell 47(2):158-167.
    • (2012) Mol Cell , vol.47 , Issue.2 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 88
    • 84856090681 scopus 로고    scopus 로고
    • Connecting threads: Epigenetics and metabolism
    • Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: Epigenetics and metabolism. Cell 148(1-2):24-28.
    • (2012) Cell , vol.148 , Issue.1-2 , pp. 24-28
    • Katada, S.1    Imhof, A.2    Sassone-Corsi, P.3
  • 89
    • 84891940889 scopus 로고    scopus 로고
    • Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
    • Mauvoisin D, et al. (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci USA 111(1):167-172.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.1 , pp. 167-172
    • Mauvoisin, D.1
  • 90
    • 84896842340 scopus 로고    scopus 로고
    • Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1
    • Sahar S, et al. (2014) Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 289(9):6091-6097.
    • (2014) J Biol Chem , vol.289 , Issue.9 , pp. 6091-6097
    • Sahar, S.1
  • 91
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen KE, et al. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076-1080.
    • (2009) Science , vol.324 , Issue.5930 , pp. 1076-1080
    • Wellen, K.E.1
  • 92
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang N, et al. (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222-226.
    • (2013) Science , vol.339 , Issue.6116 , pp. 222-226
    • Shyh-Chang, N.1
  • 93
    • 84874484700 scopus 로고    scopus 로고
    • Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
    • Bellet MM, et al. (2013) Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 110(9):3333-3338.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.9 , pp. 3333-3338
    • Bellet, M.M.1
  • 94
    • 65549118773 scopus 로고    scopus 로고
    • Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
    • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654-657.
    • (2009) Science , vol.324 , Issue.5927 , pp. 654-657
    • Nakahata, Y.1    Sahar, S.2    Astarita, G.3    Kaluzova, M.4    Sassone-Corsi, P.5
  • 95
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey KM, et al. (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651-654.
    • (2009) Science , vol.324 , Issue.5927 , pp. 651-654
    • Ramsey, K.M.1
  • 96
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293(5529):510-514.
    • (2001) Science , vol.293 , Issue.5529 , pp. 510-514
    • Rutter, J.1    Reick, M.2    Wu, L.C.3    McKnight, S.L.4
  • 97
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • Schmalen I, et al. (2014) Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157(5):1203-1215.
    • (2014) Cell , vol.157 , Issue.5 , pp. 1203-1215
    • Schmalen, I.1
  • 98
    • 84875899177 scopus 로고    scopus 로고
    • SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket
    • Xing W, et al. (2013) SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496(7443):64-68.
    • (2013) Nature , vol.496 , Issue.7443 , pp. 64-68
    • Xing, W.1
  • 99
    • 84865558040 scopus 로고    scopus 로고
    • Identification of small molecule activators of cryptochrome
    • Hirota T, et al. (2012) Identification of small molecule activators of cryptochrome. Science 337(6098):1094-1097.
    • (2012) Science , vol.337 , Issue.6098 , pp. 1094-1097
    • Hirota, T.1
  • 100
    • 84873351364 scopus 로고    scopus 로고
    • Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
    • Kaasik K, et al. (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17(2):291-302.
    • (2013) Cell Metab , vol.17 , Issue.2 , pp. 291-302
    • Kaasik, K.1
  • 101
    • 84873362932 scopus 로고    scopus 로고
    • O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
    • Li MD, et al. (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17(2):303-310.
    • (2013) Cell Metab , vol.17 , Issue.2 , pp. 303-310
    • Li, M.D.1
  • 102
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16(1):9-17.
    • (2012) Cell Metab , vol.16 , Issue.1 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 103
    • 84872663835 scopus 로고    scopus 로고
    • AMPK at the crossroads of circadian clocks and metabolism
    • Jordan SD, Lamia KA (2013) AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 366(2):163-169.
    • (2013) Mol Cell Endocrinol , vol.366 , Issue.2 , pp. 163-169
    • Jordan, S.D.1    Lamia, K.A.2
  • 104
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia KA, et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437-440.
    • (2009) Science , vol.326 , Issue.5951 , pp. 437-440
    • Lamia, K.A.1
  • 105
    • 84906322941 scopus 로고    scopus 로고
    • Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
    • Cho CS, Yoon HJ, Kim JY, Woo HA, Rhee SG (2014) Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci USA 111(33):12043-12048.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.33 , pp. 12043-12048
    • Cho, C.S.1    Yoon, H.J.2    Kim, J.Y.3    Woo, H.A.4    Rhee, S.G.5
  • 106
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469(7331):498-503.
    • (2011) Nature , vol.469 , Issue.7331 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 107
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • O'Neill JS, et al. (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469(7331):554-558.
    • (2011) Nature , vol.469 , Issue.7331 , pp. 554-558
    • O'Neill, J.S.1
  • 108
    • 84893442805 scopus 로고    scopus 로고
    • Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
    • Gomes AP, et al. (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624-1638.
    • (2013) Cell , vol.155 , Issue.7 , pp. 1624-1638
    • Gomes, A.P.1
  • 109
    • 84907441244 scopus 로고    scopus 로고
    • Sirtuins and the circadian clock: Bridging chromatin and metabolism
    • Masri S, Sassone-Corsi P (2014) Sirtuins and the circadian clock: Bridging chromatin and metabolism. Sci Signal 7(342):re6.
    • (2014) Sci Signal , vol.7 , Issue.342 , pp. re6
    • Masri, S.1    Sassone-Corsi, P.2
  • 110
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert AS, et al. (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49(1):186-199.
    • (2013) Mol Cell , vol.49 , Issue.1 , pp. 186-199
    • Hebert, A.S.1
  • 111
    • 84884248040 scopus 로고    scopus 로고
    • Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
    • ZPeek CB, et al. (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342(6158):1243417.
    • (2013) Science , vol.342 , Issue.6158 , pp. 1243417
    • Peek, C.B.1
  • 113
    • 84874479803 scopus 로고    scopus 로고
    • Circadian acetylome reveals regulation of mitochondrial metabolic pathways
    • Masri S, et al. (2013) Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci USA 110(9):3339-3344.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.9 , pp. 3339-3344
    • Masri, S.1
  • 115
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317-328.
    • (2008) Cell , vol.134 , Issue.2 , pp. 317-328
    • Asher, G.1
  • 116
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama J, et al. (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450(7172):1086-1090.
    • (2007) Nature , vol.450 , Issue.7172 , pp. 1086-1090
    • Hirayama, J.1
  • 117
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-α secretion through hydrolysis of longchain fatty acyl lysine
    • Jiang H, et al. (2013) SIRT6 regulates TNF-α secretion through hydrolysis of longchain fatty acyl lysine. Nature 496(7443):110-113.
    • (2013) Nature , vol.496 , Issue.7443 , pp. 110-113
    • Jiang, H.1
  • 118
    • 84892851452 scopus 로고    scopus 로고
    • Chromatin and beyond: The multitasking roles for SIRT6
    • Kugel S, Mostoslavsky R (2014) Chromatin and beyond: The multitasking roles for SIRT6. Trends Biochem Sci 39(2):72-81.
    • (2014) Trends Biochem Sci , vol.39 , Issue.2 , pp. 72-81
    • Kugel, S.1    Mostoslavsky, R.2
  • 119
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288(43):31350-31356.
    • (2013) J Biol Chem , vol.288 , Issue.43 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 120
    • 84859506559 scopus 로고    scopus 로고
    • Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase
    • Zhang T, et al. (2012) Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J Biol Chem 287(15):12405-12416.
    • (2012) J Biol Chem , vol.287 , Issue.15 , pp. 12405-12416
    • Zhang, T.1
  • 121
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G, et al. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142(6):943-953.
    • (2010) Cell , vol.142 , Issue.6 , pp. 943-953
    • Asher, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.