-
1
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS. 2010. Circadian integration of metabolism and energetics. Science 330:1349-1354. http://dx.doi.org/10.1126/science.1195027.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
2
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert S, Weaver D. 2002. Coordination of circadian timing in mammals. Nature 418:935-941. http://dx.doi.org/10.1038/nature00965.
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.1
Weaver, D.2
-
3
-
-
0042490526
-
A clockwork web: circadian timing in brain and periphery, in health and disease
-
Hastings MH, Reddy AB, Maywood ES. 2003. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4:649-661. http://dx.doi.org/10.1038/nrn1177.
-
(2003)
Nat. Rev. Neurosci.
, vol.4
, pp. 649-661
-
-
Hastings, M.H.1
Reddy, A.B.2
Maywood, E.S.3
-
4
-
-
2642581051
-
Resetting mechanism of central and peripheral circadian clocks in mammals
-
Hirota T, Fukada Y. 2004. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci. 21:359-368. http://dx.doi.org/10.2108/zsj.21.359.
-
(2004)
Zoolog. Sci.
, vol.21
, pp. 359-368
-
-
Hirota, T.1
Fukada, Y.2
-
5
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13:125-137. http://dx.doi.org/10.1016/j.cmet.2011.01.006.
-
(2011)
Cell Metab.
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
6
-
-
0033593306
-
Molecular bases for circadian clocks
-
Dunlap J. 1999. Molecular bases for circadian clocks. Cell 96:271-290. http://dx.doi.org/10.1016/S0092-8674(00)80566-8.
-
(1999)
Cell
, vol.96
, pp. 271-290
-
-
Dunlap, J.1
-
7
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis N, Staknis D, Nguyen H, Davis F, Wilsbacher L, King D, Takahashi J, Weitz C. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564-1569. http://dx.doi.org/10.1126/science.280.5369.1564.
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
Staknis, D.2
Nguyen, H.3
Davis, F.4
Wilsbacher, L.5
King, D.6
Takahashi, J.7
Weitz, C.8
-
8
-
-
20044396172
-
A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo
-
Yoo S, Ko C, Lowrey P, Buhr E, Song E, Chang S, Yoo O, Yamazaki S, Lee C, Takahashi J. 2005. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl. Acad. Sci. U. S. A. 102:2608-2613. http://dx.doi.org/10.1073/pnas.0409763102.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 2608-2613
-
-
Yoo, S.1
Ko, C.2
Lowrey, P.3
Buhr, E.4
Song, E.5
Chang, S.6
Yoo, O.7
Yamazaki, S.8
Lee, C.9
Takahashi, J.10
-
9
-
-
40249093080
-
Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy
-
Kiyohara Y, Nishii K, Ukai-Tadenuma M, Ueda H, Uchiyama Y, Yagita K. 2008. Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy. Nucleic Acids Res. 36:e23. http://dx.doi.org/10.1093/nar/gkn018.
-
(2008)
Nucleic Acids Res.
, vol.36
-
-
Kiyohara, Y.1
Nishii, K.2
Ukai-Tadenuma, M.3
Ueda, H.4
Uchiyama, Y.5
Yagita, K.6
-
10
-
-
54449093513
-
Analysis and synthesis of high-amplitude cis-elements in the mammalian circadian clock
-
Kumaki Y, Ukai-Tadenuma M, Uno KD, Nishio J, Masumoto KH, Nagano M, Komori T, Shigeyoshi Y, Hogenesch JB, Ueda HR. 2008. Analysis and synthesis of high-amplitude cis-elements in the mammalian circadian clock. Proc. Natl. Acad. Sci. U. S. A. 105:14946-14951. http://dx.doi.org/10.1073/pnas.0802636105.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 14946-14951
-
-
Kumaki, Y.1
Ukai-Tadenuma, M.2
Uno, K.D.3
Nishio, J.4
Masumoto, K.H.5
Nagano, M.6
Komori, T.7
Shigeyoshi, Y.8
Hogenesch, J.B.9
Ueda, H.R.10
-
11
-
-
78651491409
-
Delay in feedback repression by cryptochrome 1 is required for circadian clock function
-
Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR. 2011. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144:268-281. http://dx.doi.org/10.1016/j.cell.2010.12.019.
-
(2011)
Cell
, vol.144
, pp. 268-281
-
-
Ukai-Tadenuma, M.1
Yamada, R.G.2
Xu, H.3
Ripperger, J.A.4
Liu, A.C.5
Ueda, H.R.6
-
12
-
-
77956647457
-
Challenges in synthetically designing mammalian circadian clocks
-
Susaki EA, Stelling J, Ueda HR. 2010. Challenges in synthetically designing mammalian circadian clocks. Curr. Opin. Biotechnol. 21:556-565. http://dx.doi.org/10.1016/j.copbio.2010.07.011.
-
(2010)
Curr. Opin. Biotechnol.
, vol.21
, pp. 556-565
-
-
Susaki, E.A.1
Stelling, J.2
Ueda, H.R.3
-
13
-
-
33847779219
-
Post-translational modifications regulate the ticking of the circadian clock
-
Gallego M, Virshup D. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139-148. http://dx.doi.org/10.1038/nrm2106.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 139-148
-
-
Gallego, M.1
Virshup, D.2
-
14
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee C, Etchegaray J, Cagampang F, Loudon A, Reppert S. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855-867. http://dx.doi.org/10.1016/S0092-8674(01)00610-9.
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.2
Cagampang, F.3
Loudon, A.4
Reppert, S.5
-
15
-
-
33746235094
-
Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES
-
Kondratov R, Kondratova A, Lee C, Gorbacheva V, Chernov M, Antoch M. 2006. Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5:890-895. http://dx.doi.org/10.4161/cc.5.8.2684.
-
(2006)
Cell Cycle
, vol.5
, pp. 890-895
-
-
Kondratov, R.1
Kondratova, A.2
Lee, C.3
Gorbacheva, V.4
Chernov, M.5
Antoch, M.6
-
16
-
-
67650094963
-
Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription
-
Yoshitane H, Takao T, Satomi Y, Du N, Okano T, Fukada Y. 2009. Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol. Cell. Biol. 29:3675-3686. http://dx.doi.org/10.1128/MCB.01864-08.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 3675-3686
-
-
Yoshitane, H.1
Takao, T.2
Satomi, Y.3
Du, N.4
Okano, T.5
Fukada, Y.6
-
17
-
-
84860489069
-
JNK regulates the photic response of the mammalian circadian clock
-
Yoshitane H, Honma S, Imamura K, Nakajima H, Nishide SY, Ono D, Kiyota H, Shinozaki N, Matsuki H, Wada N, Doi H, Hamada T, Honma K, Fukada Y. 2012. JNK regulates the photic response of the mammalian circadian clock. EMBO Rep. 13:455-461. http://dx.doi.org/10.1038/embor.2012.37.
-
(2012)
EMBO Rep.
, vol.13
, pp. 455-461
-
-
Yoshitane, H.1
Honma, S.2
Imamura, K.3
Nakajima, H.4
Nishide, S.Y.5
Ono, D.6
Kiyota, H.7
Shinozaki, N.8
Matsuki, H.9
Wada, N.10
Doi, H.11
Hamada, T.12
Honma, K.13
Fukada, Y.14
-
18
-
-
84863751285
-
Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex
-
Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS. 2012. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337:189-194. http://dx.doi.org/10.1126/science.1222804.
-
(2012)
Science
, vol.337
, pp. 189-194
-
-
Huang, N.1
Chelliah, Y.2
Shan, Y.3
Taylor, C.A.4
Yoo, S.H.5
Partch, C.6
Green, C.B.7
Zhang, H.8
Takahashi, J.S.9
-
19
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger J, Schibler U. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369-374. http://dx.doi.org/10.1038/ng1738.
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.1
Schibler, U.2
-
20
-
-
79952255290
-
Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
-
Hatanaka F, Matsubara C, Myung J, Yoritaka T, Kamimura N, Tsutsumi S, Kanai A, Suzuki Y, Sassone-Corsi P, Aburatani H, Sugano S, Takumi T. 2010. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell. Biol. 30:5636-5648. http://dx.doi.org/10.1128/MCB.00781-10.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 5636-5648
-
-
Hatanaka, F.1
Matsubara, C.2
Myung, J.3
Yoritaka, T.4
Kamimura, N.5
Tsutsumi, S.6
Kanai, A.7
Suzuki, Y.8
Sassone-Corsi, P.9
Aburatani, H.10
Sugano, S.11
Takumi, T.12
-
21
-
-
79952261359
-
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. 2011. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e1000595. http://dx.doi.org/10.1371/journal.pbio.1000595.
-
(2011)
PLoS Biol.
, vol.9
-
-
Rey, G.1
Cesbron, F.2
Rougemont, J.3
Reinke, H.4
Brunner, M.5
Naef, F.6
-
22
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349-354. http://dx.doi.org/10.1126/science.1226339.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.H.2
Huang, H.C.3
Kumar, V.4
Lee, C.5
Kim, T.K.6
Takahashi, J.S.7
-
23
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. 2012. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife 1:e00011. http://dx.doi.org/10.7554/eLife.00011.
-
(2012)
Elife
, vol.1
-
-
Menet, J.S.1
Rodriguez, J.2
Abruzzi, K.C.3
Rosbash, M.4
-
24
-
-
80053054824
-
Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation
-
Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, Komiyama K, Okamatsu-Ogura Y, Kimura K, Saito M. 2011. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6:e25231. http://dx.doi.org/10.1371/journal.pone.0025231.
-
(2011)
PLoS One
, vol.6
-
-
Shimba, S.1
Ogawa, T.2
Hitosugi, S.3
Ichihashi, Y.4
Nakadaira, Y.5
Kobayashi, M.6
Tezuka, M.7
Kosuge, Y.8
Ishige, K.9
Ito, Y.10
Komiyama, K.11
Okamatsu-Ogura, Y.12
Kimura, K.13
Saito, M.14
-
25
-
-
0021100690
-
Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei
-
Dignam J, Lebovitz R, Roeder R. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475-1489. http://dx.doi.org/10.1093/nar/11.5.1475.
-
(1983)
Nucleic Acids Res.
, vol.11
, pp. 1475-1489
-
-
Dignam, J.1
Lebovitz, R.2
Roeder, R.3
-
26
-
-
69949156790
-
Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription
-
Sasaki M, Yoshitane H, Du N, Okano T, Fukada Y. 2009. Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J. Biol. Chem. 284:25149-25159. http://dx.doi.org/10.1074/jbc.M109.040758.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 25149-25159
-
-
Sasaki, M.1
Yoshitane, H.2
Du, N.3
Okano, T.4
Fukada, Y.5
-
27
-
-
67649884743
-
Fast and accurate short read alignment with Burrows-Wheeler transform
-
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. http://dx.doi.org/10.1093/bioinformatics/btp324.
-
(2009)
Bioinformatics
, vol.25
, pp. 1754-1760
-
-
Li, H.1
Durbin, R.2
-
28
-
-
79951753003
-
Discovering homotypic binding events at high spatial resolution
-
Guo Y, Papachristoudis G, Altshuler RC, Gerber GK, Jaakkola TS, Gifford DK, Mahony S. 2010. Discovering homotypic binding events at high spatial resolution. Bioinformatics 26:3028-3034. http://dx.doi.org/10.1093/bioinformatics/btq590.
-
(2010)
Bioinformatics
, vol.26
, pp. 3028-3034
-
-
Guo, Y.1
Papachristoudis, G.2
Altshuler, R.C.3
Gerber, G.K.4
Jaakkola, T.S.5
Gifford, D.K.6
Mahony, S.7
-
29
-
-
84875634162
-
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
-
Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14:178-192. http://dx.doi.org/10.1093/bib/bbs017.
-
(2013)
Brief. Bioinform.
, vol.14
, pp. 178-192
-
-
Thorvaldsdóttir, H.1
Robinson, J.T.2
Mesirov, J.P.3
-
30
-
-
58149189877
-
GtRNAdb: a database of transfer RNA genes detected in genomic sequence
-
Chan PP, Lowe TM. 2009. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37:D93-D97. http://dx.doi.org/10.1093/nar/gkn787.
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
Chan, P.P.1
Lowe, T.M.2
-
31
-
-
78651293534
-
miRBase: integrating microRNA annotation and deep-sequencing data
-
Kozomara A, Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:D152-D157. http://dx.doi.org/10.1093/nar/gkq1027.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
32
-
-
78649345104
-
MapSplice: accurate mapping of RNA-Seq reads for splice junction discovery
-
Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J. 2010. MapSplice: accurate mapping of RNA-Seq reads for splice junction discovery. Nucleic Acids Res. 38:e178. http://dx.doi.org/10.1093/nar/gkq622.
-
(2010)
Nucleic Acids Res.
, vol.38
-
-
Wang, K.1
Singh, D.2
Zeng, Z.3
Coleman, S.J.4
Huang, Y.5
Savich, G.L.6
He, X.7
Mieczkowski, P.8
Grimm, S.A.9
Perou, C.M.10
MacLeod, J.N.11
Chiang, D.Y.12
Prins, J.F.13
Liu, J.14
-
33
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511-515. http://dx.doi.org/10.1038/nbt.1621.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
Mortazavi, A.4
Kwan, G.5
van Baren, M.J.6
Salzberg, S.L.7
Wold, B.J.8
Pachter, L.9
-
34
-
-
84876996918
-
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
-
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R36. http://dx.doi.org/10.1186/gb-2013-14-4-r36.
-
(2013)
Genome Biol.
, vol.14
-
-
Kim, D.1
Pertea, G.2
Trapnell, C.3
Pimentel, H.4
Kelley, R.5
Salzberg, S.L.6
-
35
-
-
80255127234
-
Cutadapt removes adapter sequences from highthroughput sequencing reads
-
Martin M. 2011. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J. 17:10-12. http://dx.doi.org/10.14806/ej.17.1.200.
-
(2011)
EMBnet J.
, vol.17
, pp. 10-12
-
-
Martin, M.1
-
36
-
-
62349130698
-
Ultrafast and memoryefficient alignment of short DNA sequences to the human genome
-
Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25. http://dx.doi.org/10.1186/gb-2009-10-3-r25.
-
(2009)
Genome Biol.
, vol.10
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
37
-
-
33847382431
-
CIPC is a mammalian circadian clock protein without invertebrate homologues
-
Zhao W, Malinin N, Yang F, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz C. 2007. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 9:268-275. http://dx.doi.org/10.1038/ncb1539.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 268-275
-
-
Zhao, W.1
Malinin, N.2
Yang, F.3
Staknis, D.4
Gekakis, N.5
Maier, B.6
Reischl, S.7
Kramer, A.8
Weitz, C.9
-
38
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada S, Sassone-Corsi P. 2010. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17:1414-1421. http://dx.doi.org/10.1038/nsmb.1961.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
39
-
-
0020713543
-
Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes
-
Molday RS, MacKenzie D. 1983. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22:653-660. http://dx.doi.org/10.1021/bi00272a020.
-
(1983)
Biochemistry
, vol.22
, pp. 653-660
-
-
Molday, R.S.1
MacKenzie, D.2
-
40
-
-
13944254430
-
System-level identification of transcriptional circuits underlying mammalian circadian clocks
-
Ueda H, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37:187-192. http://dx.doi.org/10.1038/ng1504.
-
(2005)
Nat. Genet.
, vol.37
, pp. 187-192
-
-
Ueda, H.1
Hayashi, S.2
Chen, W.3
Sano, M.4
Machida, M.5
Shigeyoshi, Y.6
Iino, M.7
Hashimoto, S.8
-
41
-
-
0028685490
-
Fitting a mixture model by expectation maximization to discover motifs in biopolymers
-
Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2:28-36.
-
(1994)
Proc. Int. Conf. Intell. Syst. Mol. Biol.
, vol.2
, pp. 28-36
-
-
Bailey, T.L.1
Elkan, C.2
-
42
-
-
0037113902
-
Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts
-
Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. 2002. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 277:44244-44251. http://dx.doi.org/10.1074/jbc.M206233200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44244-44251
-
-
Hirota, T.1
Okano, T.2
Kokame, K.3
Shirotani-Ikejima, H.4
Miyata, T.5
Fukada, Y.6
-
43
-
-
75649101290
-
Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork
-
Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y. 2010. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15:111-121. http://dx.doi.org/10.1111/j.1365-2443.2009.01371.x.
-
(2010)
Genes Cells
, vol.15
, pp. 111-121
-
-
Hirota, T.1
Kon, N.2
Itagaki, T.3
Hoshina, N.4
Okano, T.5
Fukada, Y.6
-
44
-
-
78149481592
-
Mammalian Krüppel-like factors in health and diseases
-
McConnell BB, Yang VW. 2010. Mammalian Krüppel-like factors in health and diseases. Physiol. Rev. 90:1337-1381. http://dx.doi.org/10.1152/physrev.00058.2009.
-
(2010)
Physiol. Rev.
, vol.90
, pp. 1337-1381
-
-
McConnell, B.B.1
Yang, V.W.2
-
45
-
-
84862777353
-
Circadian rhythms govern cardiac repolarization and arrhythmogenesis
-
Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, Cutler MJ, Gulick J, Sanbe A, Robbins J, Demolombe S, Kondratov RV, Shea SA, Albrecht U, Wehrens XH, Rosenbaum DS, Jain MK. 2012. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483:96-99. http://dx.doi.org/10.1038/nature10852.
-
(2012)
Nature
, vol.483
, pp. 96-99
-
-
Jeyaraj, D.1
Haldar, S.M.2
Wan, X.3
McCauley, M.D.4
Ripperger, J.A.5
Hu, K.6
Lu, Y.7
Eapen, B.L.8
Sharma, N.9
Ficker, E.10
Cutler, M.J.11
Gulick, J.12
Sanbe, A.13
Robbins, J.14
Demolombe, S.15
Kondratov, R.V.16
Shea, S.A.17
Albrecht, U.18
Wehrens, X.H.19
Rosenbaum, D.S.20
Jain, M.K.21
more..
-
46
-
-
84863230321
-
Klf15 orchestrates circadian nitrogen homeostasis
-
Jeyaraj D, Scheer FA, Ripperger JA, Haldar SM, Lu Y, Prosdocimo DA, Eapen SJ, Eapen BL, Cui Y, Mahabeleshwar GH, Lee HG, Smith MA, Casadesus G, Mintz EM, Sun H, Wang Y, Ramsey KM, Bass J, Shea SA, Albrecht U, Jain MK. 2012. Klf15 orchestrates circadian nitrogen homeostasis. Cell Metab. 15:311-323. http://dx.doi.org/10.1016/j.cmet.2012.01.020.
-
(2012)
Cell Metab.
, vol.15
, pp. 311-323
-
-
Jeyaraj, D.1
Scheer, F.A.2
Ripperger, J.A.3
Haldar, S.M.4
Lu, Y.5
Prosdocimo, D.A.6
Eapen, S.J.7
Eapen, B.L.8
Cui, Y.9
Mahabeleshwar, G.H.10
Lee, H.G.11
Smith, M.A.12
Casadesus, G.13
Mintz, E.M.14
Sun, H.15
Wang, Y.16
Ramsey, K.M.17
Bass, J.18
Shea, S.A.19
Albrecht, U.20
Jain, M.K.21
more..
-
47
-
-
84863572695
-
Kruppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes
-
Spörl F, Korge S, Jürchott K, Wunderskirchner M, Schellenberg K, Heins S, Specht A, Stoll C, Klemz R, Maier B, Wenck H, Schrader A, Kunz D, Blatt T, Kramer A. 2012. Kruppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc. Natl. Acad. Sci. U. S. A. 109:10903-10908. http://dx.doi.org/10.1073/pnas.1118641109.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 10903-10908
-
-
Spörl, F.1
Korge, S.2
Jürchott, K.3
Wunderskirchner, M.4
Schellenberg, K.5
Heins, S.6
Specht, A.7
Stoll, C.8
Klemz, R.9
Maier, B.10
Wenck, H.11
Schrader, A.12
Kunz, D.13
Blatt, T.14
Kramer, A.15
-
48
-
-
79953858658
-
No-nonsense functions for long noncoding RNAs
-
Nagano T, Fraser P. 2011. No-nonsense functions for long noncoding RNAs. Cell 145:178-181. http://dx.doi.org/10.1016/j.cell.2011.03.014.
-
(2011)
Cell
, vol.145
, pp. 178-181
-
-
Nagano, T.1
Fraser, P.2
-
49
-
-
84870553909
-
Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
-
Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S. 2012. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16:833-845. http://dx.doi.org/10.1016/j.cmet.2012.11.004.
-
(2012)
Cell Metab.
, vol.16
, pp. 833-845
-
-
Vollmers, C.1
Schmitz, R.J.2
Nathanson, J.3
Yeo, G.4
Ecker, J.R.5
Panda, S.6
-
50
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20. http://dx.doi.org/10.1016/j.cell.2004.12.035.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
51
-
-
34249713720
-
microRNA modulation of circadian-clock period and entrainment
-
Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K. 2007. microRNA modulation of circadian-clock period and entrainment. Neuron 54:813-829. http://dx.doi.org/10.1016/j.neuron.2007.05.017.
-
(2007)
Neuron
, vol.54
, pp. 813-829
-
-
Cheng, H.Y.1
Papp, J.W.2
Varlamova, O.3
Dziema, H.4
Russell, B.5
Curfman, J.P.6
Nakazawa, T.7
Shimizu, K.8
Okamura, H.9
Impey, S.10
Obrietan, K.11
-
52
-
-
70349093118
-
A role for microRNAs in the Drosophila circadian clock
-
Kadener S, Menet JS, Sugino K, Horwich MD, Weissbein U, Nawathean P, Vagin VV, Zamore PD, Nelson SB, Rosbash M. 2009. A role for microRNAs in the Drosophila circadian clock. Genes Dev. 23:2179-2191. http://dx.doi.org/10.1101/gad.1819509.
-
(2009)
Genes Dev.
, vol.23
, pp. 2179-2191
-
-
Kadener, S.1
Menet, J.S.2
Sugino, K.3
Horwich, M.D.4
Weissbein, U.5
Nawathean, P.6
Vagin, V.V.7
Zamore, P.D.8
Nelson, S.B.9
Rosbash, M.10
-
53
-
-
79551506940
-
Post-transcriptional control of circadian rhythms
-
Kojima S, Shingle DL, Green CB. 2011. Post-transcriptional control of circadian rhythms. J. Cell Sci. 124:311-320. http://dx.doi.org/10.1242/jcs.065771.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 311-320
-
-
Kojima, S.1
Shingle, D.L.2
Green, C.B.3
-
54
-
-
80455154984
-
Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs
-
Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. 2011. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18:1139-1146. http://dx.doi.org/10.1038/nsmb.2115.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1139-1146
-
-
Garcia, D.M.1
Baek, D.2
Shin, C.3
Bell, G.W.4
Grimson, A.5
Bartel, D.P.6
-
55
-
-
79957687792
-
MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1
-
Lin DH, Yue P, Pan C, Sun P, Wang WH. 2011. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J. Am. Soc. Nephrol. 22:1087-1098. http://dx.doi.org/10.1681/ASN.2010090927.
-
(2011)
J. Am. Soc. Nephrol.
, vol.22
, pp. 1087-1098
-
-
Lin, D.H.1
Yue, P.2
Pan, C.3
Sun, P.4
Wang, W.H.5
-
56
-
-
84870288931
-
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
-
CycliX Consortium
-
Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R, Martin O, Harshman K, Delorenzi M, Desvergne B, Herr W, Deplancke B, Schibler U, Rougemont J, Guex N, Hernandez N, Naef F, CycliX Consortium. 2012. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10:e1001442. http://dx.doi.org/10.1371/journal.pbio.1001442.
-
(2012)
PLoS Biol.
, vol.10
-
-
Le Martelot, G.1
Canella, D.2
Symul, L.3
Migliavacca, E.4
Gilardi, F.5
Liechti, R.6
Martin, O.7
Harshman, K.8
Delorenzi, M.9
Desvergne, B.10
Herr, W.11
Deplancke, B.12
Schibler, U.13
Rougemont, J.14
Guex, N.15
Hernandez, N.16
Naef, F.17
-
57
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. 2011. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331:1315-1319. http://dx.doi.org/10.1126/science.1198125.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
Bugge, A.4
Mullican, S.E.5
Alenghat, T.6
Liu, X.S.7
Lazar, M.A.8
-
58
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-ß
-
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-ß. Nature 485:123-127. http://dx.doi.org/10.1038/nature11048.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
Yu, R.T.4
Barish, G.D.5
Lam, M.T.6
Chong, L.W.7
DiTacchio, L.8
Atkins, A.R.9
Glass, C.K.10
Liddle, C.11
Auwerx, J.12
Downes, M.13
Panda, S.14
Evans, R.M.15
-
59
-
-
84859329911
-
Rev-erbα and Rev-erbß coordinately protect the circadian clock and normal metabolic function
-
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA. 2012. Rev-erbα and Rev-erbß coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657-667. http://dx.doi.org/10.1101/gad.186858.112.
-
(2012)
Genes Dev.
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
Briggs, E.R.4
Mullican, S.E.5
Wang, F.6
Jager, J.7
Lazar, M.A.8
|